
Journal of

Imaging

Article

Zig-Zag Based Single-Pass Connected
Components Analysis

Donald G. Bailey 1,*,† and Michael J. Klaiber 2,†

1 Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology,
Massey University, Palmerston North 4442, New Zealand;

2 Independent Researcher, 70176 Stuttgart, Germany; contact@michael-klaiber.de
* Correspondence: D.G.Bailey@massey.ac.nz
† These authors contributed equally to this work.

Received: 2 February 2019; Accepted: 29 March 2019; Published: 6 April 2019
����������
�������

Abstract: Single-pass connected components analysis (CCA) algorithms suffer from a time overhead
to resolve labels at the end of each image row. This work demonstrates how this overhead can be
eliminated by replacing the conventional raster scan by a zig-zag scan. This enables chains of labels to
be correctly resolved while processing the next image row. The effect is faster processing in the worst
case with no end of row overheads. CCA hardware architectures using the novel algorithm proposed
in this paper are, therefore, able to process images at higher throughput than other state-of-the-art
methods while reducing the hardware requirements. The latency introduced by the conversion
from raster scan to zig-zag scan is compensated for by a new method of detecting object completion,
which enables the feature vector for completed connected components to be output at the earliest
possible opportunity.

Keywords: connected components analysis; stream processing; feature extraction; zig-zag scan;
hardware architecture; FPGA; pipeline

1. Introduction

Connected components labelling is an important step in many image analysis and image
processing algorithms. It processes a binary input image, for example after segmentation, and provides
as output a labelled image where each distinct group of connected pixels has a single unique label.
There are many different labelling algorithms (see for example the recent review [1]). Three main
classes of algorithms are:

• Contour tracing [2,3], where the image is scanned until an object pixel is encountered. The boundary is
then traced and marked, enabling all pixels to be labelled with the same label when scanning resumes.

• Label propagation algorithms [4] where labels are propagated through multiple passes through
the image.

• Two pass algorithms, generally based on Rosenfeld and Pfaltz’s algorithm [5]. The first pass
propagates provisional labels to object pixels from adjacent pixels that have already been processed.
Sets of equivalent labels are processed to derive a representative label for the connected component,
usually using some form of union-find algorithm [1,6]. Finally, the image is relabelled in a second
pass, changing the provisional label for each pixel to the representative label.

The different two-pass algorithms fall into three broad classes: those that process single pixels
at a time (e.g., [7,8]), those that process a run of pixels at a time (e.g., [9,10]), and those that process
a block of pixels at a time (1 × 2 block in [11,12], 1 × 3 block in [13], and 2 × 2 block in [14,15]).
There have been several FPGA implementations of connected components labelling (e.g., [16,17]),

J. Imaging 2019, 5, 45; doi:10.3390/jimaging5040045 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0002-1025-3680
https://orcid.org/0000-0001-8286-7000
http://www.mdpi.com/2313-433X/5/4/45?type=check_update&version=1
http://dx.doi.org/10.3390/jimaging5040045
http://www.mdpi.com/journal/jimaging

J. Imaging 2019, 5, 45 2 of 26

but the key disadvantage of these two-pass algorithms is the requirement to buffer the complete image
between passes.

Connected component labelling is often followed by an analysis step, where a feature vector (usually
based on the shape, but can also be based on statistics of the original image pixel values) is derived for
each label. These feature vectors can then be used for subsequent classification, or even directly provide
output data for some image analysis applications. When the labelling and feature vector measurement
are combined as a single operation, it is termed connected components analysis (CCA).

Single pass CCA algorithms, introduced by Bailey and Johnston [18,19], extract feature data for
each component during the initial provisional labelling pass. The labelled image, as an intermediate
data structure, is no longer required, so the second relabelling pass can be skipped, enabling the
complete algorithm to operate in a single pass. This has led to efficient low-latency hardware
architectures that are able to operate directly on a video stream. The basic architecture of Figure 1
works as follows: For each pixel in the input stream, provisional labels are propagated from already
processed pixels (represented by the neighbourhood window). Labels assigned in the current row are
cached in a row buffer to provide the neighbourhood when processing the next row. When components
merge, the associated labels are equivalent. One label is selected as the representative label (usually the
label that was assigned the earliest), with the equivalence between the labels recorded in the merger
table. Provisional labels saved in the row buffer may have been updated as a result of subsequent
mergers and may no longer be current, so the output from the row buffer is looked up in the merger
table to obtain the current representative label for the neighbourhood. For a single-pass operation,
feature data is accumulated for each component on-the-fly within the data table. When components
merge, the associated feature data is also merged. The component data is available after the component
is completed, that is after no pixels extend from that component onto the current row.

Neighbourhood

Label selection Merger control

Merger
table

Data table

Row buffer
A B C

D

Input
stream

Component
data

Figure 1. Basic architecture of single-pass connected components analysis.

The main limitation of the first single-pass algorithm [18] was that the data was only available
at the end of the frame. In the worst case, this required resources proportional to the area of the
image, preventing the use of on-chip memory for all but small images, or a restricted subset of images
with a limited number of components. This was solved by Ma et al. [20], by recycling labels which
requires identifying completed components, and freeing up the resources. Ma’s approach aggressively
relabelled each component starting from the left of each row. It, therefore, required two lookups, one to
resolve mergers, and one to translate labels from the previous row to the current row.

The next improvement in this class of CCA algorithms was developed by Klaiber et al. [21].
This solved the problem of two lookups by introducing augmented labels. Labels are allocated from
a pool of recycled labels, and are augmented with row number to enable correct precedence to be
determined when merging.

Trein et al. [22] took an alternative approach to single-pass CCA on FPGA, and run-length encoded
the binary image first. Then, each run was processed in a single clock cycle, enabling acceleration when
processing typical objects. In the worst case, however, the performance of run-based processing is the
same as for pixel-based processing. Trein et al.’s method also suffers from the problem of chaining,
although this was not identified in their paper.

J. Imaging 2019, 5, 45 3 of 26

The main issue with managing mergers on-the-fly is sequences of mergers requiring multiple
look-ups to identify the representative label of their connected component. Those labels that require
more than one lookup to lead to their representative label are referred to as stale labels [6]. This can
occur after two or more mergers, where a single lookup in the merger table is insufficient to determine
the representative label. Bailey and Johnston [18] identified chains of mergers that occur when
the rightmost branch of a sequence of mergers is selected as the representative label (as illustrated
in Figure 2). Before processing the next row, it is necessary to unlink such chains so that each
old label directly points to the representative label. This unlinking is called path compression in
union-find parlance.

1

2

3

4

0 21 3 4 5 6 7 8 9

4 23 1

0

2

1

3

4

5

Figure 2. A chain of successive mergers: 4⇒3; 3⇒2; 2⇒1.

The labels within such chains cannot occur later in the row because the label that was allocated
the earliest was selected as the representative label. therefore, chain unlinking can be deferred until the
end of each row [18]. Since the representative label within such a chain is rightmost, potential chain
links can be saved on a stack enabling them to be unlinked from right to left. A disadvantage of such
unlinking is that it incurs overhead at the end of each row. Typically, this overhead is about 1% [18],
although in the worst case is 50% for a single row, or 20% for a whole image. A further complicating
factor is that the overhead is image-dependent, and cannot be predicted in advance.

To overcome the chaining problem, Jeong et al. [23] proposed to directly replace all old entries
within the row buffer with the new representative label whenever a merger occurs. This removes
the unlinking overhead, and also the need for the merger table. To accomplish this, the row buffer
must instead be implemented as a shift register, with each stage having a comparator to detect the old
label, and a multiplexer to replace it with the representative label. Since such a content addressable
memory cannot easily be implemented using a block memory, the resulting logic requires considerable
FPGA resources.

Zhao et al. [24] also used aggressive relabelling, similar to Ma et al. [20], but instead used pixels
as the processing unit, and runs as the labelling unit. The goal of this approach is to eliminate
unnecessary mergers, and avoid the overhead at the end of each row. While labelling a run at a time
does significantly reduce the number of mergers required, it does not eliminate chains of mergers
(the pattern is more complex than Figure 2 of course). So although Zhao et al. claim to eliminate
the end-of-row processing, without correctly resolving such chains, the results for some images
will be incorrect.

Finally, Tang et al. [25] optimise this approach of using runs as a labelling unit to actually eliminate
the end of row processing. They assign a unique label to each run, and rather than relabel runs when
they connect, the connectivity is maintained within a linked list structure for each image row. The head
of the list maintains the feature vector, and whenever a run is added to the list, both the list and
data are updated. Clever use of the pointers enables the pointers to be kept in order, and enable the
data to be accessed with two lookups, completely avoiding the problems with chains. It also means
that labels are automatically recycled, and completed components are detected with a latency of one
image row. There are two limitations of this algorithm: (1) It only handles 4-connectivity, rather than
8-connectivity which is usually used; Tang et al. also propose a pre-filter to convert an 8-connected
image into the required 4-connected image prior to CCA. However, the pre-filter also means that
incorrect values are derived for some features (e.g., area) without additional processing, although that

J. Imaging 2019, 5, 45 4 of 26

processing is straight forward. (2) The outermost border of the image must be set to the background
before processing; Tang et al. suggest extending the image with background pixels prior to processing
to guarantee this condition. However, this would reintroduce 2 clock cycles per row overhead.

The primary contributions of this paper are: a novel approach to eliminate the end-of-row
overhead associated with unchaining; and a novel method to detect completed components as soon as
they are completed, giving a reduction in latency. These are based on a zig-zag based scan pattern
through the image, with the algorithm outlined in Section 2. An FPGA architecture for realising zig-zag
based CCA is described in detail in Section 3. The algorithm and architecture are analysed in Section 4
to show correct behaviour. Finally, Section 5 compares the new algorithm with existing single-pass
pixel-based approaches.

2. Proposed Approach

Unchaining within the traditional algorithms [6,18,20,21] is effectively accomplished by
performing a reverse scan back through the labels merged in the current row at the end of each
row. This approach comes at the cost of having to introduce additional overhead to store the sequences
of mergers in a stack data structure and unchain them sequentially at the end of each image row.

