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Abstract: This paper presents a unique approach for the dichotomy between useful and adverse
variations of key-point descriptors, namely the identity and the expression variations in the descriptor
(feature) space. The descriptors variations are learned from training examples. Based on labels of the
training data, the equivalence relations among the descriptors are established. Both types of descriptor
variations are represented by a graph embedded in the descriptor manifold. Invariant recognition
is then conducted as a graph search problem. A heuristic graph search algorithm suitable for the
recognition under this setup was devised. The proposed approach was tested on the FRGC v2.0,
the Bosphorus and the 3D TEC datasets. It has shown to enhance the recognition performance,
under expression variations, by considerable margins.
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1. Introduction

3D face recognition has shown to achieve a considerable recognition accuracy and robustness,
especially when compared to its 2D counterpart. There are vital applications of face recognition such as
security, access control and human-machine interaction. The importance of its applications combined
with the recent advances in the 3D digitization technologies have been the driving forces behind the
interest in 3D face recognition among researchers. Despite reported advances in 3D face recognition
in the recent years, the practical applications of 3D face recognition require even higher accuracies
and robustness.

A particularly interesting recognition paradigm is concerned with the detection of key-points and
then the extraction of descriptors from the local 3D surfaces around them. This paradigm inherently
enjoys desirable properties such as the robustness to clutter and occlusions and the enabling of partial
surface matching. While this paradigm has been very successful in the general object recognition [1–3],
face recognition performance of the well-known approaches in this paradigm remained, until recently,
below that of the state-of-the-art [4,5]. Recently, the rotation-invariant and adjustable integral
kernel (RAIK) approach [6] which belongs to this paradigm has shown to highly perform in 3D
face recognition when the matching is limited to the semi-rigid regions of the face (the nose and
the forehead). The RAIK descriptors are discriminative, invariant to 3D rotations and completely
representative of the underling surface. In the context of 3D face recognition, the descriptors also
encode the expression variations. The 3D face variations pertaining to the identities of the individuals
are essential for correct recognition. However, in practice these valuable variations mix with expression
variations and rigid transformation, affecting the performance and robustness of face recognition.

When descriptors faithfully encode shape information of the local surfaces independently from the
rigid transformations, it is imperative to assume that the local descriptors represent only the identity
related shapes and the expression deformations of the local surfaces. One can consider expression
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deformations as displacements if descriptors, in the descriptor space, in an unknown and complex way.
The differentiation between the two types of the descriptor displacements, namely the identity-induced
displacements (IIDs) and the expression-induced displacements (EIDs), is learned and utilized to
enhance recognition. The displacements between descriptors extracted from different scans of the same
person and from the same location on the face (corresponding key-points) but under different facial
expressions are basically EID. These displacements along with the displacements that set different
individuals apart are extracted from training data and represented by a large graph embedded in the
descriptor manifold for the utilization in the expression invariant face recognition. These displacements
can be also perceived as one-to-one relations from the descriptor space to itself. In this terminology,
the sub-graphs corresponding to the descriptors (the nodes) of the same individual under varying
facial expressions represent equivalence relations (ERs) but the sub-graphs connecting the descriptors
of different individuals represent identity relations (IRs).

In the rest of the paper, the term ensemble refers to the set of descriptors extracted from a 3D
facial scan. The set of ensembles that are extracted from multiple 3D facial scans of a person is called
a collection. Many training collections of descriptors are extracted from sets of 3D facial scans of
many individuals. The 3D facial scans in each collection are under varying expressions, including the
neutral expression. The descriptors of each ensemble are mapped (linked) to their corresponding
descriptors in the other ensembles. This results in multiple sets of corresponded descriptors within
each collection. Each one of them is then joined together by a simple spanning graph which represents
the equivalence relations, ERs. Between the different collections, the corresponding equivalence
graphs (ERs) are connected to each other, enabling the representation of the identity relations, IRs.
One viable approach is to inter-connect the different equivalence graphs from the descriptors of
a neutral ensemble to the descriptors of neutral ensembles in other collections (neutral to neutral
connections). For invariant matching of a probe ensemble to a gallery ensemble, the descriptors are
first corresponded. Then, dissimilarity measures between descriptors are found by searching the graph
for the path connecting each corresponded descriptor pair such that the encountered IRs along the
graph path have cost (as a vector quantity), the encountered ERs have zero-cost and the magnitude of
the sum of all the encountered IRs is minimum. Finally, on the basis of the minimized IR quantities the
dissimilarity measures are computed. See Figure 1 for a graphical illustration.
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Figure 1. An Overview illustration of the proposed approach (better seen in color).

