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Abstract: One of the main problems faced by the photometric stereo method is that several
measurements are required, as this method needs illumination from light sources from different
directions. A solution to this problem is the color photometric stereo method, which conducts
one-shot measurements by simultaneously illuminating lights of different wavelengths. However,
the classic color photometric stereo method only allows measurements of white objects, while a
surface-normal estimation of a multicolored object using this method is theoretically impossible.
Therefore, it is necessary to add some constraints to estimate the surface normal of a multicolored
object using the framework of the color photometric stereo method. In this study, a median filter is
employed as the constraint condition of albedo, and the surface normal of the occluding boundary
is employed as the constraint condition of the surface normal. By employing a median filter as the
constraint condition, the smooth distribution of the albedo and normal is calculated while the sharp
features at the boundary of different albedos and normals are preserved. The surface normal at the
occluding boundary is propagated into the inner part of the object region, and forms the abstract
shape of the object. Such a surface normal gives a great clue to be used as an initial guess to the
surface normal. To demonstrate the effectiveness of this study, a measurement device that can realize
the multispectral photometric stereo method with seven colors is employed instead of the classic
color photometric stereo method with three colors.

Keywords: photometric stereo; color photometric stereo; multispectral imaging

1. Introduction

To reproduce a detailed surface shape, normal information is necessary. To obtain this information,
the photometric stereo method was proposed, which estimates the normal by transitioning the
brightness levels of several pictures by changing the direction of the light source. However, as it
requires multiple photoshoots, the photometric stereo method is not suitable for modeling a moving
object. To measure the shape of a moving object, the color photometric stereo method, which employs
several colored light sources, was developed. This method involves placing light sources of red, green,
and blue colors in three different directions, which simultaneously illuminate the target object. This
paper proposes a technique that employs some constraints so that it can be applied to colored objects,
which is impossible for conventional color photometric stereo. Unlike the common color photometric
stereo method, we use seven narrow-band lights with different peak wavelengths while observing the
target object with a seven-band multispectral camera.
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2. Related Work

The photometric stereo method [1,2] estimates the normal of the surface of an object by
illuminating the object and analyzing the resulting shadings on the object’s surface. In this method,
light is illuminated on the object from one white parallel light source (an infinity point light source) to
obtain a picture. Then, two more pictures are captured with different light source directions. In other
words, it requires capturing three pictures with different light source directions. Therefore, it is
impossible to measure a dynamic object. This problem can be resolved using the color photometric
stereo method. In this method, lights are simultaneously illuminated from red, green, and blue
light sources, and one picture photographed with an RGB color camera is captured. Such one-shot
photograph enables the measurement of a dynamic object.

The color photometric stereo method [3–5] (also known as shape-from-color) was developed in
the 1990s. Since then, various studies [4,6–22] have been conducted in this regard. However, many
problems are inherent in the color photometric stereo method. Many researchers in the past have
struggled with this method, and even until recently it has been an ongoing problem. The principle
problem of the color photometric stereo method is the fact that it can only be used with white objects.
This is an inevitable problem as long as lights are illuminated from three colored light sources to
estimate the surface normal.

Recently, various techniques have been proposed to apply the color photometric stereo method to
multicolored objects. Roubtsova et al. [20] applied the color photometric stereo method to objects with
arbitrary BRDF (bidirectional reflectance distribution function) by incorporating the Helmholtz Stereo
method. However, the principle of this method does not allow for real-time measurement. Therefore,
an optical flow is required to measure a dynamic object. Kim et al. [16] and Gotardo et al. [23]
also tracked dynamic objects using optical flow, and estimated the surface shape of objects by
utilizing several images taken at different times. Fyffe et al. [12] proposed a color photometric
stereo method that employs six band cameras and three white color sources. All three light sources
used in their method appear white to the human eye. However, all of them possess different spectral
distributions. Furthermore, this method pre-measures the reflectance of various objects to prepare a
database, and calculated four bases. Using this technique, it is possible to obtain an analytic solution,
as there are four unknown numbers in relation to albedo (four base coefficients) and two in relation
to the normal (because the three-dimensional vector is normalized), and six equations are obtainable.
Anderson et al. [6] estimated the object color using the normal of multi-view stereo. However, owing
to the low accuracy of the normal of multi-view stereo, they improved the estimation accuracy of
object color based on the hypothesis that an object is composed of a limited number of colors. Their
technique incorporates the framework of region segmentation, where the number of the regions is
automatically determined based on the Bayesian information criterion. Chakrabarti et al. [8] calculated
the candidates of object color by approximating the shape inside the patch of neighboring areas using
a polynomial. They calculated the histogram of the object color candidates, chose only the limited
number of colors that gained most votes, and evaluated the normal by postulating that the object is
composed of these limited number of colors. Jiao et al. [15] divided a picture into super pixel regions
and estimated the normal by postulating that the object color inside each region is uniform.

In this paper, the problem faced by the color photometric stereo method is solved using a different
approach from those used in previous studies. Our proposed technique employs a median filter as the
constraint condition of the albedo and surface normal. We also use the occluding boundary constraint
for the surface normal. Thanks to this constraint, we have a good estimate from the initial state of
surface normal, which results in robust estimation.

The techniques of Gotardo et al. [23], Kim et al. [16], and Roubtsova et al. [20] need to employ
optical flow to measure a dynamic object, while the technique of Fyffe et al. [12] requires a reflectance
database to be prepared prior to the measurement. Our proposed technique does not require a
shape obtained from other sensors such as multi-view stereo or laser sensor, unlike the technique of
Anderson et al. [6] Moreover, unlike the techniques of Chakrabarti et al. [8] and Jiao et al. [15] our
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proposed method does not require region segmentation. Previous color photometric stereo methods
used three lights with red, green, and blue colors and observed the object with an RGB color camera.
In our study, seven lights with different wavelengths are used to illuminate the object, which is then
observed by a seven-band multispectral camera. This paper demonstrates that multi-spectral cameras
and multi-spectral light sources are also effective for the color photometric stereo method.

3. Multispectral Color Photometric Stereo Method

3.1. Image Formulation

A photometric stereo method that employs independent colored light is called the color
photometric stereo method. A characteristic of this method is that it enables the estimation of the
surface normal with one photoshoot. The widespread color photometric stereo method is conducted
with three types of colored lights. While the conventional photometric stereo method results in several
grayscale images, the color photometric stereo method results in a multi-spectral image.

Although the fundamental theory is given in several sources in the literature [24,25], we briefly
explain the formulation of the problem. The spectral sensitivity of a camera is denoted as Qc(λ),
the spectral distribution of the light source is E(λ), and the spectral reflectance of the object is S(λ).
Moreover, c denotes the channel. In this case, the brightness obtained from each channel of the camera
can be attained from Equation (1).