This paper proposes replacing the raster scan with a zig-zag scan, with every second row processed
in the reverse direction. This enables chains of mergers to be resolved on-the-fly, as part of the merger
table lookup and update process. The basic architecture of Figure 1 needs to be modified for the zig-zag
scan, giving the system architecture of Figure 3. Although many of the blocks have the same name and
function as those in Figure 1, the detailed implementation of many of these is changed.

Neighbourhood

Label selection Merger control

Merger
table

Data table

Zig-zag row buffer

Zig-zag reordering

A B C

D

Input
stream

Zig-zag
stream Component

data

Figure 3. Basic architecture of zig-zag based single-pass connected components analysis.

First, a zig-zag reordering buffer is required in the input, to present the pixel stream in zig-zag
order to the CCA unit. The row buffer also has to be modified to buffer data in zig-zag form. (Note that
if the image is streamed from memory, this is unnecessary, as the pixels can directly be read from
memory in zig-zag order.) Label selection is unchanged, as is the data table processing (apart from a
novel extension to enable completed components to be detected earlier). The key changes are in the
merger table processing for forming the neighbourhood, and merger control blocks. Zig-zag CCA is
represented algorithmically in Algorithm 1. The nested for loops perform a zig-zag scan through the
binary input image, with key steps as sub-algorithms described in the following sections.

2.1. Definitions

We first offer some definitions. The already processed pixels in the neighbourhood of the
current pixel, X, are denoted A, B, C, and D as indicated in Figure 4. The labels associated with
the neighbourhood pixels are designated LA through LD. Background pixels are assigned label 0.
A logic test of Lp evaluates to true if pixel p is an object pixel and false if it is part of the background.

J. Imaging 2019, 5, 45 5 of 26

A AB BC C

D DX XScan Scan

Even rows Odd rows

Figure 4. The neighbourhood of the current pixel, X, shaded dark. Shaded pixels have already been
processed. Labelling is dependent on the scan direction.

Algorithm 1 Zig-zag CCA algorithm

Input: Binary image I of width W and height H
Output: A feature vector for each connected component in I

1: StartO f Line := False
2: for y := 0 to H − 1 do
3: for x := 0 to W − 1 when y is even else x := W − 1 downto 0 do . Zig-zag scan
4: if StartO f Line then
5: REVERSENEIGHBOURHOOD . Algorithm 3
6: StartO f Line := False
7: else
8: UPDATENEIGHBOURHOOD . Algorithm 2
9: end if

10: UPDATEDATASTRUCTURES . Algorithm 4
11: end for
12: StartO f Line := True
13: end for

For the new scan order, it is convenient to define a precedence operator, ≺, based on the order in
which pixels are encountered during processing. Given two pixels, P1 and P2, then

P1 ≺ P2 =


true when P1.y < P2.y

true when (P1.y = P2.y) ∧ (P1.y mod 2 = 0) ∧ (P1.x < P2.x)

true when (P1.y = P2.y) ∧ (P1.y mod 2 = 1) ∧ (P1.x > P2.x)

f alse otherwise.

(1)

Precedence is used to select which label is the representative label during merger operations,
and to determine when a connected component is completed.

Three auxiliary data structures are required for connected components analysis:

1. The row buffer, RB[], saves the provisional labels assigned in the current row for providing the
neighbourhood when processing the next row. Although the row buffer needs to manage pixels
processed in a zig-zag scanned order, it is indexed within the following algorithms by logical
pixel position.

2. The merger table, MT[], indexed by label. This is to provide the current representative label for a
component, given a provisional label. However, as a result of chains, more than one lookup in
MT may be required.

3. The data table, DT[], also indexed by label. This is to accumulate the feature vector extracted
from each component. IFV(X) is the initial feature vector to be accumulated from the current
pixel, and ◦ is the binary operator which combines two feature vectors.

Additional variables and arrays will be defined as required in the following algorithms.

J. Imaging 2019, 5, 45 6 of 26

2.2. Update Neighbourhood

Since the input pixels are streamed, moving from one pixel position to the next involves shifting
pixels along within the neighbourhood window. Algorithm 2 indicates how the neighbourhood is
updated during normal processing. A merger can only occur between pixels A and C, or D and C [26],
and if both A and D are object pixels then they will already have the same label (from processing the
previous window position). Therefore, the neighbourhood can be optimised with LAorD being the label
LA or LD as required. The use of a superscript −, as in L−p , indicates the label Lp at the end of the
previous iteration.

Algorithm 2 UPDATENEIGHBOURHOOD

1: if L−B then . Select LAorD based on whether A (previous B) is an object pixel
2: LAorD := L−B . Next value of LA
3: else
4: LAorD := L−X . Next value of LD
5: end if
6: LB := L−C
7: LRB := RB[C] . Look up position C in the row buffer
8: if LRB then . An object pixel is coming into neighbourhood
9: if ¬L−C then . It is the first object pixel after a background pixel

10: LMT := MT[LRB] . First lookup in merger table
11: if LMT = LRB then . Label was representative label
12: LC := LMT
13: else
14: LC := MT[LMT] . Second lookup in merger table to get representative label
15: if LC 6= LMT then . Label change on second lookup indicates a chain
16: MT[LRB] := LC . Update merger table to unlink the chain
17: end if
18: end if
19: else . Part of a run of consecutive pixels
20: LC := L−C . Repeat latest label
21: if LRB 6= L−RB then . Label has changed, indicating a chain of mergers
22: MT[LRB] := LC . Update merger table to unlink the chain
23: end if
24: end if
25: else
26: LC := 0 . Lookup of background is unnecessary
27: end if

As the neighbourhood window pixels are shifted along, the new value for position C is obtained
from the row buffer (line 7). If this is a background pixel, it is simply assigned label 0 (line 26). Note that
if C is outside the image, for example when processing row 0 or when X is the last pixel in processing
a row, then the background label (0) is used.

The row buffer provides the provisional labels assigned when processing the previous row.
Although this label was the representative label for the component when it was written into the row
buffer, subsequent mergers may mean that the label read from the row buffer is no longer the current
representative label. It is necessary to look up the label in the merger table to obtain the current label
(line 10). In a run of consecutive object pixels, all will belong to the same object, and will have the same
label. The last label assigned to the run in the previous row will be the first read from the row buffer
(as a result of the zig-zag scan), so only this label (see line 9) needs to be looked up in MT.

As a result of chains of mergers, a single lookup is not sufficient in the general case. Provided that
the merger table is updated appropriately, two lookups may be required to give the current

J. Imaging 2019, 5, 45 7 of 26

representative label. If the first lookup returns the same label (line 11), then that label has been
unchanged (and is the representative label). However, if the first lookup returns a different label, then
the provisional label may be stale and a second lookup is necessary (line 14). If the second lookup does
not change the label, then this indicates that the single lookup was sufficient. If the second lookup
returns a label that is different again, then this is part of a chain, and the value returned will be the
current representative label.

To avoid having to lookup more than twice, it is necessary to update the merger table so that
subsequent lookups of the original label produce the correct representative (line 16). This merger table
update compresses the path, and performs the unchaining on-the-fly.

Within a run of consecutive object pixels, the representative label does not change. The latest label
(after any merger at the previous window location, see line 20) is simply reused for C. If the row buffer
output changes within a run of consecutive object pixels, this indicates that a merger occurred when
processing the previous row and the provisional label from RB is out-of-date. This chain is unlinked,
compressing the path by updating MT for the new label (line 22).

At the end of each row, it is necessary to reinitialise the window for the next row. As the window
moves down, the pixels in the current row become pixels in the previous row. It is also necessary
to flip the window to reflect the reversal of the scan direction. Algorithm 3 gives the steps required.
Note that this is in place of Algorithm 2 for the first pixel of the next row.

Algorithm 3 REVERSENEIGHBOURHOOD

1: LAorD := 0 . This is now off the edge of the image
2: LB := L−X . Moving down makes current row into previous row
3: LC := L−D

2.3. Update Data Structures

Updating the data structures involves the following: assigning a provisional label to the incoming
pixel based on the neighbourhood context; updating the merger table when a new label is assigned,
or when a merger occurs; updating the feature vectors within the data table, and detecting when a
connected component is completed. These are detailed in Algorithm 4.

A merger can only occur when B is a background pixel and LAorD is different from LC [26].
This condition corresponds to the block beginning line 3. The earliest assigned of LAorD or LC is selected
as the representative label, and the other label is no longer used. The feature vectors associated with
the two labels are merged, with the feature vector of the current pixel merged with the combination.

A new label is assigned to Lx when LAorD, LB and LC are background (line 15). New labels are
assigned from the labelling recycling first-in-first-out (FIFO) buffer. Consequently, the label numbers
are not in numerical sequence, so to determine precedence under merger conditions it is necessary
to augment the labels with the row number (line 17). The feature vector for the new component is
initialised with the feature vector of the current pixel, IFV(X).

If there is exactly one label in LAorD, LB or LC, it is assigned to LX and its feature vector in the
data table at DT[LX] is merged with the feature vector of the current pixel IFV(X), as shown in
lines 26 and 30.