2. The Literature Review

The approaches to expression invariant 3D face recognition can be broadly categorized into two
categories; the image space approaches and the feature space approaches. Dealing with 3D surfaces
in the image space is more intuitive. It is not surprising to find early successful approaches in this
category. The avoidance of the highly deformable regions of the face such as the mouth and the
cheeks, e.g., [7–10], has shown to be considerably effective. Unfortunately, the considered regions of
the face still undergo expression deformations which can adversely affect the recognition accuracy.
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Another class of methods in the same category is to deform the 3D facial surface in an attempt to
remove or at least reduce the effects of the expression deformations. The approach proposed in [11],
transforms the 3D facial surface by bending the surface while preserving the geodesic distances among
its points into an invariant image. As that approach flattens the expressions, it also flattens some
other facial surface geometries. Recently, several methods extract expression invariant measures
from geodesic distances of the facial surface [12–14]. The annotated face model, which is an elastic
deformable model [15], deforms a 3D face under one expression to a target 3D face under another
expression [16]. The recognition is then performed on the fitted model. It is not clear how such model
can differentiate between the expression deformations and the other unique geometries of the face.
In another work [17], a low dimensional principal component analysis (PCA) subspace in which the
expression deformations reside is found from the 3D shape residues of registered pairs of non-neutral
and neutral scans, where each pair belong to the same subject. For invariant recognition, the expression
deformations in the image space are separated from novel 3D residues based on their projection onto
the subspace. These methods are better situated for global face matching. Therefore, their robustness
and accuracy may be undermined under occlusions and wide pose variations. The work in [18],
performs elastic invariant matching of local surface regions around a handful of manually picked facial
anatomical landmarks. Nonetheless, reliable automatic localization of the facial landmarks remains
an open problem.

In a wide range of approaches, the matching is performed based on extracted features [19–24].
Feature extraction reduces the dimensionality of the facial data. An independent set of features is
preferable for the recognition. Some features may be less sensitive to the expressions than others,
providing a limited level of expression invariance. Typical examples of feature extraction methods are
the linear subspace methods such as the different variants of PCA [25–29], linear discriminant analysis
(LDA) [26,28] and independent component analysis (ICA) [30–32].

In the feature space, there are different methods in the literature that attempt to find the space
regions that are associated with certain identities or class labels. One widely used methods is
to estimate a probability density function (PDF) over space regions. The estimation of a PDF in
a multidimensional vector space faces practical challenges. The number of training data samples
required to compute such PDF grows exponentially with the number of dimensions, referred to
as “the curse of dimensionality” [33,34]. Strong assumptions about the PDF are often made, such as
assuming normal distribution [35,36], to survive on the available training samples. The “kernel trick”
method was used in several approaches feature space approaches, e.g., [37–39]. The kernel function
replaces the dot product in their non-kernelized variants, e.g., the support vector machines k-SVMs [39]
and k-PCA [40], they are often data driven. Its overall process can be considered as a nonlinear
transformation of the feature space to induce more separable classes. While it provides an elegant
approach for the non-linear separability, it does not explicitly address the expression variations.
In contrast, the proposed work is explicit in handling expression variations and versatile in selecting
the relevant subset of the driving data for each match.

The manifold methods [41–45] in most cases are concerned with the non-linear dimensionality
reduction, where the feature distribution in the feature space may be locally of a much lower dimension
than that of the manifold as a whole. The de facto example is a “Swiss roll” surface residing in a higher
dimensional space. Typically, rather than using the Euclidean distances for matching, the geodesic
distances on the manifold are used instead [46]. Sometimes the problem at consideration or its
formulation guarantees that the feature data form a manifold of a specific low dimension and the
availability of enough feature samples to recover the lower dimensional manifold. An example of such
a problem is the manifold of a rotated template image [47], the manifold dimension in this case is the
number of the degree of freedom and the data samples can be generated as needed. The expression and
identity manifold is of a complex structure with several dimensions (may vary locally). This problem
also lacks the availability of enough data samples to accurately recover the manifold. In contrast,
the proposed does not attempt to recover the lower dimension of the manifold, unroll it, or extract
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geodesic distances. It perceives the manifold as a sparse distribution of data samples and the distances
between certain points are shortened to zero.

3. The Proposed Approach

This section describes the steps of the proposed approach and discusses the concepts behind them
in more details than previously provided.

3.1. Conceptual Analysis

Manifold has the notion of the Euclidean spaces (tangential spaces) locally at each of its points.
Conventionally, a descriptor space is either treated as one Euclidean space or as a manifold. In both
situations, the large distances in the descriptor space translate into large dissimilarity measures
which is not plausible for the recognition under variations. In contrast, the proposed approach has
the ability to bring and merge distant tangential manifold spaces with each other. Consequently,
the proximity and the non-proximity among the manifold points can combine and contribute more
meaningfully to the dissimilarity measure. This can be achieved through the establishment of
equivalence relations between reference points (corresponded descriptors) in the descriptor manifold.
Let Q = {D1, . . . , Dn} be a set of corresponded descriptors (an equivalence set) and TDi M denotes
a tangential space at the i-th descriptor of the manifold, M. Each corresponded pair of descriptors,
{Di, Dj}, establishes an equivalence between all the tangential spaces in which Di and Dj exist.
The equivalency also extends to the manifold points around the descriptors. The same concept
similarly applies for all the pair combinations of the descriptors in Q. This gives rise to the notion of
the tangential space as quotient space, QQM.