Ic =
∫ ∞

0
Qc(λ)E(λ)S(λ)dλ . (1)

Suppose that we use single light E(λ) whose spectral distribution can be represented as a delta
function δ(·) whose peak wavelength is λc.

E(λ) = ecδ(λ− λc) , (2)

where ec represents the brightness of the light. Suppose that the channel c is only sensitive to the
wavelength λc, and suppose that other channels cannot detect the wavelength λc.

Qc(λ)E(λ) = qcecδ(λ− λc) , (3)

where qc represents the sensitivity at wavelength λc. Suppose that we lit a single parallel light source
(infinite-far point light source) whose spectral distribution is represented as delta function and its peak
wavelength is λc, the pixel brightness Ic can be represented as follows using the formulation that the
diffuse reflection is represented as S(λc) = s̃c max(n · lc, 0).

Ic = qcec s̃c max(n · lc, 0) , (4)

where s̃c represents the reflectance. n is a normal vector and lc is the light source direction vector of
channel c. Denoting as Ac = qcec s̃c, Equation (4) becomes as follows.

Ic = Ac max(n · lc, 0) . (5)

Hereinafter, we call Ac albedo. Note that the camera sensitivity and light source brightness are included
in Ac.



J. Imaging 2019, 5, 64 4 of 29

As shown in Figure 1, this study conducts a photoshoot of a multicolored object using seven
channels (Figure 2). Following Equation (5), the brightness is obtained from this photoshoot as follows.

I0 = A0 max(n · l0, 0) ,

I1 = A1 max(n · l1, 0) ,
...

I6 = A6 max(n · l6, 0) . (6)

The surface normal n is a 3D vector; however, the degree-of-freedom is two because it is
constrained to be a unit vector (such constraint reduces one degree-of-freedom). Albedo Ac is
represented by seven parameters. There are seven equations, as shown in Equation (6), and nine
unknown parameters (A0, A1, . . . , A6, nx, ny, nz, s.t., n2

x + n2
y + n2

z = 1, namely seven for albedo and
two for surface normal). Therefore, color photometric stereo, without any assumption or constraint,
is an ill-posed problem.

The most commonly used assumption is to limit the color of the target objects to white
(A0 = A1 = · · · = A6). If we set s = Acn and if we ignore the shadow, the surface normal s (scaled
with albedo) can be directly solved.

 s

 =


l>0
l>1
...

l>6


+

I0

I1
...
I6

 . (7)

As is shown above, the color photometric stereo for white objects, or in other words,
the conventional photometric stereo can directly solve the surface normal, without iterative
optimization nor additional constraints such as smoothness constraints. However, this paper analyzes
the methods with multi-colored objects. Therefore, we add smoothness constraints and iteratively
solved the problem formulated as Equation (6).

Figure 1. Conceptual explanation of multispectral color photometric stereo. Target object is
illuminated by multiple light sources whose wavelengths are different. One image is taken using
multispectral camera.
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Figure 2. Explanation of multi-channel image: (a) Grayscale image with single channel, (b) RGB color
image with 3 channels, and (c) multispectral image with 7 channels.

The proposed technique estimates the surface normal through an iteration process. The cost
function that is minimized through the iteration process is explained in Section 3.2. Each term of
the cost function is explained in Sections 3.3–3.6. The initial value required in the iteration process
is explained in Sections 3.6 and 3.7, and the update rule for each iteration is shown in Section 3.8.
Detection of specular reflection is explained in Section 3.9. A method to integrate the surface normal to
obtain the geometrical structure of the object surface is shown in Section 3.10, and Section 3.11 explains
how to cancel the channel crosstalk.

3.2. Cost Function

The cost function
∫∫

Fdxdy is expressed through the following four terms:

F =
∫ ∫

(x,y)∈P\∂P
F1(n(x, y), A(x, y), I(x, y), L)dxdy

+
∫ ∫

(x,y)∈P\∂P
F2(n(x, y))dxdy

+K2

∫ ∫
(x,y)∈P\∂P

F3(A(x, y))dxdy

+
∫ ∫

(x,y)∈∂P
F4(n(x, y))dxdy . (8)

Equation (8) is minimized under the condition that surface normal n should be an
unit vector, ‖n‖ = 1. Here, A = (A0(x, y), A1(x, y), · · · , A6(x, y))>, L = (l0, l1,
· · · , l6)

>, and I = (I0(x, y), I1(x, y), · · · , I6(x, y))T. K2 is the Lagrange multiplier. The area where
the target object is observed is denoted as P , and the occluding boundary is denoted as ∂P . The
first three terms F1, F2, and F3 are the soft constraints defined inside the object region P\∂P , and the
fourth term F4 is the hard constraint defined at the occluding boundary ∂P . Orthographic projection is
assumed in this paper for camera model.

Following are the four terms of cost functions, where K11 and K12 are the Lagrange multipliers.

F1 =
6

∑
c=0

(Ic(x, y)− Ac(x, y)max(lT
c n(x, y), 0))2 , (9)

F2 = K11

(∥∥∥∥∂n(x, y)
∂x

∥∥∥∥2

+

∥∥∥∥∂n(x, y)
∂y

∥∥∥∥2
)
+ K12

(∥∥∥∥∂n(x, y)
∂x

∥∥∥∥+ ∥∥∥∥∂n(x, y)
∂y

∥∥∥∥) , (10)

F3 =

∥∥∥∥∂A(x, y)
∂x

∥∥∥∥+ ∥∥∥∥∂A(x, y)
∂y

∥∥∥∥ , (11)

F4 = ||n(x, y)− nb(x, y)||2 . (12)

Sections 3.3–3.6 explain F1, F2, F3, and F4, respectively. F1 expresses the residual of Lambertian
reflectance and the input image brightness. I is the input image brightness, A is the albedo, l
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is the light source direction, and n is the surface normal. Here, c is the index that identifies the
channel, and max(l>n, 0) represents the shading. F2 is the smoothing term of the surface normal,
and indicates that the gradient of the surface normal should be small; F3 is the smoothing term of
albedo, and indicates that the gradient of albedo should be small; and F4 is the constraint condition of
the surface normal at the occluding boundary. The surface normal at the occluding boundary nb can
be derived from differential geometry. F4 indicates that the surface normal at the occluding boundary
should be equal to nb. The reason why F2 use both L1 norm and L2 norm is discussed in Section 3.4.