A connected component is finished when it is not extended into the current image row. To detect
this, an active tag, AT, field is introduced within the data table, DT. For each label, AT stores the
2D coordinates on the following image row beyond which no further pixels could be added to the
component. When the scan passes this point on the following row (line 34), it is determined that the
component is completed, enabling the feature vector to be output and the label recycled. The initial
feature vector for the active tag is

IFV(X).AT =

{
(y + 1, x− 1) when y is even,

(y + 1, x + 1) when y is odd.
(2)

J. Imaging 2019, 5, 45 8 of 26

Algorithm 4 UPDATEDATASTRUCTURES

1: if I[X] then . Object pixel
2: if ¬LB then
3: if LAorD ∧ LC ∧ LAorD 6= LC then . Merger operation
4: if LAorD.rw ≤ LC.rw then . Propagating merger
5: LX := LAorD . Assign representative label
6: Lold := LC
7: LC := LX . Update neighbourhood label
8: else
9: LX := LC . Assign representative label

10: Lold := LAorD
11: end if
12: MT[Lold] := LX . Record merger in table
13: DT[LX] := DT[LX] ◦ DT[Lold] ◦ IFV(X) . Merge data (and active tags)
14: Lold → LabelFIFO . Recycle the old label
15: else if ¬LAorD ∧ ¬LC then . New label operation
16: LX := newLabel (← LabelFIFO) . From a recycle queue
17: LX .rw := y . Augment label with row number
18: MT[LX] := LX . Initialise merger table
19: DT[LX] := IFV(X) . Start feature vector
20: else
21: if LAorD then . Copy LAorD
22: LX := LAorD
23: else . Copy LC
24: LX := LC
25: end if
26: DT[LX] := DT[LX] ◦ IFV(X) . Add current pixel to data table
27: end if
28: else . Copy LB
29: LX := LB
30: DT[LX] := DT[LX] ◦ IFV(X) . Add current pixel to data table
31: end if
32: else
33: LX := 0 . Background pixel
34: if DT[LA].AT = X then . Check completed object
35: Output: DT[LA]
36: LA → LabelFIFO . Recycle the label
37: end if
38: end if
39: RB[X] := LX . Save label in row buffer for next row

For a label copy operation and a label merger operation, the active tag is updated along with
the rest of the feature vector. The combination operator ◦ for two active tags is realised by applying
precedence as defined in Equation (1) to select the later of the two active tags.

AT1 ◦ AT2 =

{
AT2 when AT1 ≺ AT2,

AT1 otherwise.
(3)

For an efficient hardware implementation, it is sufficient to store only the least-significant bit of y
for each active tag entry.

J. Imaging 2019, 5, 45 9 of 26

Figure 5 illustrates the update of active tags and detection of completed connected components.
At the start of processing row 4, there 3 components with active tags as listed. Since row 4 is even
(scanning left to right), the active tags are on the right hand end of the respective components. At (4, 1),
component 3 is extended and the active tag updated to (5, 0)—the last possible scan position that could
extend the current component 3. Similarly, at (4, 5) component 2 is extended. At (4, 6), components 1
and 2 merge with label 1 being retained as the representative label. Label 2 is recycled, and the active
tags of labels 1 and 2 are combined. Further extensions of label 1 do not affect the active tag because
the corresponding pixel active tags occur earlier in the scan sequence. When scanning back on row 5,
label 1 is not extended, so when pixel (5, 4) is a background pixel, the component labelled 1 is detected
as completed, the feature vector output, and the label recycled. Similarly, at (5, 0) component labelled
3 is detected as completed.

1

2 1

2

3

3

0

0

2

2

1

1

3

3

4

4

5

5

6 7 8 9 Position
Active Tag for Label

Comments
1 2 3

→ (4,0) (4,9) (4,6) (4,4)
→ (4,1) (5,0) Component 3 is extended
→ (4,5) (5,4) Component 2 is extended
→ (4,6) (5,4)

Version March 21, 2019 submitted to J. Imaging 9 of 26

(scanning left to right), the active tags are on the right hand end of the respective components. At p4, 1q,230

component 3 is extended and the active tag updated to p5, 0q – the last possible scan position that could231

extend the current component 3. Similarly, at p4, 5q component 2 is extended. At p4, 6q, components 1232

and 2 merge with label 1 being retained as the representative label. Label 2 is recycled, and the active233

tags of labels 1 and 2 are combined. Further extensions of label 1 do not affect the active tag because234

the corresponding pixel active tags occur earlier in the scan sequence. When scanning back on row 5,235

label 1 is not extended, so when pixel p5, 4q is a background pixel, the component labelled 1 is detected236

as completed, the feature vector output, and the label recycled. Similarly, at p5, 0q component labelled237

3 is detected as completed.238

1

2 1

2

3

3

0

0

2

2

1

1

3

3

4

4

5

5

6 7 8 9
Active tag for label

Position 1 2 3 Comments

Ñ (4,0) (4,9) (4,6) (4,4)
Ñ (4,1) (5,0) Component 3 is extended
Ñ (4,5) (5,4) Component 2 is extended
Ñ (4,6) (5,4) ÷ Components 1 and 2 merge
Ð (5,4) ÷ Component 1 is completed
Ð (5,0) ÷ Component 3 is completed

Figure 5. Example for detection of finished connected component at position X. ÷ indicates when the
label is recycled.

3. Architecture239

Within this section, the hardware architecture to realise this algorithm is described. The input pixel240

stream is continuous, with one 1-bit binary pixel per clock cycle. Since there are no blanking periods, a241

streaming protocol based on AXI4-Stream [27] (advanced extensible interface) is used throughout the242

design. The modified protocol shown in Figure 6 has two control bits, one indicating the last pixel in243

every row, and one indicating the last pixel in every frame.244

0

0 0 0 0 0 0

00 01 1

1 1 1 1 1 2 2 2

1W-1 W-1 W-1 W-1

H-1 H-1 H-1

Clock

Data

RowEnd

FrameEnd

Row

Figure 6. Continuous pixel stream protocol, with one image frame highlighted.

3.1. Zig-zag Scan245

The raster scanned input stream must be converted to a zig-zag ordered stream, where the odd246

numbered rows are presented in reverse order. Although this could easily be achieved with double247

buffering (reading the previous row from one buffer while writing the current row into a separate248

buffer) it can also be accomplished with a single row buffer with the access pattern shown in Figure 7.249

After row 0 is initially written into the buffer, reading and writing are performed at the same250

address, with the raster based input stream being written into the same location that the zig-zag stream251

is read from. This requires switching the address sequence direction every second row. Converting the252

raster scan to a zig-zag scan introduces a latency of 1 row and 1 pixel.253

The row buffer must also be modified to operate with a zig-zag scan pattern. Since successive254

rows are processed in the opposite order, the labels for each row must be read out in the reverse order255

that they were written. Data coming in for the new row overwrites the old data (already read out) in256

the buffer. As demonstrated in Figure 8, this can be accomplished by reversing the scan direction each257

row, effectively storing each label at the row buffer memory address corresponding to its x position.258

Components 1 and 2 merge
← (5,4)

Version March 21, 2019 submitted to J. Imaging 9 of 26

(scanning left to right), the active tags are on the right hand end of the respective components. At p4, 1q,230

component 3 is extended and the active tag updated to p5, 0q – the last possible scan position that could231

extend the current component 3. Similarly, at p4, 5q component 2 is extended. At p4, 6q, components 1232

and 2 merge with label 1 being retained as the representative label. Label 2 is recycled, and the active233

tags of labels 1 and 2 are combined. Further extensions of label 1 do not affect the active tag because234

the corresponding pixel active tags occur earlier in the scan sequence. When scanning back on row 5,235

label 1 is not extended, so when pixel p5, 4q is a background pixel, the component labelled 1 is detected236

as completed, the feature vector output, and the label recycled. Similarly, at p5, 0q component labelled237

3 is detected as completed.238

1

2 1

2

3

3

0

0

2

2

1

1

3

3

4

4

5

5

6 7 8 9
Active tag for label

Position 1 2 3 Comments

Ñ (4,0) (4,9) (4,6) (4,4)
Ñ (4,1) (5,0) Component 3 is extended
Ñ (4,5) (5,4) Component 2 is extended
Ñ (4,6) (5,4) ÷ Components 1 and 2 merge
Ð (5,4) ÷ Component 1 is completed
Ð (5,0) ÷ Component 3 is completed

Figure 5. Example for detection of finished connected component at position X. ÷ indicates when the
label is recycled.

3. Architecture239

Within this section, the hardware architecture to realise this algorithm is described. The input pixel240

stream is continuous, with one 1-bit binary pixel per clock cycle. Since there are no blanking periods, a241

streaming protocol based on AXI4-Stream [27] (advanced extensible interface) is used throughout the242

design. The modified protocol shown in Figure 6 has two control bits, one indicating the last pixel in243

every row, and one indicating the last pixel in every frame.244

0

0 0 0 0 0 0

00 01 1

1 1 1 1 1 2 2 2

1W-1 W-1 W-1 W-1

H-1 H-1 H-1

Clock

Data

RowEnd

FrameEnd

Row

Figure 6. Continuous pixel stream protocol, with one image frame highlighted.

3.1. Zig-zag Scan245

The raster scanned input stream must be converted to a zig-zag ordered stream, where the odd246

numbered rows are presented in reverse order. Although this could easily be achieved with double247

buffering (reading the previous row from one buffer while writing the current row into a separate248

buffer) it can also be accomplished with a single row buffer with the access pattern shown in Figure 7.249

After row 0 is initially written into the buffer, reading and writing are performed at the same250

address, with the raster based input stream being written into the same location that the zig-zag stream251

is read from. This requires switching the address sequence direction every second row. Converting the252

raster scan to a zig-zag scan introduces a latency of 1 row and 1 pixel.253

The row buffer must also be modified to operate with a zig-zag scan pattern. Since successive254

rows are processed in the opposite order, the labels for each row must be read out in the reverse order255

that they were written. Data coming in for the new row overwrites the old data (already read out) in256

the buffer. As demonstrated in Figure 8, this can be accomplished by reversing the scan direction each257

row, effectively storing each label at the row buffer memory address corresponding to its x position.258

Component 1 is completed
← (5,0)

Version March 21, 2019 submitted to J. Imaging 9 of 26

(scanning left to right), the active tags are on the right hand end of the respective components. At p4, 1q,230

component 3 is extended and the active tag updated to p5, 0q – the last possible scan position that could231

extend the current component 3. Similarly, at p4, 5q component 2 is extended. At p4, 6q, components 1232

and 2 merge with label 1 being retained as the representative label. Label 2 is recycled, and the active233

tags of labels 1 and 2 are combined. Further extensions of label 1 do not affect the active tag because234

the corresponding pixel active tags occur earlier in the scan sequence. When scanning back on row 5,235

label 1 is not extended, so when pixel p5, 4q is a background pixel, the component labelled 1 is detected236

as completed, the feature vector output, and the label recycled. Similarly, at p5, 0q component labelled237

3 is detected as completed.238

1

2 1

2

3

3

0

0

2

2

1

1

3

3

4

4

5

5

6 7 8 9
Active tag for label

Position 1 2 3 Comments

Ñ (4,0) (4,9) (4,6) (4,4)
Ñ (4,1) (5,0) Component 3 is extended
Ñ (4,5) (5,4) Component 2 is extended
Ñ (4,6) (5,4) ÷ Components 1 and 2 merge
Ð (5,4) ÷ Component 1 is completed
Ð (5,0) ÷ Component 3 is completed

Figure 5. Example for detection of finished connected component at position X. ÷ indicates when the
label is recycled.