The displacement vectors and distances based on which the dissimilarity measures are computed
can be computed in the quotient space. Let x and y be two manifold points and the displacement
between them d(x, y) is to be computed under the equivalence set Q. The equivalent images of x
and y in all the tangential spaces at the different Q points are mapped to a reference tangential space
(the quotient space) which can be the tangential space at any Q point. The mapping from the i-th
tangential space to the r-th tangential space, E r

i (x), is provided by Equation (1) and similarly the
mapping E r

j (x) is provided by Equation (2). In the reference space there will be multiple images of x
and y points and the displacement between them is defined as the displacement with the minimum
magnitude (norm) between any equivalent image of x to any equivalent image of y, Equation (4),
where ‖.‖ is the vector norm of the displacement vector and t = (t1, t2, t3) is the optimal triple of
equivalent descriptors. A graphical illustration is provided in Figure 2.

E r
i (x) = x + Dr − Di. (1)

E r
j (y) = y + Dr − Dj. (2)

t = arg min(Di ,Dj ,Dr)⊂Q3‖E r
i (x)− E r

j (y)‖. (3)

d(x, y) = E t3
t1
(x)− E t3

t2
(y). (4)

On the basis of the mapping relations, Equations (1) and (2), the differentiation between the
expression variations and the identity variations can be achieved. The expression variation of
a descriptor from one (the i-th) expression to another (the j-th) can be considered as the additive
displacement vector ∆E j

i = Dj − Di and then separated from the identity variation. Therefore,

E j
i (.) modifies (or displaces) the expression of the input descriptor from expression i to expression j.



J. Imaging 2020, 6, 112 5 of 19

(a) (b)

Figure 2. In (a), two manifold points appearing in the tangential spaces at three equivalent manifold
points (the square ones). It shows the displacement vector between the two points. In (b), the original
two points and their images under the equivalency are shown with respect to the reference tangential
space (the solid square). The invariant displacement vector under the equivalency is also shown.

In the next discussions, the term “identity” refers to the person identity for collections and
ensembles and to the space point (location) for the unexpressed descriptors. Suppose that the identity
of the descriptor x is p1 and the identity of the descriptor y is p2. The descriptors x and y have both
expression (ex and ey) and identity (I(x) and I(y)) components, Equations (5) and (6). The identity
variation ∆I p2

p1 (x, y) is defined as the difference between the two identity components, Equation (7).

x = I(x) + ex. (5)

y = I(y) + ey. (6)

∆I p2
p1 (x, y) = I(y)− I(x). (7)

The identity variation ∆I p2
p1 (x, y) can be computed based on the displacement d(x, y)

(Equation (4)) as shown in Equations (11) and (12).

d(x, y) = E r
i (x)− E r

j (y), (8)

= x− y + Dj − Di, (9)

= I(x) + ex − I(y)− ey + Dj − Di, and (10)

= −∆I p2
p1 (x, y)− ∆E i

x(x) + ∆E j
y(y). (11)

When the expression of x is close (or ideally equals to) the expression Di and that of y equals
to the expression Dj then ∆I p2

p1 reduces to −d(x, y), Equation (12). This requirement is seamlessly
achieved during the computation of d(x, y) according to Equation (4).

∆I p2
p1 (x, y) = −d(x, y). (12)

While the identity variations ∆I p2
p1 (x, y) is computed based on the descriptors x and y, ∆I p2

p1 (., .)
is independent of any particular descriptors as long they belong to the specified identities and at the
corresponding key-points on the face. Therefore, the norm value of ∆I p2

p1 (x, y) or equally that of d(x, y)
can be used in the computation of an invariant dissimilarity measure.

In general, the identity of a descriptor x can be changed from p1 to the identity of any known
descriptor, I(.) = pk, as in Equation (13).

I p2
p1 (x) = x + ∆I pk

p1 ⇒ I(I
pk
p1 (x)) = pk (13)
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Similarly, the expression of a descriptor x can be changed from ex to that of any known descriptor,
E(.) = ek, as in Equation (14).

E ek
ex (x) = x + ∆E ek

ex ⇒ E(E
ek
ex (x)) = ek (14)

The identity and expression (changing) relations can be composed in any arbitrary sequence,
e.g., that given in Equation (15).

x′ = E e2
e1 ◦ I

p3
p2 ◦ E

e1
ex ◦ I

p2
p1 (x), (15)

= E e2
e1 ◦ E

e1
ex ◦ I

p3
p2 ◦ I

p2
p1 (x), and (16)

= E e2
ex ◦ I

p3
p1 (x). (17)

E(x′) = e2. (18)

I(x′) = p3. (19)