As we will explain in Sections 3.3–3.6, we do not minimize Equation (8) at once but minimize F1,
F2, F3, and F4 separately. Although we cannot mathematically prove that such piecewise minimization
results in global minimum, it is empirically known that piecewise minimization make the cost function
smaller through the iteration. Since Equation (8) is a non-linear equation with several number of
constraints, convergence speed is low. On the other hand, our approach is robust, stable, and speedy
since we can minimize the cost function with closed form solution as is shown in Sections 3.3 and 3.6
(F1 and F4) and minimizing it with straightforward filtering as is shown in Sections 3.4 and 3.5.

Section 3.3 explains that F1 solely cannot solve the problem. In order to solve the problem, we
have to add F2 or F3 as it will be explained in Sections 3.4 and 3.5. The surface normal will be smooth
if we add F2, and the albedo will be smooth if we add F3. If we add both F2 and F3, the surface normal
and the albedo becomes relatively sharper than adding either F2 or F3. Since we want to suppress the
surface normal and the albedo to be smooth, we add not only F2 and F3 but also F4.

3.3. Determining Surface Normal and Albedo

If we ignore the influence of the shadow, the first term F1 shown in Equation (9) can be represented
as Equation (13).

F1 =
6

∑
c=0

(Ic(x, y)− Ac(x, y)(l>c n(x, y)))2 . (13)

The solution obtained by minimizing Equation (13) is expressed as Equation (14).

Ic(x, y) = Ac(x, y)(l>c n(x, y)) . (14)

When albedos A0, A1, · · · , A6 are known, the surface normal n can be obtained by calculating the
pseudo-inverse matrix L+ of matrix L, as shown in Equation (15).

 nx

ny

nz

 =


lx0 ly0 lz0

lx1 ly1 lz1
...

lx6 ly6 lz6


+

I0(x, y)/(A0(x, y) + ε1)

I1(x, y)/(A1(x, y) + ε1)
...

I6(x, y)/(A6(x, y) + ε1)

 . (15)

Here, ε1 is a small positive constant introduced to prevent division-by-zero. As the surface normal
n is expressed as a unit vector (‖n‖ = 1), it is normalized after calculating Equation (15). The unit
vector n̂ of the surface normal n can be calculated by dividing its length ‖n‖ as n̂ = n/‖n‖.

Shadow has a low brightness, and thus, thresholding the brightness results in detecting the
shadow, as is shown in Section 3.9. As for the channel which is detected as a shadow using the
procedure shown in Section 3.9, Equation (15) cannot be used for surface normal estimation. To avoid
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this, n is calculated by weighting the c’th row of L by a small value d in relation to channel c, which is
a shadow. This situation is expressed as follows.

 nx

ny

nz

 =



lx0 ly0 lz0
...

...
...

lx,c−1 ly,c−1 lz,c−1

dlx,c dly,c dlz,c

lx,c+1 ly,c+1 lz,c+1
...

...
...

lx6 ly6 lz6



+

I0(x, y)/(A0(x, y) + ε1)
...

Ic−1(x, y)/(Ac−1(x, y) + ε1)

dIc(x, y)/(Ac(x, y) + ε1)

Ic+1(x, y)/(Ac+1(x, y) + ε1)
...

I6(x, y)/(A6(x, y) + ε1)


. (16)

As usual, the surface normal n is normalized after calculating Equation (16).
When the surface normal is known, albedo can be calculated as shown in Equation (17) derived

from Equation (14).

Ac =
Ic

l>c n
. (17)

To prevent division-by-zero, Equation (17) is calculated when l>c n > ε2 holds, where ε2 is a small
positive constant. In addition, if the pixel is detected as an outlier (Section 3.9), Equation (17) is also
not calculated.

There are seven constraint condition equations in Equation (14). The input brightness I0, I1, · · · , I6

and the unit vector that expresses the light source directions l0, l1, · · · , l6 are known. Albedos
A0, A1, · · · , A6 and normal vectors nx, ny, nz are unknown parameters. Because the 3D normal vector
is conditioned to be the unit vector, its degree-of-freedom is two. Therefore, the total number of
unknown parameters is nine, with seven albedos and two surface normal components. At this point,
calculations are not possible because the number of the unknown numbers is larger than the number of
equations. Thus, the smoothing of the surface normal, smoothing of albedos, and constraint condition
of the surface normal at the occluding boundary are introduced to the cost function.

3.4. Smoothness Constraint for Surface Normal

As explained in Section 3.3, surface normal and albedo cannot be calculated because there are
too many unknowns. Therefore, the smoothing of the surface normal is conducted as a constraint
condition. The second term F2 of cost function F, which expresses the smoothing term of the normal,
is expressed as Equation (10).

The discretization of the first term of Equation (10) results in Equation (18) and that of the second
term results in Equation (19).

n(x, y) =
1
4
{n(x + 1, y) + n(x− 1, y) + n(x, y + 1) + n(x, y− 1)} , (18)

n(x, y) = median{n(x + 1, y), n(x− 1, y), n(x, y + 1), n(x, y− 1)} . (19)

In our software, Equation (18) is implemented as a Gaussian filter, and Equation (19) is
implemented as a median filter. Convolving Equation (18) multiple times can be approximated
by a Gaussian filter. Therefore, instead of applying Equation (18) multiple times, we applied a
Gaussian filter once. We first apply a median filter before the Gaussian filter. After the surface normal
is smoothed, it is normalized to be a unit vector.

The fastest way to calculate Equation (19) is to calculate the median for each element as follows.

nx = median{nx(x + 1, y), nx(x− 1, y), nx(x, y + 1), nx(x, y− 1)} ,

ny = median{ny(x + 1, y), ny(x− 1, y), ny(x, y + 1), ny(x, y− 1)} ,

nz = median{nz(x + 1, y), nz(x− 1, y), nz(x, y + 1), nz(x, y− 1)} . (20)
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After that the vector is normalized to be a unit vector. This procedure calculates the median in Euclidean
distance, not in Riemannian distance (geodesic distance). However, this difference does not matter in
practice since the surface is assumed to be smooth: namely, since the angle between neighboring pixels
is small, the Euclidean distance of two vectors can be approximated as the Riemannian distance.

In order to keep the sharp feature of surface normal, median filter (Equation (19)) is used. The
median filter will not change surface normal over neighboring pixels at sharp features. Although a
median filter is preferable to keep the sharp features, we also use a Gaussian filter (Equation (18))
to constrain the surface normal to be smooth. The median filter does not change the surface normal
at shape features, and such pixels may be stuck in local minima. The Gaussian filter (Equation (18))
can modify the surface normal even for such edges. We empirically found beneficial to use both a
median filter and Gaussian filter since these filters can find a good balance between smooth normals
and sharp features.