3. Architecture239

Within this section, the hardware architecture to realise this algorithm is described. The input pixel240

stream is continuous, with one 1-bit binary pixel per clock cycle. Since there are no blanking periods, a241

streaming protocol based on AXI4-Stream [27] (advanced extensible interface) is used throughout the242

design. The modified protocol shown in Figure 6 has two control bits, one indicating the last pixel in243

every row, and one indicating the last pixel in every frame.244

0

0 0 0 0 0 0

00 01 1

1 1 1 1 1 2 2 2

1W-1 W-1 W-1 W-1

H-1 H-1 H-1

Clock

Data

RowEnd

FrameEnd

Row

Figure 6. Continuous pixel stream protocol, with one image frame highlighted.

3.1. Zig-zag Scan245

The raster scanned input stream must be converted to a zig-zag ordered stream, where the odd246

numbered rows are presented in reverse order. Although this could easily be achieved with double247

buffering (reading the previous row from one buffer while writing the current row into a separate248

buffer) it can also be accomplished with a single row buffer with the access pattern shown in Figure 7.249

After row 0 is initially written into the buffer, reading and writing are performed at the same250

address, with the raster based input stream being written into the same location that the zig-zag stream251

is read from. This requires switching the address sequence direction every second row. Converting the252

raster scan to a zig-zag scan introduces a latency of 1 row and 1 pixel.253

The row buffer must also be modified to operate with a zig-zag scan pattern. Since successive254

rows are processed in the opposite order, the labels for each row must be read out in the reverse order255

that they were written. Data coming in for the new row overwrites the old data (already read out) in256

the buffer. As demonstrated in Figure 8, this can be accomplished by reversing the scan direction each257

row, effectively storing each label at the row buffer memory address corresponding to its x position.258

Component 3 is completed

Figure 5. Example for detection of finished connected component at position X.

Version March 21, 2019 submitted to J. Imaging 9 of 26

(scanning left to right), the active tags are on the right hand end of the respective components. At p4, 1q,230

component 3 is extended and the active tag updated to p5, 0q – the last possible scan position that could231

extend the current component 3. Similarly, at p4, 5q component 2 is extended. At p4, 6q, components 1232

and 2 merge with label 1 being retained as the representative label. Label 2 is recycled, and the active233

tags of labels 1 and 2 are combined. Further extensions of label 1 do not affect the active tag because234

the corresponding pixel active tags occur earlier in the scan sequence. When scanning back on row 5,235

label 1 is not extended, so when pixel p5, 4q is a background pixel, the component labelled 1 is detected236

as completed, the feature vector output, and the label recycled. Similarly, at p5, 0q component labelled237

3 is detected as completed.238

1

2 1

2

3

3

0

0

2

2

1

1

3

3

4

4

5

5

6 7 8 9
Active tag for label

Position 1 2 3 Comments

Ñ (4,0) (4,9) (4,6) (4,4)
Ñ (4,1) (5,0) Component 3 is extended
Ñ (4,5) (5,4) Component 2 is extended
Ñ (4,6) (5,4) ÷ Components 1 and 2 merge
Ð (5,4) ÷ Component 1 is completed
Ð (5,0) ÷ Component 3 is completed

Figure 5. Example for detection of finished connected component at position X. ÷ indicates when the
label is recycled.

3. Architecture239

Within this section, the hardware architecture to realise this algorithm is described. The input pixel240

stream is continuous, with one 1-bit binary pixel per clock cycle. Since there are no blanking periods, a241

streaming protocol based on AXI4-Stream [27] (advanced extensible interface) is used throughout the242

design. The modified protocol shown in Figure 6 has two control bits, one indicating the last pixel in243

every row, and one indicating the last pixel in every frame.244

0

0 0 0 0 0 0

00 01 1

1 1 1 1 1 2 2 2

1W-1 W-1 W-1 W-1

H-1 H-1 H-1

Clock

Data

RowEnd

FrameEnd

Row

Figure 6. Continuous pixel stream protocol, with one image frame highlighted.

3.1. Zig-zag Scan245

The raster scanned input stream must be converted to a zig-zag ordered stream, where the odd246

numbered rows are presented in reverse order. Although this could easily be achieved with double247

buffering (reading the previous row from one buffer while writing the current row into a separate248

buffer) it can also be accomplished with a single row buffer with the access pattern shown in Figure 7.249

After row 0 is initially written into the buffer, reading and writing are performed at the same250

address, with the raster based input stream being written into the same location that the zig-zag stream251

is read from. This requires switching the address sequence direction every second row. Converting the252

raster scan to a zig-zag scan introduces a latency of 1 row and 1 pixel.253

The row buffer must also be modified to operate with a zig-zag scan pattern. Since successive254

rows are processed in the opposite order, the labels for each row must be read out in the reverse order255

that they were written. Data coming in for the new row overwrites the old data (already read out) in256

the buffer. As demonstrated in Figure 8, this can be accomplished by reversing the scan direction each257

row, effectively storing each label at the row buffer memory address corresponding to its x position.258

indicates when the
label is recycled.

3. Architecture

Within this section, the hardware architecture to realise this algorithm is described. The input pixel
stream is continuous, with one 1-bit binary pixel per clock cycle. Since there are no blanking periods,
a streaming protocol based on AXI4-Stream [27] (advanced extensible interface) is used throughout
the design. The modified protocol shown in Figure 6 has two control bits, one indicating the last pixel
in every row, and one indicating the last pixel in every frame.

0

0 0 0 0 0 0

00 01 1

1 1 1 1 1 2 2 2

1W-1 W-1 W-1 W-1

H-1 H-1 H-1

Clock

Data

RowEnd

FrameEnd

Row

Figure 6. Continuous pixel stream protocol, with one image frame highlighted.

3.1. Zig-Zag Scan

The raster scanned input stream must be converted to a zig-zag ordered stream, where the odd
numbered rows are presented in reverse order. Although this could easily be achieved with double
buffering (reading the previous row from one buffer while writing the current row into a separate
buffer) it can also be accomplished with a single row buffer with the access pattern shown in Figure 7.

After row 0 is initially written into the buffer, reading and writing are performed at the same
address, with the raster based input stream being written into the same location that the zig-zag stream
is read from. This requires switching the address sequence direction every second row. Converting the
raster scan to a zig-zag scan introduces a latency of one row and one pixel.

The row buffer must also be modified to operate with a zig-zag scan pattern. Since successive
rows are processed in the opposite order, the labels for each row must be read out in the reverse order
that they were written. Data coming in for the new row overwrites the old data (already read out) in

J. Imaging 2019, 5, 45 10 of 26

the buffer. As demonstrated in Figure 8, this can be accomplished by reversing the scan direction each
row, effectively storing each label at the row buffer memory address corresponding to its x position.

0,0

4,0

1,0

5,0

2,0

3,0

0,1

4,1

1,1

5,1

2,1

3,1

0,2

4,2

1,2

2,2

3,2

0, -1W

4, -1W

1, -1W

5, -1W

2, -1W

3, -1W

Write sequence Read sequence

0,0 ... 0, -1W

0,0 ... 0, -1W

1, -1 ... 1,0W

3, -1 ... 3,0W

5, -1 ... 5,0W

2,0 ... 2, -1W

4,0 ... 4, -1W

1,0 ... 1, -1W

2,0 ... 2, -1W

3,0 ... 3, -1W

4,0 ... 4, -1W

5,0 ... 5, -1W

..
.

5,2

T
im

e
(s

u
cc

es
si

v
e

ro
w

s)

Figure 7. Operation of the zig-zag reordering buffer. Positions in the figure are shown in the format
y, x, where y refers to the row and x to the column the pixel was assigned.

Write sequence Read sequence

0, -1 ... 0,0W

1,0 ... 1, -1W

3,0 ... 3, -1W

5,0 ... 5, -1W

2, -1 ... 2,0W

4, -1 ... 4,0W

..
.

0,0 ... 0, -1W

1, -1 ... 1,0W

3, -1 ... 3,0W

5, -1 ... 5,0W

2,0 ... 2, -1W

4,0 ... 4, -1W

0,0

4,0

1,0

5,0

2,0

3,0

0,1

4,1

1,1

5,1 5,2

2,1

3,1

0,2

4,2

1,2

2,2

3,2

0, -1W

4, -1W

1, -1W

5, -1W

2, -1W

3, -1W

T
im

e
(s

u
cc

es
si

v
e

ro
w

s)

Figure 8. Operation of the row buffer with zig-zag ordered data.

3.2. Merger Table Processing

The label read from the row buffer may no longer be the current representative label as a result of
mergers. For the look up operations performed in lines 7, 10, and 14 of Algorithm 2 it is necessary to
look up the label in the merger table up to two times to obtain the current label. This is similar to the
double lookup algorithm proposed in [6].

Although some labels may require two lookups, a single read port of a dual-port on-chip memory
is sufficient for the merger table because it is unnecessary to look up every label from the row buffer.
Labels of background pixels do not need to be looked up—all background pixels are simply labelled 0.
In a sequence of consecutive object pixels, it is only necessary to look up the label of the first pixel in
the sequence. An object pixel will either be followed by another object pixel or by a background pixel,
neither of which need to be looked up, giving sufficient bandwidth for the two lookups.

Since each memory access requires 1 clock cycle (for synchronous memories such as the random
access memory (RAM) blocks on most current FPGAs), it is necessary to pipeline the processing over
5 clock cycles as shown in Figure 9. The memory accesses are scheduled in advance so that the labels
are available in the neighbourhood for assigning a label to the current pixel in stage 4.