The identity and expression relation composition provides the proposed approach with the
capacity to utilize the training data in invariant recognition. Let x and y be two novel descriptors
respectively with identities p and g. To compute the invariant dissimilarity measure between them
for example using just one equivalence relation, one need to search the training data for a pair
of descriptors belonging to the same person c (an equivalence relation pair Q = {D1, D2}) that
minimizes Equation (22). Using the optimal Q, the identity variation ∆I g

p is given equally by any of
the displacements in Equation (24). Equations (20) and (21) basically find the image of x under the
equivalence relation Q. Equation (21) is computable from the descriptors values but Equation (20)
only illustrates its identity and expression composition. The dissimilarity measure ‖∆I p

p‖ is ideally
zero (practically minimal) if both x and y have the same identity or non-zero (practically non-minimal)
otherwise. Note that the descriptors form a graph path from x to y through D1 and D2. More than one
equivalence relation (belonging to different people) can be utilized in estimating ∆I g

p , the details are
provided in Section 3.4.

x′ = ED1
D2
◦ I p

c ◦ ED2
D1
◦ ED1

p ◦ I c
p(x) (20)

= ED2
D1

(x) = x + D2 − D1 (21)

Q = arg min
Q
||x′ − y|| (22)

y = I g
p ◦ ED2

D1
(x) (23)

⇒ ∆I g
p = y− ED2

D1
(x) = y− D2 + D1 − x (24)

3.2. The Correspondence of the Descriptors

The correspondence of the descriptors is important for the proposed approach, since it enables
the tracking of their identity and expression variations. For a pair of descriptor ensembles, N1 and
N2, the correspondence is defined as the mapping of each descriptor Di ∈ N1 to one descriptor
Dj ∈ N2, such that each pair {Di, Dj} correspond to a particular spatial location on the face. Let the
correspondence of N1 and N2 be denoted by the set M1,2 for which Equation (25) holds.

M1,2 ⊂ {{Di, Dj} | Di ∈ N1 ∧ Dj ∈ N2}. (25)

The correspondence is established based on a customized variant of the random sample consensus
(RANSAC) algorithm [48]. The dissimilarity of the descriptors and their locations are both utilized.
The descriptors in the two ensembles are initially matched against each other based on the dissimilarity
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measure in Equation (26). The summation is performed over all the descriptors. The descriptors in N1

are corresponded to those in N2 with the minimum dissimilarity measures.

d(Di, Dj) = ∑ ‖Di − Dj‖. (26)

This will result in many correctly corresponded pairs but also will result in mis-correspondences.
Let the key-point sets of the ensembles N1 and N2 be denoted respectively by K1 and K2.
Each key-point k in K1 or K2 is a vector of the 3D point coordinates, k = [x, y, z]>. To correct
the mis-correspondences, the 3D rigid transformations, both the rotation R and the translation t,
that transform the key-points in K1 to their corresponded ones in K1 are first estimated using least
square fitting. Then, the error of transformation (the Euclidean distance error), defined in Equation (28),
is used to split the correspondences into inliers and outliers by comparison against a threshold value
of the transformation error, eth.

k′i = Rki + t, ki ∈ K1. (27)

e = ‖k′i − kj‖, kj ∈ K2. (28)

The rigid transformations are then recalculated base on the inlier correspondences and the process
is iterated until the change in the norms of the new R and t diminishes. Using the converged values of
R and t, the key-points in K1 are transformed and then re-corresponded only to the K2 key-points in
their vicinity.

3.3. The Construction of the Embedded Graph

As previously mentioned, the graph is constructed from a training set of descriptors D organized
in a set of ensembles N and a set collections C .

D = {D1, . . . , D|D|}. (29)

N = {N1, . . . ,N|N |}, where ∀D∈N , N∈N D ∈ D . (30)

C = {C1, . . . , C|C|}, where ∀N∈C, C∈CN ∈ N . (31)

The ERs are extracted from the correspondences within the individual collections, between pairs
of ensembles, while the IRs are extracted from those between pairs of collections.

Initially, sub-graphs representing the ERs are sequentially extracted from each collection Ci in C .
To achieve that, a list of ensemble pair combinations within the collection Ci is generated and then
each generated ensemble pair is corresponded as described. The use of all possible combinations may
be overly redundant, especially for large number of ensembles within the collection. This is because
the correspondence problem is transitive. The minimum number of such pairs required for connected
sub-graphs is |Ci| − 1, where |Ci| is the number of ensembles in the collection. However, for robustness
a sufficient level of redundancy is maintained, since the redundancy could mitigate possible errors in
key-point localization and detection under different facial expressions.

A disciplined approach for the maintenance of the required redundancy is based on the reduction
of the hope count between the ensembles, when representing the ensembles as graph nodes and
the pair combinations as graph edges. First, a minimal connected graph, Gi = (Vi, Ei), is found,
e.g., by connecting each ensemble to the next. Then, iteratively the graph diameter, the largest path
between any two ensembles, is computed and an edge (an ensemble pair) is introduced between the
two ensembles until the graph diameter falls below some predefined threshold. The correspondences
are then computed for the ensemble pairs adjacent to every edge in Ei of the graph Gi and then
combined in one correspondence set MCi for the collection Ci, as in Equation (32).

MCi =
⋃
∀e∈Ei

Mj,k(Nj,Nk), where {Nj,Nk} = e. (32)
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The pairs in the set MCi , when each is considered as a graph edge, form a new graph GCi with
multiple connected sub-graphs GCi ,s, where s = 1, . . . , Si.