As shown in Equation (6), there are nine unknown parameters and seven equations. Although
Equation (18) or Equation (19) comprises three equations, the surface normal should be constrained
as a unit vector; thus, Equation (18) or Equation (19) has two degrees-of-freedom. Now, we have
nine unknown parameters and nine equations per pixel. The problem is now well-posed, but an
over-smoothed surface normal will be obtained if we solely use this constraint. We add another
constraint F3, as shown in Section 3.5, in order to relatively reduce the influence of F2.

3.5. Smoothness Constraint for Albedo

As discussed in Section 3.4, smoothing of the surface normal alone is insufficient as a constraint
condition. Therefore, albedo smoothing is also conducted. The third term F3 in the cost function,
which expresses the albedo smoothing, is shown in Equation (11). Equation (11) is discretized as
Equation (21).

A(x, y) = median{A(x + 1, y), A(x− 1, y), A(x, y + 1), A(x, y− 1)} . (21)

Namely, we applied median filter to the albedo. As shown in Equation (6), there are nine
unknown parameters and seven equations. Equation (21) implies seven equations because there are
seven channels. Now, we have 9 unknown parameters and 14 equations per pixel, which results
in a well-posed problem. However, an over-smoothed albedo will be obtained if we solely use this
constraint. We add another constraint F2 as shown in Section 3.4 in order to relatively reduce the
influence of F3.

3.6. Occluding Boundary Constraint and Initial Value of Surface Normal

The target objects of this study are smooth and closed surfaces. Here, the occluding boundary is
the border region where the surface normal of the object begins to turn toward the rear just before it
becomes invisible. The angle between the observation direction vector and the normal vector is 90◦

since we assume orthographic projection for camera model. It means that it is possible to correctly
estimate the surface normal at the occluding boundary, which is orthogonal to the object area contour.
This is incorporated into the cost function as F4. The occluding boundary normal is defined as nb
(Equation (12)). Now, the solution that minimizes F4 is n(x, y) = nb(x, y). At the occluding boundary,
nb is used as the estimation of the surface normal.

Although F2 or F3 are enough for solving Equation (8), also using F4 is beneficial. The function F2

itself has no boundary condition, and if we minimize F2 only the surface normal will be extraordinarily
smooth. In order to restrict the surface normal to be smooth, we will add F4 as the boundary condition.

In addition, the pixel brightness close to the occluding boundary is unreliable, since it contains
shadow in most of the channels. Since the reliability of the data term F1 is small at the occluding
boundary, adding F4 is reasonable.
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To conduct the iteration process using the cost function, initial values are required for the surface
normal and albedo. As follows, the initial value of surface normal is calculated from the surface normal
at the occluding boundary (Figure 3). As is done in previous work [26], we also inflated the silhouette
to make the approximate shape. Our approach is shown as follows.

Figure 3. Approximate shape used for initial guess to surface normal. The shape is inflated using the
silhouette of the object region.

First, we calculate the distance from each pixel to the nearest occluding boundary pixel, and next,
we sort the distance. As for initial guess, we assume that the probability distribution of the height of
the target object is the same as that of the hemisphere. Let us denote the maximum of the distance as
Dmax. The number of the pixels in object region is |P|. The order of the sorted pixel (x, y) is denoted
as o. If we assume that the object is hemisphere whose radius is r, then r is calculated from |P| = πr2.
The area o whose length from the center of the circle is denoted as l can be represented as o = πl2.
Therefore, l can be calculated from o. The height h is represented as r2 = h2 + l2 where the distance
from the center of the circle is l. Therefore, h can be calculated. Height of the unit hemisphere is
calculated by dividing r from h. Multiplying Dmax results in the height of the hemisphere where its
maximum height is Dmax. After that, the height field is slightly smoothed.

The initial height (Figure 3) is obtained by above procedure. Differentiating the height and
normalizing it as follows results in the surface normal n̂.

nx = − ∂h
∂x

, ny = −∂h
∂y

, nz = 1 . (22)

n̂ =

(
nx, ny, nz

)√
n2

x + n2
y + n2

z

. (23)

Finally, the smoothed and normalized surface normal is used as the initial value.

3.7. Initial Value of Albedo

It is better to use an initial value of albedo which is close to the true albedo as much as possible,
in order to speed up the convergence. However, since we do not use additional sensors or data, we have
to calculate the initial albedo solely from input image. The input image is a single seven-channel
image, whose light source direction is different. We calculate the average of seven channels, and this
average image Iavg works well for initial albedo.

Ĩavg(x, y) =
1
7
(I0(x, y) + I1(x, y) + · · ·+ I6(x, y)) , (24)

Iavg = bilateral( Ĩavg) . (25)



J. Imaging 2019, 5, 64 10 of 29

This is the sole image we can obtain from seven input images closest to the true albedo. If an
infinite number of light sources illuminate the object uniformly from the surroundings, the observation
of the object becomes the same as that of the albedo with constant scaling. This is the reason why the
average image can be a good estimate of albedo. As shown in Figure 4, the true albedo value and
brightness of the average image Iavg are similar; therefore, the average image can be used as the initial
guess. In order to decrease the effect of the shadow, the bilateral filter is applied to the average image.

Input channels

Guide image Albedo

Figure 4. Average image calculated from seven channel images resembles the albedo.

The albedo A is highly correlated with the input image brightness I. The initial albedo Ac(x, y)
is set to be an image where the brightness of the average image Iavg is scaled to be the same as the
brightness of each channel.

Ac(x, y) = Iavg(x, y)median
(x̃,ỹ)∈P

(
Ic(x̃, ỹ)

Iavg(x̃, ỹ)

)
. (26)

In order to robustly calculate the ratio Ic/Iavg, the median of the ratio is used.

3.8. Update Rule

After the initial values for the normal n and albedo A are calculated, as shown in Section 3.6 and
Section 3.7, the calculations are iterated several times. First, the surface normal is calculated according
to the procedure shown in Section 3.3. The calculated surface normal is denoted as n′, and the surface
normal of the previous step is denoted as n′′. Instead of using n′, the new surface normal n for the
next step is calculated as Equation (27).

n = (1− αn)n′ + αnn′′ . (27)

The constant αn stabilizes the update of the surface normal, resulting in robust optimization.
Actually, instead of Equation (27), we implemented our software as follows.

 nx

ny

nz

 =



rlx0 rly0 rlz0
...

...
...

rlx,c−1 rly,c−1 rlz,c−1

drlx,c drly,c drlz,c

rlx,c+1 rly,c+1 rlz,c+1
...