J. Imaging 2019, 5, 45 11 of 26

Row buffer
read

Row buffer

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Merger table

Merger table

First
read

Second
read

Neighbourhood Assign
label

Write to
row buffer

Unlink chain
New label
or merger

Figure 9. The 5 pipeline stages for processing each input pixel.

As a result of pipelining, the write to the row buffer is delayed from the read by four clock cycles.
This necessitates using a dual-port memory for the row buffer. The merger table is also dual-port, with
the read port used for determining the representative label in stages 2 and 3 of the pipeline. The write
port for the merger table is used for initialising the merger table when a new label is assigned (line 15),
and for updating the merger table during merger operations (line 3). Both new label and merger
operations occur in stage 5 of the pipeline. Unchaining of stale labels is also performed as the stale
labels are encountered during the neighbourhood update (Algorithm 2) in stage 4 of the pipeline.
The detailed architecture for implementing this is shown in Figure 10.

Merger table
[]MT

Merger table
[]MT

L
MT

L
B

L
Crev

L
C

L
X

L
AorD

L
D

L
MT2 =

0
0

0

Row buffer
RB[]

Row buffer
RB[]

L
RB

L
RB1

L
RB2

=

= = Assign
label L

old

MergerNew

Figure 10. The detailed pipeline architecture for zig-zag connected components. Blue represents control
signal generation, green indicates processing for end of row reversal, and red are the merger table
updates for new label assignment and merger processing.

With synchronous memory, each read from an on-chip memory block is stored into a register;
these are LRB and LMT for the row buffer and merger table respectively. The address for the merger
table read comes either from LRB for the first read, or LMT for the second. Register LMT2 is a pipeline
register to hold the data if only a single read is required, with a multiplexer selecting the output of
LMT2 or LMT as the representative label. The conditional statements in Algorithm 2 are shown in blue
in Figure 10, and are used to provide control signals for selecting appropriate multiplexer inputs.

In terms of forming the neighbourhood, LC is not directly registered, but is the output of
multiplexers selecting the appropriate source register for LC. LB and LAorD are registers. The current
label output, LX is not registered, but is the output of the combinatorial logic which assigns a label
to the current input pixel. This output is registered as LD, available in the following clock cycle
for window reversal at the end of each row, and for updating the merger table in pipeline stage 5
(if required). For row reversal, LC is assigned LD (Algorithm 3); however, since LC is not a register, it is
necessary to insert a pipeline register, LCrev.

J. Imaging 2019, 5, 45 12 of 26

Unchaining updates the merger table in pipeline stage 4. The data from line 16 is naturally
available in that stage, but line 22 is detected at stage 2. It is necessary to delay both the address and
data until stage 4. The address is delayed by pipeline registers LRB1 and LRB2, with the data coming
from LC, which at that stage in a run of consecutive pixels, is the feedback path from LB (line 20).
For updating the merger table as a result of label assignment, for a new label, both the address and
data come from LD (line 18). In the case of a merger, Lold registers the old label, and is used for the
address for the merger table update.

The dataflow for label assignment is shown in Figure 11. The binary input pixel is used to directly
provide a control signal. The first multiplexer selects the label to propagate from the neighbourhood,
with the second multiplexer selecting the background label (0), or a new label from the LabelFIFO
(lines 16, 22, 29, 24 and 33). To reduce the logic requirements, the test for a background pixel on the
row buffer output is simply pipelined through a series of registers to indicate whether LC, LB or LAorD
are object or background pixels.

.rw

.rw

L
B

LabelFIFO L
new

L
C

I X[]

L
X

L
AorD

L
old

0

Figure 11. Architecture for label assignment. Blue represents control signal generation.

3.3. Data Table

The final key section of the architecture is that which manipulates the data table. Figure 12 shows
the data flow for the update and completed object detection. The inputs come from neighbourhood
processing, after registering to pipeline the processing. The current pixel label, LX therefore, comes
from the LD register, and Lold in the case of mergers comes from the corresponding register in Figure 10.
Data table processing is pipelined over three clock cycles, with the first cycle reading existing data
from the data table when required, the second clock cycle is used to calculate the new feature vector,
with the result being written to the data table (where necessary) in the third cycle. The neighbourhood
position must also be registered twice before deriving the initial feature value (IFV) to maintain
synchronisation. Control signals come from label assignment, whether it is a propagating label, a new
label, a merger, or background pixel. Each of these cases will be described in turn.

D
at

a
ta

b
le

[]
D

T

D
at

a
ta

b
le

[]
D

TDT
i

DT
c

L
D

L
B

Pos P2

L
X2

L
X1

L
old

IFV

.AT

=

Data out

Figure 12. Architecture for data table update. Blue signals relate to detecting completed components.

For a propagating label, the neighbourhood had only a single label, which is copied to the current
object pixel. If the previous pixel was a background pixel, then it is necessary to read the existing
feature vector from the data table first. Otherwise, the feature vector will be available in the data
table cache (DTc) from processing the previous pixel. The initial feature vector, IFV, derived from the
neighbourhood position is combined with the existing data, and the result stored in the data table
cache, DTc. The resulting feature vector is written back to the data table only when a background pixel
is reached.

J. Imaging 2019, 5, 45 13 of 26

A new label operation has no existing data to load; the data table cache, DTc, is simply initialised
with the initial feature vector, IFV, in the second clock cycle.

A merger is a little more complex, because it may require two entries to be read from the data
table. If the previous pixel was an object pixel, then the feature vector associated with LAorD will be
available in DTc. However, if the previous pixel was a background pixel, then data will not be cached
for LAorD. To overcome this problem, when the current pixel is a background pixel, LB is looked up
in the data table. If LB is the label of an object pixel, then on the next clock cycle, it becomes LAorD
and will be available in the cache. A merger will trigger the loading of LC, so that it can be combined
with LAorD and IFV. During the second clock cycle, DT[Lold] is invalidated, enabling the label to be
recycled. On the third clock cycle, the merged feature vector is written back to the data table.

Preloading the data table cache also facilitates detection of completed objects. From Algorithm 4
line 34, when the active tag (AT) of a completed object is the current pixel position, the last pixel will be
in neighbourhood position A. At least the last three pixels (including the current pixel) will also have
been background pixels otherwise they would have extended the object. Therefore, looking up LB
when the current pixel is a background pixel gives the feature vector (containing AT) in the following
clock cycle, enabling completed object detection (shown in blue in Figure 12). When the completed
object is output, the data table entry is available for reuse by recycling the label.

4. Analysis

As a result of pipelining the computations, there are potentially data hazards, particularly in the
use of memory for tables (the row buffer, merger table and data table), resulting from when data is
expected to be in the table, but has not yet been written.

4.1. Row Buffer

For the row buffer, this can only occur at the end of the row, when the readout direction changes.
The data hazards are demonstrated in Figure 13.

Q2R1

R2

S

S1

S2

T

0

0

T

T

U

–

–

U

Z

Z

U U

V

V1

V2

V

X

X X

X

W

W1

W2

W

W

Y
Z

P Q R S
TUVWX

Y Z

RB[]
read

RB[]
write

MT[]
read

neighbourhood
window

..
.

..
.

..
.

P

P

P

Q

Q

0

Q

R

R

T

T

R

S

U

U V

S 0

W V

V

0

T
im

e, clo
ck

 cy
cles

Figure 13. End of row timing, showing data hazards in red. Subscripts 1 and 2 refer to the first and
second reads from the merger table (if required).

The last pixel of the previous row, S, is read from the row buffer when the neighbourhood window
is at position X (as a result of pipelining). In the following clock cycles, reads from the row buffer begin
their backward scan of the next row. However, pixel positions T, U, and V have not yet been written
to the row buffer (or even assigned labels in the case of T and U). At the end of the row, lookup of
positions T and U in the row buffer is actually unnecessary, because their values come directly from
the neighbourhood when the window moves to the next row (Algorithm 3). Rather than read position
T, it can simply be treated as a background pixel (label 0). This ensures that when the neighbourhood
is at location T, neighbourhood position C (which is off the edge of the image) is correctly assigned a 0

J. Imaging 2019, 5, 45 14 of 26

(shaded pink in Figure 13). Similarly, position U is copied directly from the previous neighbourhood
when the neighbourhood reverses direction. The row buffer output for U, too, can simply be treated as
a background pixel. Finally, position V is read in the same clock cycle as it is written. This requires that
the row buffer support a write-before-read semantic, or bypass logic be added to forward the value
being written to the output.

4.2. Path Compression

Since both path compression and label assignment have write access to the merger table, it is
necessary to check that these will not clash by attempting to write simultaneously. The possible
scenarios are illustrated in Figure 14.

1

1

2

2

2

2

1

1

2

2

3

3

3 3

3

4

4

5

0

0

0

0

2

2

2

2

1

1

1

1

3

3

3

3

4

4

4

4

5

5

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

12

78

3

6

45 6

5

(a)

(b)

Figure 14. Accesses to update the merger table: (a) Scenarios with no conflicts; (b) Scenarios with conflicts.

A new label and merger both update the merger table in pipeline stage 5. This is the clock
cycle immediately following the label assignments, as illustrated in scenarios 1© and 2© respectively.
Unchaining is performed in pipeline stage 4, corresponding to the clock cycle when the pixel appears
in the neighbourhood window. This is illustrated in scenario 3© after two lookups, and scenarios 4©
and 5© for a changed label within a consecutive run of pixels.

There cannot be a conflict between a change within a run, and a new label, because the change
would require at least one pixel within the neighbourhood, preventing a new label assignment.
Similarly, there can also be no conflict between a merger and a two lookup stale label because the merger
would require LC to be non-zero, so the following pixel cannot be the first in a run. However, there
can be conflicts between a new label and a two lookup stale label (scenario 6© in Figure 14b), and also
between a merger and changed label in a run (scenario 7©).

Where there is a conflict, the update resulting from the new label or merger should be deferred,
with the stale label update taking priority. If the new label is followed by a merger (as in Figure 14b)
then only the merger needs to be saved. This requires adding an additional storage register and
multiplexer to the data path, and appropriate control logic. The maximum delay is two clock cycles,
corresponding to 8©, because changed labels in a run can occur at most every second pixel.