GCi = (VCi , ECi ). (33)

GCi ,s = (VCi ,s, ECi ,s), VCi ,s ⊂ VCi ∧ ECi ,s ⊂ ECi . (34)

The number of the connected sub-graphs Si ideally should equal to the number of the descriptors
per ensemble and the number of vertices of each subgraph |VCi ,s| should equal to the number of
the ensembles, |Ci|, in the collection. However, this does not necessarily hold in practice. In fact,
the number of the vertices can be less than |Ci| for some sub-graphs, due to possible failure to detect
some key-points, or it can be particularly much higher than |Ci|, since more than one sub-graph can
be joined together due to mis-correspondences. When the number of the vertices of any sub-graph is
significantly low, it can be considered as an indication that the underling key-point is not repeatable
and the sub-graph is discarded.

The larger connected sub-graphs are iteratively segmented (partitioned) based on the well-known
spectral graph partitioning (clustering) algorithm [49,50]. The edges of the sub-graph to be partitioned
are assigned the weight values shown in Equation (36). wel is the weight of the edge el after
normalization (by division by the average non-normalized weight w̄). The distance d between the
adjacent descriptors to the edge is the same defined in Equation (26).

w′el
=

1
d(Dj, Dk)

, where {Dj, Dk} = el ,

for l = 1, . . . , |ECi , s|. (35)

wel =
w′el

w̄
, for l = 1, . . . , |ECi , s|. (36)

The Laplacian matrix LCi ,s of the weighted and connected sub-graph is then computed.

LCi ,s = DCi ,s −ACi ,s. (37)

The diagonal matrix DCi ,s is the degree matrix of the weighted graph, each diagonal element
is the sum of the normalized weights of all the incident edges to the corresponding vertex of the
graph. ACi ,s is the adjacency matrix of the graph, each ai,j element is the normalized weight of the edge
connecting the i-th vertex to the j-th vertex. The second smallest eigenvalue λ f of LCi ,s is an indicator
of how the graph is well-connected.

LCi ,sx f = λ f x f . (38)

The corresponding eigenvector to λ f is known as the Fiedler vector, x f . The Fielder vector elements
has comparable values for strongly connected vertices. In the next step, the K-means clustering
algorithm (with only two clusters) is applied to the elements of x f . Based on the resulting two clusters
of vertices, the graph GCi ,s partitioned. The described graph partitioning is iteratively applied until,
the resulting graphs are strongly connected and roughly of the expected number of vertices, |Ci|.

Finally, the vertices (the descriptors) of the resulting connected graphs are considered the
equivalence setsQCi ,s, where s = 1, . . . , Si, of the collection Ci. Each graph GCi ,s is then simplified to the
star graph TCi ,s (the spanning graph). Every vertex descriptor in the equivalence set is connected to one
neutral descriptor which is chosen as the nearest to the means ofQCi ,s in case there are multiple neutral
descriptors, called the bridging vertex (or descriptor), denoted by Bi,s. Similarly, the equivalence
sets and the equivalence star graphs are extracted for every collection. The equivalence graphs are
then allowed to join corresponding ones in all other collections, from bridging to bridging vertices.
These joining edges represent the IRs. It is possible not to define any particular bridging points
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and allow for IRs connections (edges) from all the equivalent vertices of one collection to all the
vertices of the corresponding sets in all other collections. In this case, the spanning graph of the
equivalence sets will be a line connecting them, rather than a star. However, the definition of the
bridging points significantly simplifies the graph search problem (the matching), as will be discussed
in the next subsection.

3.4. The Heuristic Graph Search

The graph search takes place during the matching of a probe ensemble Np to a gallery
ensemble Ng. The two ensembles are first corresponded. Theoretically, an invariant dissimilarity
measure can be computed between Np and Ng for an optimal graph path P∗ ∈P connecting them.
In the general case, possible candidate paths start withNp then zero or more collections are visited and
finally terminate at Ng. The paths should be simple, have no repeated edges or collections. At each
visited collection two ensembles are visited (an entrance and an exit one). At the descriptor level,
there are multiple paths (a path bundle) connecting the corresponded descriptors in parallel for each
higher level path. The paths are eventually realized as sequences of descriptors. The entrance and exit
ensembles may be fixed for the descriptor level path bundle. However, relaxing this requirement and
letting the entrance and the exit ensembles to vary for the different descriptor level paths is beneficial
when the variety of the training expressions in the collections are limited. Below are the definitions of
the paths at the different levels.

P ′ = {{Np, CI(1), . . . , CI(|P|−2),Ng} | CI(.) ∈ C }. (39)

≡ {{Np,NI(1),E(1),NI(1),X(1), . . . ,NI(|P|−2),E(|P|−2),NI(|P|−2),X(|P|−2),Ng} |

NI(.),E(.) ∈ N ∧NI(.),X(.) ∈ N }.