...
...

rlx6 rly6 rlz6

α̃n 0 0
0 α̃n 0
0 0 α̃n



+

rI0(x, y)/(A0(x, y) + ε1)
...

rIc−1(x, y)/(Ac−1(x, y) + ε1)

drIc(x, y)/(Ac(x, y) + ε1)

rIc+1(x, y)/(Ac+1(x, y) + ε1)
...

rI6(x, y)/(A6(x, y) + ε1)

α̃nñx

α̃nñy

α̃nñz



. (28)
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Here, the surface normal of the previous iteration is represented as (ñx, ñy, ñz) and the updated
surface normal to be taken over to the next iteration is represented as (nx, ny, nz). After solving this
equation, the obtained surface normal is normalized.

Here, we have employed additional weight r. This weight depends on the number of valid
channels for each pixel. If there are no shadows and speculars in all seven channels, we set r as a
large number, so that the surface normal calculated by photometric stereo equation becomes much
more important than the surface normal of the previous iteration (ñx, ñy, ñz). If there are many invalid
channels, the surface normal calculated by photometric stereo equation becomes unreliable, thus we
set r small so that surface normal will be unchanged. We define r as follows using the parameter w.

r =
(

max(v− 2, 0)
7− 2

)w
. (29)

Here, v is the number of valid channels. We found empirically that w > 1 is good for
stable computation.

Next, albedo is calculated according to the procedure shown in Section 3.3. The calculated albedo
is denoted as A′, and the albedo of the previous step is denoted as A′′. The update rule for albedo is
shown in Equation (30).

A = (1− αa)A′ + αaA′′ . (30)

The constant value αa stabilizes the optimization.
Instead of using Equation (30), we implemented this process as follows.

Ac =
(1− α̃a)Ic + α̃a Ãc

(1− α̃a)(l>c n) + α̃a
. (31)

This is a weighted sum of Equation (17) and the previously calculated albedo Ãc with the weight
α̃a. Note that Equation (31) is calculated if channel c is marked as valid through the process shown in
Section 3.9, and Ac = Ãc is used if it is invalid.

3.9. Outlier Detection

Detecting specular reflection in color photometric stereo problems is difficult. One of the common
approaches for detecting specular reflection is to use color. The colors of diffuse reflection and specular
reflection are usually different; thus, the diffuse reflection and specular reflection can be separated
when the scene is illuminated by a nearly white light source. However, the color photometric stereo
illuminates the object with three different colors, and thus, the color-based approach cannot solve the
problem. Another approach is to use principal component analysis or singular value decomposition,
which represents the image with three orthonormal bases. However, the color of each light is different
in color photometric stereo approach, and thus, the images cannot be represented by a linear sum
of three bases. As a result, the remaining approach is to use the strong brightness change caused at
specular reflection.

Therefore, we have no choice but to use thresholding approach for outlier (specular / shadow)
detection. Suppose that the maximum brightness of the object for all channels is Imax and the minimum
is Imin. We use Tmax = Imax − tmax and Tmin = Imin + tmin as thresholds, where tmax and tmin are small
positive constants. Outlier map N, which is 1 for outlier and 0 for valid pixel, is designed as follows.

Ñc(x, y) =

{
1 if Ic(x, y) > Tmax or Ic(x, y) < Tmin ,
0 otherwise ,

(32)

Nc = dilation(Ñc) . (33)
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Here, “dilation” is an operator which dilates the “1” pixels, which is a well-known operator in
binary image processing, which we skip to explain.

3.10. Calculating Height from Surface Normal

In this section, we briefly introduce the procedure to calculate the height from surface normal.
Here, we assume orthographic projection, and the perspective projection case is shown in the
literature [27]. More details are given in the literature [27–29].

The shape is represented as the height H set for each pixel. The partial derivatives of the heights
with respect to x and y are called gradient, and represented as p and q, respectively.

p = Hx =
∂H
∂x

, q = Hy =
∂H
∂y

. (34)

The surface normal n is represented by these gradients as shown below.

n =
(−p,−q, 1)>√

p2 + q2 + 1
. (35)

The cost function that relates the surface normal to the height is shown below.∫ ∫
(Hx − p)2 +

(
Hy − q

)2 dxdy . (36)

The Euler equation (Euler-Lagrange differential equation) that minimizes the equation∫ ∫
F(u, ux, uy)dxdy , (37)

can be expressed as

Fu −
∂Fux

∂x
−

∂Fuy

∂y
= 0 . (38)

As for H, the Euler equation that minimizes Equation (36) is derived as follows:

Hxx + Hyy − px − qy = 0 . (39)

Here, Hxx and Hyy can be discretized as follows:

Hxx = H(x + 1, y) + H(x− 1, y)− 2H(x, y) (40)

Hyy = H(x, y + 1) + H(x, y− 1)− 2H(x, y) . (41)

Thus, substituting Equations (40) and (41) into Equation (39) yields the following equation.

H(x, y) =
1
4
(H(x + 1, y) + H(x− 1, y) + H(x, y + 1) + H(x, y− 1))− 1

4
(px(x, y) + qy(x, y)) . (42)

As is shown in Equation (35), the gradients p and q are calculated from the surface normal n. The
partial differentiation of gradients used for Equation (42) is discretized as follows.

px(x, y) = p(x + 1, y)− p(x− 1, y) ,

qy(x, y) = q(x, y + 1)− q(x, y− 1) . (43)

After computing Equation (43), we solve Equation (42) to determine the height H. In this paper,
we solve Equation (42) using the successive over-relaxation method, but any other methods are also
applicable, such as Fourier transform [30] or preconditioned conjugate gradient [31].
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3.11. Channel Crosstalk

In an instrument that independently uses signals of two or more channels, signal leaking from
one channel to another is called crosstalk. Our experiment uses a multi-band camera that has seven
channels and detects undesired colors of other channels. The undesired effect of a color camera is
called channel crosstalk [11,32–34].

Figure 5 is an example of a three-band RGB camera that detects 550 nm green light as
(R, G, B) = (63, 255, 63). This signal should be (R, G, B) = (0, 255, 0) since the observed green light
wavelength is 550 nm. As shown in Figure 5, the bandwidth of each spectral sensitivity is wide,
and thus, has some overlaps; therefore, the R and B channels also detect the color of green light.
Color photometric stereo assumes that the sensor has no channel crosstalk, as shown in Figure 6; thus,
we must remove channel crosstalk.

Figure 5. Example of camera spectral sensitivity which has channel crosstalk.

Figure 6. Example of camera spectral sensitivity which does not have channel crosstalk.