4.3. Merger Table

Potential data hazards can occur with the merger table, when data is read from the table before it
is updated either as a result of merger or during the path compression.

A merger hazard is shown in Figure 15 for label 3. When scanning row 4, label 2 is read from
RB[4], and is determined to be a representative label after a single lookup, MT[2]. Two clock cycles

J. Imaging 2019, 5, 45 15 of 26

later, when the neighbourhood window is centred on pixel (4, 3), component segments associated
with labels 1 and 2 merge, with MT[2] ← 1 in the following cycle. Meanwhile, label 3 is read from
RB[6], and requires two lookups in MT. The second lookup occurs in the same clock cycle that the
merger is being written to MT, so the second lookup would actually return the old label (2), shown in
red in Figure 15, and is not recognised as a stale label. A consequence of this is that pixel (4, 6) would
incorrectly be assigned label 2 rather than 1. To avoid this problem, the memory used for the merger
table must also support the write-before-read semantic, or data forwarding be used to correctly return
label (1) from the second lookup. Label 3 is then recognised as stale, and the merger table updated
with MT[3]← 1 as shown in green.

1

2

1

2

3

3

0

0

2

2

1

1

3

3

4

4

5

5

6 7
RB[4]→2

MT[2]→2 →1

2→1

MT[]←2 1

MT[3]←1

→0

→0

→2

→1

→0

MT[2]→2

MT[3]→2

RB[5]→0

RB[6]→3

RB[7]→0

RB[]
read

MT[]
write

MT[]
read

neighbourhood
window

1

1

1
1

1

1
1

1

2

2

2

T
im

e, clo
ck

 cy
cles

..
. 1

1

1

1

Figure 15. Timing of hazards associated with the merger table.

Delaying the merger table update after a merger (as described in the previous section) does not
introduce any additional hazards because the run of pixels which induces the delay would also delay
the start of the following run.

In a chain of successive mergers, such as in Figure 2, the previous merger is unlinked or compressed
during the first merger table lookup, enabling the second lookup to provide the representative label.
There are no data hazards associated with this process.

4.4. Data Table

Hazards within the data table can occur because the updated feature vector is written two clocks
after the feature vector is read from the table. Alternating background and object pixels, with the
object pixels belonging to the same connected component, can, therefore, cause a problem since the
same label is being read from and written to in the same clock cycle. This can be solved if the memory
supports read-before-write, or by adding bypass detection logic (the feedback data path from DTc to
DTi is already present).

The other issue with the data table is detecting components which complete on the last pixel of a
row, and on the row of the image. Equation (2) can be extended to include

IFV(X).AT.y =

{
H − 1 when y = H − 1,

y + 1 otherwise;
(4)

IFV(X).AT.x =


0 when x = 0 and AT.y is even,

x− 1 when x 6= 0 and AT.y is even,

W − 1 when x = W − 1 and AT.y is odd,

x + 1 when x 6= W − 1 and AT.y is odd.

(5)

J. Imaging 2019, 5, 45 16 of 26

Thus, an object on the last line will be detected as complete in the clock cycle following the last
pixel for that object.

5. Comparison and Discussion

In this section the proposed CCA algorithm is analysed with regards to throughput, latency
and required hardware resources, and compared to other state-of-the-art CCA algorithms. For the
comparison we chose the most recent CCA algorithms that are targeted for a realisation as hardware
architectures [6,18–21,23,25].

5.1. Memory Requirements

The on-chip memory size and scalability with increasing image size was identified to be one
of the most important criteria for a CCA hardware architecture to achieve a high-throughput for
high-resolution image streams [6,18]. Therefore, the scalability of the on-chip memory is further
examined in the following. As the algorithm by Jeong et al. [23] uses registers to realise the row buffer,
both registers used as memory and on-chip memory (RAM blocks) are considered in the comparison
of memory resources.

Table 1 compares the on-chip memory and register requirements for the algorithms presented
in [6,20,21,23,25] for an image of size W × H. The number of labels required, NL, defines the number
of connected components that are stored at any one time inside an architecture before their feature
vectors are ultimately output. NL is, therefore, the key factor for all architectures, as it defines the
lower bound of the depth and the width for the memories of the examined CCA architectures. In their
original publications the architectures extract different feature vectors. To enable a fair comparison,
in Table 1 the width of a feature vector WFV containing the bounding box and the area is used for
comparing the required memory. Table 2 shows the number of memory bits required for each data
structure of the compared CCA architectures. The total numbers of on-chip memory and register bits
are shown in Figure 16.

Table 1. Comparison of on-chip memory and register requirements. For all compared architectures the
feature vectors are composed of bounding box and area for each connected component, i.e., the width of
the feature vector, WFV , is equivalent for all architectures, WFV = 2dlog2 We+ 2dlog2 He+ dlog2 WHe.

Ma et al. Klaiber et al. Jeong et al. Tang et al. This Work[20] [6,21] [23] [25]

Number of labels, NL dW
2 e dW+5

2 e dW
2 e to dW×H

4 e dW
2 e dW

2 e
Chain stack size, NCS bW−1

2 c bW−1
2 c − − −

Label width, WL dlog2 NLe dlog2 NLe dlog2 NLe dlog2 NLe dlog2 NLe
Augmented label, WAL − WL+dlog2 He − − WL + dlog2 He

Hardware Data Structure RAM RAM Registers RAM RAM RAM

Zig-zag buffer, ZZ − − − − − W×1
Recyle FIFO, R − NL×WL − NL×WL − NL×WL
Row buffer, RB W×WL W×WL W×WL − W×2 W×WL
Merger table, MT 2NL×WL NL×WAL − − − NL×WAL
Chain stack, CS NCS×2WL NCS×2WL − − − −
Translation table, TT NL×WL − − − − −
isRoot flag, F − NL×1 − − − −
Active tag, AT − NL×2 − − − NL×(dlog2 We+1)
Stale label stack, SLS − dW

10 e×WL − − − −
Linked lists, LL − − − − 3NL×WL −
Data table, DT 2NL×WFV NL×WFV − NL×WFV NL×WFV NL×WFV

J. Imaging 2019, 5, 45 17 of 26

Table 2. Comparison of memory requirements of all data structures of the examined CCA architectures
for different image sizes from VGA to UHD8k.

VGA DVD HD720 HD1080 UHD4k UHD8k
640 × 480 720 × 576 1280 × 720 1920 × 1080 3840 × 2160 7680 × 4320

Ma et al. [20]

RB 5760 6480 12,800 19,200 42,240 92,160
MT 5760 6480 12,800 19,200 42,240 92,160
CS 5742 6462 12,780 19,180 42,218 92,136
TT 2880 3240 6400 9600 21,120 46,080
DT 36,480 42,480 79,360 124,800 272,640 591,360

Total 56,622 65,142 124,140 191,980 420,458 913,896

Klaiber et al. [6,21]

R 2907 3267 6430 9630 21,153 46,116
RB 5760 6480 12,800 19,200 42,240 92,160
MT 5814 6897 12,860 20,223 44,229 96,075
CS 5742 6462 12,780 19,180 42,218 92,136
F 323 363 643 963 1923 3843

AT 646 726 1286 1926 3846 7686
SLS 576 648 1280 1920 4224 9216
DT 18,411 21,417 39,866 62,595 136,533 295,911

Total 40,179 46,260 87,945 135,637 296,366 643,143

Jeong et al. [23]

R 2880 3240 6400 9600 21,120 46,080
RB 5760 6480 12,800 19,200 42,240 92,160
AT 640 720 1280 1920 3840 7680
DT 18,240 21,240 39,680 62,400 136,320 295,680

Total 27,520 31680 60,160 93,120 203,520 441,600

Tang et al. [25]

RB 1280 1440 2560 3840 7680 15,360
LL 8640 9720 19,200 28,800 63,360 138,240
DT 18,240 21,240 39,680 62,400 136,320 295,680

Total 28,160 32,400 61,440 95,040 207,360 449,280

This work

ZZ 640 720 1280 1920 3840 7680
R 2880 3240 6400 9600 21,120 46,080

RB 5760 6480 12,800 19,200 42,240 92,160
MT 5760 6840 12,800 20,160 44,160 96,000
AT 3520 3960 7680 11,520 24,960 53,760
DT 18,240 21,240 39,680 62,400 136,320 295,680

Total 36,800 42,480 80,640 124,800 272,640 591,360

The architecture by Ma et al. [20] was the first to introduce relabelling to reduce the number of
labels that are required, NL, from W×H

4 (in [18]) to W
2 . The aggressive relabelling, however, requires two

merger tables and two data tables to manage the labels changing from one row to the next. As shown in
Figure 16 the architecture from [20], therefore, has the largest memory footprint among the compared
CCA architectures.

J. Imaging 2019, 5, 45 18 of 26

VGA DVD HD720 HD1080 UHD4k UHD8k
Image size

0k

100k

200k

300k

400k

500k

600k

700k

800k

900k

O
n

-c
h

ip
m

em
or

y
+

re
gi

st
er

s
(b

it
s)

Ma et al. [20]

Klaiber et al. [21]

Jeong et al. [23]

Tang et al. [25]

This work

Figure 16. The bar diagram shows the number of on-memory and register bits that are required to
process images of different sizes. The bars indicate on-chip memory. The cyan coloured part of [23]
indicates the registers required for the row buffer.

The architectures of Klaiber et al. [6,21] use label recycling to improve memory-efficiency and,
therefore, also require a maximum of NL≈ W

2 labels. Label recycling only requires a single data table
and merger table, halving their size in comparison to [20] (although the augmented labels make the
merger table wider). Since the on-chip memory requirements are dominated by the data table, this
results in significant savings.