≡ {{Dp,i, DI(1),E(1), DI(1),X(1), . . . , DI(|P|−2),E(|P|−2), DI(|P|−2),X(|P|−2), Dg,j}

| DI(.),E(.) ∈ D ∧ DI(.),X(.) ∈ D ∧ {Dp,i, Dg,j} ∈Mp,g} = P . (40)

The multiple subscript indices of the path vertices uniquely point to the specific graph vertices
and also indicate their identity I(.), expression whether it is the entrance expression E(.) and the
exit expression X(.). Equation (41) shows how the invariant measure can be computed based on the
graph paths.

s′ = min
P∈P

∑
{x,y}∈Mp,g

‖EX(|P|−2)
E(|P|−2) ◦ · · · ◦ E

X(2)
E(2) ◦ E

X(1)
E(1) (x)− y‖. (41)

Existing optimal path searching algorithms such the Dijkstra and Bellman-Ford are not suitable
for the solution of Equation (41). They deal scalar edge weights. In contrast, the edge weights in
the tackled problem here are multidimensional vectors and the optimized quantity is the norm of
their summation.

By considering only the bridging points, which were described earlier in Section 3.3, as the
entrance and the exit vertices between collections, the graph density reduces and the maximum
number of collections per path also reduces to two. This means that each considered path has at
maximum three identity changes and two removable expressions. Apart from the constraint on the
maximum path length, |P|, Equation (41) holds for this lighter version of the graph search problem.

The proposed heuristic graph search proceeds by assigning one collection to the probe ensemble
and one collection to the gallery ensemble (possibly another one). These assignments are initially
performed based on the vicinity (in the descriptor space) of the descriptors of the probe and the gallery
ensembles to those in the assigned collections. A KD-tree of all the training descriptors was built
during an off-line stage to enable an efficient search for the nearest neighbors. A table of the descriptors
information containing their ensemble, collection and equivalence sets is associated with the KD-tree.
The k nearest neighbors of each descriptor in the probe or the gallery ensemble vote for the different
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collections based on their associated information (labels). The collection that receives the highest
number of votes is assigned to the ensemble. Next, the descriptors ofNp andNg are assigned entrance
and exit descriptors within the assigned collections. For this task, a separate KD-tree per collection
was built (during an off-line stage), since smaller KD-tree are more efficient to search. Then, for each
corresponded descriptor pair, {x, y} ∈Mp,g where x ∈ Np and y ∈ Ng, the nearest three descriptors to
x are considered as potential entrance descriptors to the collection assigned to Np. Similarly, the three
nearest neighbors to y are found and considered as potential exit descriptors from the collection
assigned toNg. Among the few combinations of potential entrance and exit descriptors, the one which
yields the lowest value of the scalar function m′(x, y), defined in Equation (42), is assigned to x and y
as respectively their entrance and exit descriptors.

m′(x, y) =‖EX(2)
E(2) ◦ E

X(1)
E(1) (x)− y‖ (42)

=‖∆I g
p‖ (43)

At this point of time, only a good initial guess of the solution is found and the search for the
optimal path (or measure) is not performed yet. Nonetheless, the most similar people (collections) and
expressions are likely to be assigned to the probe and the gallery.

The optimization is carried out implicitly as nearest neighbor search. The descriptors ofNp are first
displaced as in Equation (44) which produces new images of descriptors, x′i for i = 1, . . . , |Np|. The new
descriptors are then used to re-assign the gallery a new training collection and new entrance and exit
descriptors as described earlier. It is then followed by a similar displacement and re-assignment of the
probe descriptors based on the images of the gallery descriptors, y′i as in Equation (45). Each of the
two steps implies the minimization of Equation (42).

x′i = E
X(2)
E(2) ◦ E

X(1)
E(1) (x) = x + DI(1),X(1) − DI(1),E(1) + DI(1),X(2) − DI(1),E(2) (44)

y′i = E
E(2)
X(2) ◦ E

E(1)
X(1)(y) = y + DI(1),E(1) − DI(1),X(1) + DI(1),E(2) − DI(1),X(2) (45)

This process is then iterated a few times until convergence. These steps are only committed when
they result in further minimization of Equation (42).

The described graph search accounts for paths with one and two collections (as both the probe
and the gallery can be assigned to the same collection). The direct path between the probe and the
gallery should also be considered which is accounted for by the simple minimization in Equation (46).

m(x, y) = min{m′(x, y), ‖x− y‖}. (46)

3.5. The Dissimilarity Measure between Ensembles

An overall dissimilarity measure, s, between any two ensembles can be computed from the
dissimilarity measures between the corresponded descriptor pairs, i.e., the m values shown in
Equation (46). The N descriptor measures with the least values are simply summed to produce
an overall ensemble measure s, as in Equation (47). N is much less than the typical number of the
corresponded descriptor pairs. This would avoid the measures with high values. For those ones the
expression variations may not be effectively removed by the proposed approach. When computing the
dissimilarity matrix, its entries are further normalized to range from zero to one for each probe.