To detect the channel crosstalk, we use a diffuse white reflectance standard, which has flat spectral
reflectance for each wavelength. The seven-band camera captures seven images of the diffuse white
reflectance standard illuminated by one of the seven light sources, which are lit one-by-one. A single
channel is sensitive to each light; thus, the signals of other channels are caused by the crosstalk.

Channel crosstalk can be represented by a color mixing matrix X. Since we use a seven-band
camera, the size of matrix X is 7× 7. Let us denote the ideal signal without channel crosstalk as
di. This seven-dimensional column vector di becomes do because it is affected by channel crosstalk.
The relation between these signals and the color mixing matrix is as follows.

do = Xdi . (44)

The original signal di can be recovered from the captured signal do as follows.

di = X−1do . (45)

The color mixing matrix X should be obtained prior to the measurement, and the input
image should be converted by the inverse of the color mixing matrix X−1 before applying the
proposed algorithm.
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Suppose that we look at the 0th channel of the diffuse white reflectance standard illuminated by the
0th light with narrow-band wavelength. Ideally, the signal should be zero for each channel, except the
0th channel. We define the value of the 0th channel as 1. Namely, the ideal signal di = (1, 0, 0, 0, 0, 0, 0)T

becomes do = (w0,0, w1,0, · · · , w6,0)
T after observation.(

w0,0 w1,0 w2,0 · · · w6,0

)>
= X

(
1 0 0 · · · 0

)>
. (46)

Similarly, the diffuse white reflectance standard illuminated by the 1st light is expressed as follows.(
w0,1 w1,1 w2,1 · · · w6,1

)>
= X

(
0 1 0 · · · 0

)>
. (47)

This procedure is repeated until the 6th light. The following equation expresses the whole
measurement, which is conducted seven times.

w0,0 w0,1 . . . w0,6

w1,0 w1,1 . . . w1,6
...

...
. . .

...
w6,0 w6,1 . . . w6,6

 = X


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 . (48)

As a result, the color mixing matrix X is obtained as follows.

X =


w0,0 w0,1 . . . w0,6

w1,0 w1,1 . . . w1,6
...

...
. . .

...
w6,0 w6,1 . . . w6,6

 . (49)

The inverse of the color mixing matrix X−1 can cancel the channel crosstalk of the observed signal.
The output ideal signal di is calibrated such that the signal of the diffuse white reflectance standard
would be (1, 1, · · · , 1).

4. Experiment

4.1. Experimental Setup

The camera used for this experiment is an FD-1665 3CCD multi-spectral camera by FluxData, Inc.,
USA, as shown in Figure 7. It comprises two color sensors and a near-infrared (NIR) sensor. Each
sensor is sensitive to its respective wavelength, i.e., each color sensor can record the components from
three channels, and the NIR sensor can record the components from one channel. Figure 8 shows
the spectral sensitivity of the camera. As shown in Figure 8, channel crosstalk occurred among all
camera channels. Therefore, the method shown in Section 3.11 is used to remove the channel crosstalk
in the photographed input image. The diffuse white reflectance standard is used to obtain the color
mixing matrix shown in Figure 9, where the row denotes the channel number and the column denotes
the light number. The color mixing matrix is created using the average value of the diffuse white
reflectance standard.
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Figure 7. Multispectral camera “FluxData FD-1665 (USA)”.

Figure 8. Spectral sensitivity of multispectral camera and peak wavelength of each light sources.

Figure 9. The obtained color mixing matrix for canceling channel crosstalk. The average brightness of
white reflectance stardard becomes the color mixing matrix. The matrix will be diagonal matrix if there
are no channel crosstalk, however non-diagonal element is slightly bright due to the channel crosstalk.

Table 1 shows the full width at half maximum (FWHM) for each light source used in
this experiment.

Table 1. Peak wavelength and full width at half maximum (FWHM) for each light source.

Light 0 1 2 3 4 5 6

Peak 750 nm 632 nm 610 nm 550 nm 520 nm 470 nm 430 nm
FWHM 10 nm 10 nm 10 nm 10 nm 10 nm 10 nm 10 nm
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The light source directions were determined prior to the experiment by photographing a mirrored
ball. The locations of the light sources and the camera were then left unchanged.

The experiment was conducted in a darkroom. To increase the amount of supplementary
information obtained for objects with narrow-wavelength regions, light sources of close wavelength
were positioned opposite to each other. The NIR light source was placed next to the camera. Figure 10
shows a diagram of the experiment.

Figure 10. Experimental setup with 7 light sources with different wavelengths and a single 7-band
multispectral camera.

Each point on the object’s surface must always be illuminated by more than three light sources
for the photometric stereo method. If there are six light sources, any point on the surface can be
illuminated by at least three light sources [35]. Additionally, when specular reflection occurs, one
picture that can be used for the photometric stereo method is eliminated. Therefore, the NIR light
source is placed next to the camera so that each point is illuminated by at least four light sources.
Figure 11 is Gaussian sphere representation of the surface normal, where the number of each region
represents the number of light sources illuminated.

7 6

66

6

66

5

5

5

5

5

5

4

4 4

4

44

Figure 11. Gaussian sphere representation of the surface normal where the north pole is the center of
this picture. The number indicates how many light sources are lit for each direction of surface normal.

In the photometric stereo method, precision increases when the angle between the light sources is
widened, i.e., the baseline is lengthened, because it increases the shading contrast. However, when the
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baseline is lengthened, the shadow area increases. The locations of the light sources must, therefore, be
limited to a certain solid angle. When seven points are placed within a fixed circle, the placement of
the points must be as far from each other as possible to comprise the vertices of a regular hexagon and
its center, as shown in Figure 12. Therefore, when placing seven light sources within a limited area for
the photometric stereo method, it is optimal to place them at the vertices of a regular hexagon and
its center.

However, when three of the light sources selected from these seven lights are placed on the same
straight line, or more precisely, when the three light source vectors are coplanar, the surface normal
cannot be estimated by combining the three light sources. This is because combining these three light
sources causes the light source matrix to degenerate. Suppose that the surface normal n is illuminated
by light sources l0, l1, and l2, and is observed as the pixel brightnesses I0, I1, and I2, respectively, while
ignoring the shadow. If the light source directions are known, the surface normal can be obtained from
following equation if there is an inverse of 3× 3 light source matrix (l0, l1, l2)

>. l>0
l>1
l>2


 n

 =

 I0

I1

I2

 (50)

The determinant of (l0, l1, l2)
> is the scalar triple product l0 · (l1× l2). If l0, l1, and l2 are coplanar,

the vector l1 × l2 becomes orthogonal to the vector l0, thus the determinant becomes zero. Although
two-light photometric stereo exists [36], it is better to avoid three lights to be coplanar if we have more
than two lights. Therefore, the NIR light source is placed at a small distance from the center of the
regular hexagon so that no three light sources are on the same straight line. The camera is placed at the
center of the regular hexagon.