The architecture described in Jeong et al. [23] would scale with the image area, i.e., a maximum of
NL = W×H

4 would be required for a worst case image. However, if feature vectors are output before
the end of the image is reached, then those labels could be reused. Such label recycling is possible for
the architecture in [23], even though it is not described (only merged labels are recycled). For a fair
comparison, it is, therefore, assumed that the architecture scales with the image width, i.e., NL = W

2
and the usage of an active tag (from [21]) for label recycling is assumed, even though it is not explicitly
mentioned in the original publication. Directly replacing all instances of the old label within the
row buffer enables many of the auxiliary data structures to be removed. Consequently, the modified
architecture from [23] requires 30% less memory than [21]. This reduction, however, is only achieved
because the row buffer is designed as context-addressable memory, which has to be realised with
registers on FPGAs. The cyan-coloured bar in Figure 16 shows that almost one third of the required
memory is realised directly by registers. For processing large image sizes, such as UHD8k, more than
90 kbits of registers are required to realise the row buffer and around 350 kbits of on-chip memory
for the other data structures. Since modern FPGAs have a register to on-chip memory ratio between
1/20 and 1/60, a significant fraction of register resources are required. Furthermore, the routing effort
on an FPGA, as well as the logic for addressing a content-addressable memory as large as 90 kbits
consisting of registers is significant. An analysis of the scalability of such a context-addressable memory
with increasing image size is not given in [23]. It seems unlikely that a context-addressable memory
scales well on FPGAs, both, with maximum frequency and area. The number of registers required
by the architecture of [23] is therefore a clear disadvantage when optimising for throughput or when
minimising the FPGA resources.

J. Imaging 2019, 5, 45 19 of 26

The architecture of Tang et al. [25] represents a significant improvement, eliminating the need for
the content addressable memory of [23] with only approximately 2% additional resources. The main
reductions relative to [21] (approximately 30%) come from not needing to save the labels in the row
buffer, and replacing the merger table with a linked list structure. Uniquely labelling each run also
automatically recycles labels, eliminating the need for the recycle FIFO and active tag. For correct
operation, however, it does require the first and last row and column of the image to be background.
The results in Table 2 and Figure 16 do not include the logic required to extend the image with
background pixels.

The proposed CCA architecture is an advancement of [6]. Due to zig-zag scanning, an additional
memory structure to reorder incoming pixels from raster-scan order to zig-zag order is required.
Since zig-zag processing resolves chains on the fly, the stale label stack and chain stack are no longer
required. This reduces the amount of memory required by 9% compared to the architecture presented
in [21]. Compared to [23,25] approximately 20% more memory bits are required, primarily from the
merger table and other auxiliary data structures. The active tag is larger than that of [6] to detect
object completion at the earliest possible time; this matches the timing of [25]. The advantage over [23]
is merger handling using on-chip memories, rather than a large multiplexed shift register, which
is a more efficient use of resources. The advantage over [25] is the removal of the requirement for
the outside row and column of pixels to be background. The proposed architecture is also able to
immediately detect completed objects in the final row as they complete.

5.2. Implementation Results

Table 3 shows the results of the CCA architecture implemented using VHDL on an Intel
Cyclone V 5SEMA5F31C6 (using Quartus 17.1) and a Xilinx Kintex 7 xc7k325-2L (using Vivado 2016.4).
These tables show the number of lookup tables (LUTs/ALUTs), registers (FF) and on-chip memory
bits (and memory blocks) each component of the CCA architecture requires for processing UHD8k
images. The slightly higher memory requirements for the Cyclone V for the merger table and data
table are a result of the synthesis tools rounding the memory depth up to the next power of 2.

Table 3. Synthesis results targeting a UHD8k image (7680 × 4320). ALUTs are Intel’s adaptive lookup
tables; FFs are the number of flip-flops or registers; M10K are the number of Intel’s 10 kbit RAM blocks;
BRAMs are the number of Xilinx’s 36 kbit block RAMs.

Module
Intel Cyclone V 5SEMA5F31C6 Xilinx Kintex 7 xc7k325-2L

ALUTs FFs RAM (bits) M10K LUTs FFs RAM (bits) 36k BRAMs

Zig-zag buffer 28 19 7680 1 46 19 7680 0.5
Label generator 51 31 46,080 6 14 26 46,080 1.5
Row buffer 49 21 92,160 12 163 30 92,160 3
Merger table 99 103 102,400 13 219 101 96,000 3
Neighbourhood 226 252 0 0 95 217 0 0
Data table 635 275 372,736 46 470 244 322,560 10.5

Total 1088 701 621,056 78 867 a 637 564,480 18.5
a LUTs shared between multiple components are counted in both.

The scalability of the proposed CCA architecture with increasing image size is explored in
Figure 17. The number of required number of LUTs/ALUTs is shown in Figure 17a. On the Intel
Cyclone V the number of ALUTs increases logarithmically with the image width. On the Xilinx Kintex 7
the number of LUTs increases from VGA to HD1080 image size to almost 1400 and then drops to
around 800 LUTs for UHD4k and UHD8k image size. This is a direct result of the usage of LUTs
as distributed RAM to realise small memories. On Kintex 7 FPGAs this is done to prevent using
valuable on-chip memory resources from being used inefficiently for small memories that only utilise

J. Imaging 2019, 5, 45 20 of 26

a small fraction of the 18 kBit minimum size. From UHD4k all the memories are realised with RAMs.
The number of LUTs from UHD4k to UHD8k image size, therefore, increases only marginally.

Figure 17b shows a small logarithmic increase in the number of registers required with image
width for both FPGAs. The Cyclone V uses slightly more registers than the Kintex 7 as a result of
register duplication during the place and route stage. The required on-chip memory bits scale linearly
with the image width, as shown in Figure 17c. The only exception that can be observed is that for
the Kintex 7 the same amount of block memory is required for the HD720 and HD1080 image sizes.
This remains constant as a result of the usage of distributed RAM as indicated in Figure 17a. The small
increase for the Cyclone V for the HD720 image size is simply a result of the discrete nature of the
RAM blocks.

The throughput of the architecture is proportional to the maximum clock frequency. Therefore,
it determines how well the throughput of the architecture scales with increasing image width.
As shown in Figure 17d the maximum frequency remains almost constant for both FPGAs. A maximum
frequency around 180 MHz can be reach on the Kintex 7 for all examined image sizes. For the Intel
Cyclone V, the maximum frequency is around 105 MHz for all image sizes.

0 2000 4000 6000 8000
Image width

600

800

1000

1200

1400

1600

#
 L

U
Ts

 /
AL

U
Ts

VGA
DVD

HD720
HD1080

UHD4k UHD8k

Intel Cyclone V
Xilinx Kintex 7

0 2000 4000 6000 8000
Image width

450

500

550

600

650

700

750
#

 r
eg

is
te

rs

VGA
DVD

HD720
HD1080

UHD4k UHD8k

Intel Cyclone V
Xilinx Kintex 7

(a) (b)

0 2000 4000 6000 8000
Image width

0k

100k

200k

300k

400k

500k

600k

700k

#
 o

n-
ch

ip
 m

em
or

y
bi

ts

VGA
DVD
HD720

HD1080
UHD4k UHD8k

Intel Cyclone V
Xilinx Kintex 7

0 2000 4000 6000 8000
Image width

50

75

100

125

150

175

200

225

250

M
ax

 c
lo

ck
 fr

eq
ue

nc
y

(M
H

z)

VGA
DVD

HD720
HD1080

UHD4k UHD8k

Intel Cyclone V
Xilinx Kintex 7

(c) (d)

Figure 17. These diagrams that show the number of (a) look up tables (LUTs / ALUTs), (b) registers
and and (c) on-chip memory bits for different image sizes for the implementation of the proposed CCA
architecture on an Intel Cyclone V 5SEMA5F31C6 and a Xilinx Kintex 7 xc7k325-2L FPGA. In (d) the
maximum clock frequency is shown.

5.3. Comparison of CCA Hardware Architecture

Table 4 compares the results reported by Johnston et al. [19], Ma et al. [20], Klaiber et al. [21],
Jeong et al. [23], and Tang et al. [25], with the implementation results of the proposed architecture.
The reported results differ in image size, extracted feature vectors, the FPGA technology used and
the maximum number of labels that can be stored in the architecture. A direct comparison of the

J. Imaging 2019, 5, 45 21 of 26

architectures from Table 4 is, therefore, not meaningful. The differences of the results of the proposed
architecture are discussed for each examined architecture in the following.

Table 4. Comparison of several CCA hardware architectures. Abbreviations for the extracted feature
vector are: (A) area, (C) component count, (FOM) first-order moment, (BB) bounding box.

Implementation Technology Image Size Extracted FV LUTs Registers RAM fmax
of Architecture (pixels) (bits) (MHz)

Johnston and Bailey Spartan II 670× 480 C 620 271 12 k N/A
[19] a A 758 299 20 k N/A

Ma et al. [20] Virtex II 640× 480 A, C 1757 600 72 k 40.64

Klaiber et al [21] Kintex 7 256× 256 BB 493 296 108 k 185.59
7680× 4320 818 444 548 k 170.53

Jeong et al. [23] b Cyclone IV 640× 480 BB, FOM 36,478 N/A 18k 60.58
1920× 1080 57,036 N/A 29 k 58.44

Tang et al. [25] Virtex II 256× 256 BB 543 187 72k 104.26
Cyclone IV 489 303 7287 122.94

This work
Cyclone V 256× 256 BB, A 682 479 22 k 122.56

7680× 4320 1088 701 621 k 106.52

Kintex 7 256× 256 BB, A 882 503 18 k 220.02
7680× 4320 867 637 564 k 180.47

a Hardware resources are for a maximum of 255 labels [19]. b Hardware resources are for a maximum of
127 labels [23].

Comparison to [19,20]: The proposed architecture is an advancement of these architectures.
The number of memory bits was significantly reduced by the introduction of label recycling and
omission of the chain stack. The required LUTs and registers are mostly used for control logic and are,
therefore, similar for the proposed architecture when comparing to [19,20].