s(Np,Ng) =
N

∑
i

mi. (47)
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4. Experiments

A number of face recognition experiments were conducted on the FRGC v2.0 [51], the 3D TEC [52]
and the Bosphorus [53] datasets. These datasets differ from each other in a number of aspects. First,
the FRGC dataset has the largest number of individuals (466 people in the testing partition) among the
three datasets. It has diverse facial expressions but about half of its facial scans are under neutral or near
neutral expressions. On the other hand, the 3D TEC and the Bosphorus datasets can even pose a more
significant challenge to the recognition under facial expression variations. In the case of the 3D TEC,
the challenge mainly arises because the individuals are identical twins (107 twins/214 individuals).
In the third and the fourth 3D TEC experiments, the probes and the galleries are under different facial
expressions. In contrast, the probe and the gallery scans specified in the dataset for the first and the
second 3D TEC experiments involve no expression variations. In the case of the Bosphorus dataset,
there are many scans for only 105 different people. However, the facial expression challenge arises
because the facial expressions are generally of a larger extent in comparison to the other two datasets.

4.1. RAIK Descriptor Based Experiments

As the proposed expression invariant approach requires a set of training data with many
individuals and under different facial expressions including the neutral expression, the FRGC dataset
is an appropriate choice for training the system. The FRGC dataset has a training partition. However,
it has a limited number individuals and the individual sets of the training and the testing partitions
are not mutually exclusive. For this reason, a significant part of the testing partition of the FRGC
dataset was used for training the proposed system, all the facial scans of the first 300 individuals.
The remaining scans of the testing partition was used for testing the proposed approach. A gallery
of 166 neutral facial scans (one scan per subject) was formed. The remaining scans were split into
a neutral and a non-neutral probe subsets. The trained system was then used to perform the tests on
the 3D TEC and the Bosphorus datasets. In all the experiments including both the expression-invariant
approach and the plain RAIK approach which was used for result comparison, the RAIK features were
compressed using the principal component analysis (PCA), each to a vector of twenty PCA coefficients.
The RAIK descriptor has two adjustable parameters α and β. They were respectively set to −0.15 and
0.0 for all the conducted experiments.

The recognition performance results of the experiments conducted on the FRGC dataset,
Figures 3 and 4, indicate that the proposed expression-invariant approach noticeably enhances the
identification rates of the non-neutral probes at the first few ranks where the expression variations have
more impact on the identification performance. While the first rank identification rate has increased
from 97.69% (for the plain RAIK approach) to 97.90% (for the proposed approach based on the RAIK
descriptors), the margin between the two rates has further increased at the second rank and peaked
at the third rank where the identification rate has increased from 98.32% to 98.95%. It should be
noted that the plain RAIK approach already achieves a very high identification performance because it
limits the matching to the semi-rigid regions (the forehead and the nose) of the face. As more regions
are considered, the identification rate margin between the proposed approach and the plain RAIK
approach increases in favor of the proposed approach. This is because the identification rates of the
plain RAIK approach declines more rapidly with the inclusion of the non-rigid regions of the face while
proposed approach still declines but a slower pace. However, the performance of both approaches is
optimal when only the semi-rigid regions of the face are considered. It could be concluded that the
proposed approach contributes the reliability of the recognition in addition to the observed recognition
performance enhancement. For the neutral experiment, the impact of the proposed approach is limited,
which is expected as there are no expression variations and the identification rates for the neutral
scans are already above 99.5%. Some verification rate improvement was observed for the non-neutral
experiment but it was not significant. It has increased from 98.11 to 98.31% at 0.001 FAR.

The identification and verification rates of the first and the second experiments of the 3D
TEC dataset were not significantly impacted by the proposed approach. The interpretation of this
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observation is that for these two experiments the probe and the gallery scans of the twins are under
the same expressions. In contrast, the impact of the proposed approach on the third and the fourth
experiments was more significant (Figures 5 and 6). The proposed approach has increased the first rank
identification rate of the third experiment from 85.51 to 89.25% and from 86.45 to 89.25% for the fourth
experiment. It appears from the 3D TEC and the FRGC results that the recognition enhancement of the
proposed approach becomes more significant when the expression variations are more challenging to
the plain RAIK approach. For these two experiments, the verification rates were respectively 92.52%
and 91.12% at 0.001 FAR for the proposed approach, in comparison to 88.79% and 88.32% at 0.001
FAR for the plain RAIK approach. The results of the Bosphorus dataset indicate that the proposed
approach enhances the recognition performance for the probes under non-neutral facial expressions
(Figures 7 and 8). The identification rate had increased from 91.94 to 93.55% and the verification rate
had increased from 92.60 to 94.21% at 0.001 FAR. There was a negligible degradation in the verification
performance of the neutral expression scans. Nonetheless, both the proposed system and the plain
RAIK system had achieved above 99.5% verification at 0.001 FAR for the neutral scans.

Figure 3. The CMC curves of the non-neutral (left) and the neutral (right) subsets of the FRGC dataset
which were spared for evaluation. The curves compare the performance when using the proposed
learning approach based on the RAIK features to that when the RAIK features are used without
learning. Both methods achieve a very high performance. However, a noticeable improvement is
observed for the non-neutral scans in particular, especially for the first few ranks.