Figure 12. Schematic illustration of the geometrical location of seven light sources. Six lights are placed
at each apex of a regular hexagon. Multispectral camera is placed at the center of the hexagon. Infrared
light is placed near the camera.

4.2. Experimental Result

The computation time of the main part of the algorithm (i.e., excluding the computation time
of calculating the initial value) is about ten seconds for ordinary object and ordinary computer with
single thread and without any fine tuning to the source code.

As for all experimental results shown in this section, we used α̃n = 0.1 and α̃a = 0.99. These two
parameters are the most important parameters which affect the final result, and other parameters are
relatively less influential in comparison to these parameters. We used 4 for the standard deviation
of Gaussian filter for smoothing the surface normal, and 15× 15 and 11× 11 for the window size of
median filter of surface normal and albedo, respectively. The iteration number was set to be 2. We used
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w = 16, d = 0.0001, ε1 = 0.001, and ε2 = 0.1. The abovementioned parameters are the all parameters
used in the main process.

As for calculating the initial albedo, we used 2 for the standard deviation of spatial parameter,
and 20 for the standard deviation of intensity parameter for the bilateral filter. When applying the
bilateral filter, the pixel brightness of outlier is scaled by 0.1 when calculating the weighted sum. The
iteration number of the bilateral filter is set to be 10. As for calculating the scale, in order to avoid
division-by-zero error, Iavg ≤ 0.1 is not used for calculating Equation (26). As for calculating the initial
normal, smoothing filter is applied twice: First it is applied to the height data and next it is applied
to the surface normal. As for smoothing, 3× 3 box filter is used, and the iteration number was set to
be 100, for both the height and the normal. As for outlier detection, tmax = 15 and tmin = 5 are used.
The number of dilation is set to be 1. The abovementioned parameters are the all parameters used in
calculating the initial values.

First, we measured a plastic sphere to evaluate our system. The spherical object shown in
Figure 13 consists of two types of albedos. Figure 14 shows the error map with pseudo-color
representation. The error is evaluated as an angle between the estimated surface normal and the
true surface normal. We measured a sphere because its true surface normal can be obtained from the
mathematical expression of the sphere. We compared our method with the so-called “naive color
photometric stereo.” In this paper, we define the color photometric stereo that assumes white objects
as target as naive color photometric stereo. The generalized color photometric stereo problem shown
in Equation (6) has nine unknown parameters; however, naive color photometric stereo has three
unknown parameters: single albedo value (one parameter) and 3D surface normal (two parameters
since it is constrained to be a unit vector). Therefore, naive color photometric stereo directly solves the
linear equation even if the image is captured by a three-band color camera. Naive color photometric
stereo robustly estimates the surface normal of white shirts, white dresses, and so on. The mean error
of naive color photometric stereo (Figure 14a) were 0.343 [rad]. Our method overwhelms the previous
approach, and our mean error (Figure 14b) was 0.148 [rad].

Figure 15 shows the seven-channel image of an owl figurine (Figure 16a). The captured image
shown in Figure 15a is contaminated by channel crosstalk, and thus, we cancelled it, which resulted in
Figure 15b. The surface normal estimated by naive color photometric stereo is shown in Figure 16b
and that estimated by our method is shown in Figure 16c. As usual, the x, y, and z axes of the surface
normal are linearly converted to R, G, and B for the pseudo-color representation of the surface normal.
The estimated albedo is shown in Figure 17. The shapes obtained by naive color photometric stereo
and by our method are shown in Figure 18a,b, respectively.

Figure 13. A spherical object with two different colors is used for evaluation since we know the
mathematically true surface normal of the sphere.
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Figure 14. The error map of the sphere where the error is represented as angular difference between
estimated value and ground truth (red: large, blue: small): (a) Naive color photometric stereo and (b)
our method.

Figure 15. Obtained multi-band image [owl]: (a) Captured image and (b) image after cancelling
channel crosstalk. If you look carefully, you may notice that the channel crosstalk is removed. However,
the difference is difficult to recognize since the crosstalk is small as is shown in Figure 9.

Figure 16. The results for owl object, which only causes diffuse reflection. Estimated surface normal
[owl]: (a) Target object, (b) surface normal of naive color photometric stereo, and (c) surface normal of
our method. The proposed method is not affected by the albedo difference.
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Figure 17. The results for owl object, which only causes diffuse reflection. Estimated albedo is shown,
which is smooth enough.

Figure 18. The results for owl object, which only causes diffuse reflection. Estimated geometry [owl]:
(a) Naive color photometric stereo and (b) our method. The proposed method is not affected by the
albedo difference.

The same experiment was also conducted with another multicolored object. The results with the
doll and Buddha figurines are shown in Figures 19–24, respectively.

Figure 19. The results for doll object, which causes strong specular reflection. Estimated surface normal
[doll]: (a) Target object, (b) surface normal of naive color photometric stereo, and (c) surface normal of
our method. The proposed method is not affected by the albedo difference appears at the flower basket.



J. Imaging 2019, 5, 64 21 of 29

Figure 20. The results for doll object, which causes strong specular reflection. Estimated albedo is
shown, which is smooth enough.

Figure 21. The results for doll object, which causes strong specular reflection. Estimated geometry
[doll]: (a) Naive color photometric stereo and (b) our method. The proposed method is not affected by
the albedo difference appears at the flower basket.

Figure 22. The results for buddha object, which causes strong specular reflection. Estimated surface
normal [Buddha]: (a) Target object, (b) surface normal of naive color photometric stereo, and (c) surface
normal of our method. The proposed method can smooth the surface normal of the scarf whose surface
normal is unreliable due to black paint.
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Figure 23. The results for buddha object, which only causes strong specular reflection. Estimated
albedo is shown, which is smooth enough.

Figure 24. The results for buddha object, which causes strong specular reflection. Estimated geometry
[Buddha]: (a) Naive color photometric stereo and (b) our method. The proposed method can smooth
the surface normal of the scarf whose surface normal is unreliable due to black paint.

The advantage of color photometric stereo is that the surface normal of dynamic objects can be
obtained. Most existing color photometric stereo methods measure white shirts, white dresses, etc.,
to verify that these methods can be applied to dynamically deforming objects. Due to the small size of
the darkroom, we measured a glove instead of clothes. Figures 25–27 show the measurement results,
and Figures 28–30 show the results of the same object but differently deformed.

Figure 25. The results for hand with glove. Estimated surface normal [pose 1]: (a) One of the seven
channel images, (b) estimated surface normal [naive color photometric stereo], and (c) estimated
surface normal [our method]. Both color photometric stereos can estimate the surface normal of the
dynamically deforming object.
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Figure 26. The results for hand with glove. Estimated albedo [pose 1] is shown, which is
smooth enough.

Figure 27. The results for hand with glove. Estimated geometry [pose 1]: (a) Estimated geometry
[naive color photometric stereo] and (b) estimated geometry [our method]. Both color photometric
stereos can estimate the surface normal of the dynamically deforming object.

Figure 28. The results for hand with glove. Estimated surface normal [pose 2]: (a) One of the seven
channel images, (b) estimated surface normal [naive color photometric stereo], and (c) estimated
surface normal [our method]. Both color photometric stereos can estimate the surface normal of the
dynamically deforming object.

Figure 29. The results for hand with glove. Estimated albedo [pose 2] is shown, which is
smooth enough.
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Figure 30. The results for hand with glove. Estimated geometry [pose 2]: (a) Estimated geometry
[naive color photometric stereo] and (b) estimated geometry [our method]. Both color photometric
stereos can estimate the surface normal of the dynamically deforming object.

4.3. Discussion

Figure 31a shows the result of Microsoft Kinect sensor. For comparison, our result is shown in
Figure 31b. Kinect measures the depth and photometric stereo measures the surface normal. These
two sensors are fundamentally different, however, since Kinect is a well-known commercial product of
shape measurement, we think beneficial to show Figure 31 for the readers.

Figure 31. Comparison with off-the-shelf depth sensor: (a) Result of off-the-shelf depth sensor and (b)
result of our method. The depth sensor can estimate the 3D coordinate of vertices successfully and the
photometric stereo can estimate the surface normal successfully.

Figure 32 shows how the surface normal is affected by the parameters (Equations (28) and (31)).
Figures 32a,b are the results when α̃a = 0.1, while Figures 32c,d are the results when α̃a = 0.99.
Figures 32a,c are the results when α̃n = 0.1, while Figures 32b,d are the results when α̃n = 0.99.
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Figure 32b is smoother than Figure 32a, and Figure 32d is smoother than Figure 32c, since the
smoothness constraint of surface normal is stronger. Figure 32a is smoother than Figure 32c,
and Figure 32b is smoother than Figure 32d, since the albedo is not smooth, which means that the
surface normal becomes relatively smooth. Although Figures 17, 20, 23, 26, and 29 show over-smoothed
result of albedo, it is an adequate way to smooth the albedo in order to obtain sharp features of
surface normal.

Figure 32. How the weight of smoothness term affects the results: (a) Sharp normal and sharp albedo,
(b) smooth normal and sharp albedo, (c) sharp normal and smooth albedo, and (d) smooth normal and
smooth albedo.

Figure 33a shows the initial value of the surface normal, and Figure 33b,c shows how the surface
normal is updated. This figure proves that our algorithm is stable since it converges quickly.

Figure 33. Intermediate state of surface normal through the proposed method: (a) Initial value of
the surface normal, (b) the surface normal after 1 iteration, and (c) surface normal after 2 iterations.
The proposed method is stable and coverges fast.
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As shown in Figure 14, our method is robust to multiple types of albedos. On the other hand,
as shown in Figures 16–30, our method over-smoothens the detailed surface structure. The generalized
color photometric stereo problem shown in Equation (6) has nine unknown parameters; however,
naive color photometric stereo has three unknown parameters, as stated in Section 4.2. Naive
color photometric stereo robustly estimates the surface normal of white shirts, white dresses, etc.
For multiple albedos, we have to tackle the ill-posed problem shown in Equation (6). Before starting
this project, we had planned to use other constraints such as a so-called “integrability constraint.”
However, we have chosen the smoothness constraint for constraining the problem since the integrability
constraint solely cannot solve the problem. Surface normal n can be expressed as the gradients p and q
(Equation (35)). Equation (6) can be rewritten as follows.

I0(x, y) = f (A0(x, y), p(x, y), q(x, y)) ,
...

I6(x, y) = f (A6(x, y), p(x, y), q(x, y)) . (51)

Namely, we have 9 unknowns (A0, . . . , A6, p, and q) and 7 equations per pixel. Smoothness
constraint for p and q can be represented as follows.

p(x, y) =
1
4
(p(x, y− 1) + p(x− 1, y) + p(x + 1, y) + p(x, y + 1)) ,

q(x, y) =
1
4
(q(x, y− 1) + q(x− 1, y) + q(x + 1, y) + q(x, y + 1)) . (52)

Since there are additional two constraints per pixel which results in 9 equations per pixel, we can
solve the problem. Integrability constraint can be represented as follows.

p(x, y + 1)− p(x, y) = q(x + 1, y)− q(x, y) . (53)

Since only one constraint is added per pixel, we cannot determine 9 parameters from 8 equations.
This is the reason why we use smoothness constraint rather than integrability constraint.

The over-smoothing problem is an unavoidable effect in the current approach, which relies on
Equation (6). Our future work is to drastically change our approach such that it does not depend on
Equation (6). We have to fundamentally consider the basic theory in order to improve the performance
of color photometric stereo.

5. Conclusions

In this study, surface normal estimation of multicolored objects was conducted by the
multi-spectral color photometric stereo method using the median filter and occluding boundary.
Note that the conventional color photometric stereo method is an ill-posed problem. Constraining
the surface normal and albedo using the median filter sucessfully solved this problem. In addition,
we used the approximate shape calculated from the occluding boundary as the initial guess for the
surface normal. Finally, we assembled measurement hardware that illuminates the object with seven
different spectra and captured the image by a seven-band multispectral camera.

As discussed in Section 4.3, our method faces several problems in terms of both hardware and
software. These problems cannot be solved with a minor update, so we need a drastic change for
further improvement. In the future, we will disassemble the current measurement hardware and
create a more useful system. For example, in order to make the hardware robust to shadow, it is better
to add more lights and observe the scene with a multispectral camera with more than 7 channels.
The current method used one point light per channel, however, using area light is one choice for
improvement in order to avoid the shadows. A polarization filter is also useful to remove the specular
reflection. Additional future work is to reconsider the basic theory and fundamentally reorganize
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the approach of the algorithm. In order to apply the method to non-Lambertian BRDF, it is useful to
measure the database of actual object with proposed system and train them using deep learning or
other machine learnings. A database of spectral reflectance of various object decreases the number of
unknowns which can make the problem well-posed. Using additional sensors such as RGB-D camera
is also interesting.
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