Figure 4. The ROC curves for the non-neutral subset of the FRGC dataset which were spared for
evaluation (RAIK descriptor).
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Figure 5. The CMC curves of the four experiments of the 3D TEC dataset performed using RAIK
descriptor. The first two experiments involve no expression variations. For these two experiments there
is a limited effect of the learning approach on the identification performance. In contrast, the third and
fourth experiments have expression variations among the twins facial scans, for which the proposed
approach has shown to considerably improve the recognition performance.

Figure 6. The ROC curves of the four 3D TEC experiments based on RAIK.
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Figure 7. The CMC curves of the Bosphorus dataset (RAIK descriptor).

Figure 8. The ROC curves of the Bosphorus dataset (RAIK descriptor).

4.2. Local 3D PCA Descriptor Based Experiments

The experiments in this subsection were conducted in a similar fashion to those performed
using RAIK descriptor on the FRGC and the 3D TEC datasets. The RAIK descriptors were used
instead of the local 3D PCA ones. Local 3D PCA descriptor is known to perform very well in 3D
face recognition [4,54]. However, it is not rotation-invariant in contrast to RAIK. Therefore, the 3D
faces were ensured to have a standard frontal pose using the principal components of the 3D face.
The nose tip of the face was detected in the 3D face point-cloud and then the facial 3D points within
80 mm radius were cropped. They are then pose-corrected to their principal vertical and horizontal
components and converted to range images. The local 3D PCA descriptors were extracted from 3D
surface patches of 15 × 15 mm size. They are then translated along the z-coordinate so their central
points have a depth value of zero. Finally, the dimensionality of the 3D local surfaces are reduced
using standard PCA to 20D vectors.

3D face recognition using the proposed approach based on local PCA descriptors was performed
and compared against the results of local PCA descriptors alone. The use of the proposed approach
has shown to boost both the identification and verification rates of standard PCA when performed
in similar settings. The improvement margins generally seem better than those observed for RAIK.
However, the performance of the proposed approach based on RAIK is much better than the PCA one.
This is probably because RAIK is rotation-invariant and more discriminative.
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The proposed approach based on local PCA has shown to improve rank-1 identification rate
from 92.76 to 94.6% for the FRGC 3D faces under facial expressions, see Figure 9. The verification
rate has also improved from 95.34 to 96.81% at 0.001 FAR. The performance on 3D TEC dataset has
also experienced considerable improvements, see Figures 10 and 11. The first rank identification rates
when using the proposed approach were 90.65%, 90.65%, 73.36% and 73.83%, respectively for the four
standard 3D TEC experiments (experiment-I, II, III and IV). Without the application of the proposed
approach, the rates were respectively 85.98%, 86.92%, 69.16% and 68.22%. The verification rates at 0.001
respectively before and after the application of the proposed approach were 87.85% and 92.06% for the
first experiment but 88.79% and 93.46% for the second one. The rates have also improved for the third
and fourth experiments respectively from 70.09 to 74.77% and from 69.16 to 75.23% at roughly 0.0011
FAR (the lowest possible one).

In comparison to the recent 3D face recognition literature, the proposed approach achieves
comparable results to the state-of-art even if it does not generally outperform recent deep learning
based advances, especially those based on holistic face recognition [55,56]. However, the RAIK
descriptor in particular already achieves a high recognition performance on its own and the proposed
approach has shown to further improve its performance. Some of the results of the proposed
approach discussed earlier are in close proximity or even exceed those of deep learning. For example,
identification rate (89.25%) of the proposed approach using RAIK for the third and fourth 3D TEC
experiments exceed those of the highly performing “deep 3D face identification” method described
in [55] (whose rates are respectively 81.3% and 79.9%), see Table 1. Apart from recognition performance,
conducting 3D face recognition based on local features may have advantages over holistic face
recognition since it does not require the visibility of the whole face for matching.

Table 1. Rank-1 identification rate comparisons on the three datasets.

Approach FRGC V2.0 Bosphorus 3D TEC

Expression Neutral (Expression) Exp. I Exp. II Exp. III Exp. IV

Li et al. [57] 96.3% (combined) 98.82% NA NA NA NA
Kim et al. [55] NA NA 99.2% 94.8% 94.8% 81.3% 79.9%

This paper 97.90% 99.55% 93.55% 94.39% 92.99% 89.25% 89.25%

Figure 9. The CMC and ROC curves of the FRGC facial scans under expression using local 3D
PCA descriptor.
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Figure 10. The CMC curves of the four 3D TEC experiments based on local 3D PCA descriptor.

Figure 11. The ROC curves of the four 3D TEC experiments based on local 3D PCA.
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5. Conclusions

The proposed research described a new manifold-based approach for learning facial expression
invariance of the key-point descriptors. The descriptor variations induced by the facial expressions were
handled with the equivalence relations within the descriptor manifold. Then, invariant dissimilarity
measures (distances) were computed based on the equivalence relations. This approach has shown
to improve the recognition performance especially when the facial scans being matched involve
expression variations.
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