Comparison to [21]: In the proposed approach the chain stack and stale label stack are no longer
required, however, the memory for storing active tag has increased compared to [21]. The required
on-chip memory could, therefore, be reduced up to 10%, as shown in Table 2. There was a small
increase in maximum frequency (35 MHz for 256× 256 images and by 10 MHz for UHD8k images).
This was achieved due to the simplified label assignment. The critical path was in [21] in the label
assignment. For the proposed architecture it is now in the calculation of the active tag in the data
table. For the 256× 256 image size, the required on-chip memory has decreased significantly from
108 kbits to 18 kbits. In [21] most data structures on the Kintex 7 occupy full 18 kbit RAM blocks even if
a significant part is unused. The proposed architecture makes use of distributed RAM for small data
structures; these are realised with LUTs. This also explains why the number of required LUTs has
almost doubled from [21] to the proposed architecture for small image sizes. For the UHD8k image
size, the LUT and register requirements are slightly higher than in [21] reflecting the more complex
control, and the improved object completion detection. It should be noted that the results in Table 4
for [21] are for extracting the bounding box only, whereas the results for the proposed architecture are
for extracting bounding box and area (which requires a wider data table).

Comparison to [23]: The relatively low RAM requirement of [23] is directly a result of restricting
the design to 127 labels; this would grow significantly if the design increased NL to handle any image
(the data table size is proportional to NL). The number of registers is not directly reported in [23].
However, as the number of registers required for the row buffer is proportional to the image width
(here 1920 for an HD image) and the label width (here 7 bits for 127 labels) it cannot be lower than
13,440 registers. As discussed in the analytical comparison from Table 1 and Figure 16, implementation
of [23] requires significantly more registers than the other architectures while being limited to only
127 labels. The use of multiplexed registers for the row buffer would impact on the routability of the
design, and this is the likely cause of the significantly lower clock frequency. The major advantage of

J. Imaging 2019, 5, 45 22 of 26

the proposed architecture over [23] is that all of the data structures are realised as on-chip memories.
This allows the proposed design to use a smaller FPGA device, as the number of registers required is
much smaller and the proportion of on-chip memory and registers is closer to modern FPGAs.

Comparison to [25]: The small resource requirement comes from the simplified logic for
maintaining the linked list data structures. Although the RAM requirements for the Virtex II seem
anomalously large, the minimum RAM block size is 18 kbits, with the tools reporting the total size
rather than just the number of bits used (the remainder of the RAM blocks are unusable). The RAM
for the Cyclone IV is close to that indicated by Table 1. Again it should be noted that the results
reported for Tang et al. are for extracting the bounding box only. Extracting the area as well requires a
50% wider data table, and would also require a small increase in the resources required. That said,
the proposed architecture requires more resources and operates at a similar speed to [25]. It should
be remembered, however, that Tang et al. requires the borders of the image to be background pixels.
The logic reported does not include that required to either ensure this, or to pad the image if required.

5.4. Throughput

To compare the throughput of the architectures from Johnston and Bailey [19], Klaiber et al. [6,21],
Ma et al. [20], Jeong et al. [23], Tang et al. [25] and the proposed architecture, the maximum number of
clock cycles to process an image of size W×H is examined. All of the designs are capable of processing
one pixel per clock cycle of the input image. The difference is the end of row processing for resolving
chains, which are data-dependent.

For [6,19,21], the pattern which creates the maximum number of chain stack entries in an image is
the stair pattern shown in Figure 18a. It adds an overhead of W

5 cycles to each image row to process
the content stored in the chain stack and to update the merger table.

The architecture of [20] has a translation table directly connected to the output of the merger table,
with many mergers managed by the translation of labels from one row to the next. This makes the
pattern that creates the maximum number of chains more complicated, i.e., it repeats with a lower
frequency than the pattern from [19,21]. In Figure 18b it is called the feather pattern. It adds an
overhead of W

8 cycles to every second image row (giving an average of W
16 cycles per row).

(a) (b)

Figure 18. Image patterns that create the worst case average overhead for (a) [6,19,21] and for (b) [20].

The proposed architecture and the architectures of [23,25] are data-independent and do not have
a chain stack. Therefore, they only require one clock cycle to process a pixel, with no end of row
overhead for resolving chains. However, to process the complete image, [25] requires extending the
image by 1 row and column on each side (i.e., to process the full image, the end of row overheads have
not been completely eliminated). These results are summarised in Table 5.

Throughput also depends on the clock frequency. For each architecture and platform, the lowest
clock frequency from Table 4 is selected, and scaled according to the overhead. From this, it is clearly
seen in Table 5 that the proposed approach is 2 or 3 times faster than [23], primarily as a result of using
memory for the row buffer rather than distributed registers. The reduction in overhead amplifies the
small improvement in clock frequency over [6,21], giving a 26% improvement in throughput.

J. Imaging 2019, 5, 45 23 of 26

Table 5. Comparison of processing cycles for a W × H image.

Architecture Number of Cycles fmax (MHz) Throughput (Mpix/s)

Johnston and Bailey [19] 6/5×W × H N/A N/A
Klaiber et al. [6,21] 6/5×W × H 170.53 142.11
Ma et al. [20] 17/16×W × H 40.64 38.25
Jeong et al. [23] W × H 58.44 58.44
Tang et al. [25] (W+2)× (H+2) 104.26 102.65

This approach W × H 106.52 106.52 (Cyclone V)
180.47 180.47 (Kintex 7)

5.5. Latency

In terms of CCA, latency can be defined as the number of clock cycles from the time when the last
pixel of a connected component is received until its feature vector is output by the CCA architecture.
There is a small latency (of a few clock cycles) resulting from pipelining, but the majority comes from
detecting component completion, which is dependent on the image width, W. Since the width term
dominates, the small pipeline latency (which is constant) will be ignored in this discussion.

The architecture of Ma et al. [20] has two data tables, one for feature vectors of connected
components of the previous row and one for the current row. If a connected component is extended
from the previous row to the current row, its feature vector is moved from one data table to the other.
A connected component that is finished is not extended to the current row, i.e., when the end of the
current row is reached the associated feature vector is still in the data table for the previous row.
While processing the next row this data table scanned to detect completed components and output
the feature vector. Due to aggressive relabelling, connected components are stored in the order that
they appear in the current image row. Therefore, an object at the start of the row will have a latency
of 2 W cycles, while those at the end of the row will have a latency of W plus a scan time within the
data table of up to W

2 (depending on the number of separate components on the row) to detect the
completed object.

In the architecture of Klaiber et al. [6,21], the data table is scanned for completed objects at the
start of the second row after the last pixel of the object. The latency before this scan, therefore, ranges
from W to 2 W, depending on the position along the row. As a result of label recycling, the label could
be anywhere within the data table, with the latency of detecting the completed component during the
scan varying up to W

2 . These combine to give an average latency of 1.75 W up to a maximum of 2.5 W.
The mechanism of Tang et al. [25] detects completed objects when it encounters a hanging label,

i.e., the end of a list of runs on the previous row with no connection to the current row. This is the
earliest time that a component can be detected as completed, and has a latency of W clock cycles.
Note that the preprocessing to convert from 4-connectivity to 8-connectivity does not introduce any
significant latency. However, padding the image to ensure that the image borders are background
pixels will introduce an additional row of latency (W clock cycles—not reported here).

In the proposed design, converting from a raster scan to a zig-zag scan introduces an additional
latency relative to the other methods. Therefore, to minimise latency, it is essential to detect completed
components at the earliest possible opportunity (on the following row), which is achieved by the new
completion detection mechanism. The latency of the zig-zag conversion is W clock cycles on even
numbered rows, and between 0 and 2 W clock cycles on odd numbered rows (during the reverse scan).
The latency of detection is between 2 W at the start of a scan of a row (to scan all of the row, and back
again on the next row), through to 0 at the end of a scan. These combine to give a latency of between
W and 3 W, with an average latency of 2 W clock cycles. If the zig-zag conversion is unnecessary
(for example if streaming from memory in zig-zag order), then objects are detected as completed with
a latency of between 0 and 2 W, with an average of W clock cycles.

The algorithm of Johnston and Bailey [18,19] does not allow completed objects to be detected
before the end of the image. Similarly, Jeong et al. [23] gives no criterion for detecting a finished

J. Imaging 2019, 5, 45 24 of 26

connected component before the end of the image. The latency is, therefore, the number of cycles from
the last pixel of a connected component until the end of the image. These architectures were, therefore,
not compared in terms of latency. In principle, however, although not part of the architecture of [23],
there is no limitation (apart from a few more resources) against detecting and outputting the feature
vector in a manner similar to that used in [21], or indeed that proposed in this paper.

Table 6 summarises the latency of the architectures considered. Although the proposed
architecture introduces significant latency in the conversion of the input to a zig-zag scan, this has been
mitigated by the proposed new approach to completed object detection. The slight increase in latency
is the price to pay for the increase in throughput from the elimination of end of row overheads. Note
that the feature vectors of any objects touching the last row of the image will be output with almost no
latency (only the pipeline delay), which is significantly shorter than any of the other architectures.

Table 6. Latency (in clock cycles) for an image of width W.

Architecture Average Latency Maximum Latency

Ma et al. [20] 1.75 W 2 W
Klaiber et al. [6,21] 1.75 W 2.5 W
Tang et al. [25] (without padding) W W
This approach (with zig-zag conversion) 2 W 3 W
This approach (without zig-zag conversion) W 2 W

6. Summary and Conclusions

Pixel based hardware CCA architectures are designed to process streamed images at one pixel
per clock cycle. However, with synchronous memories within modern FPGAs, this limits the designs
to one memory access per clock cycle, which can create issues with stale labels resulting from chains
of mergers. Current approaches manage this by resolving stale labels at the end of each image row,
although this introduces a variable, image dependent, delay.

Jeong et al. [23] solved this by replacing the memory with a multiplexed shift register, enabling
all instances of old labels to be replaced immediately. However, the movement away from a memory
structure comes at a cost of considerably increased logic resources and registers and a lower maximum
clock frequency.

Tang et al. [25] took a different approach, and rather than relabel the pixels which have already
been seen, manages merger resolution through manipulation of pointers within a linked list structure.
This eliminates the overheads associated with chains, and provides an efficient mechanism for detecting
completed components and recycling labels. Although it claims to have no overheads, it does require
the border pixels within the image to be background. This would require padding the image before
processing, and results in two clock cycles overhead for each row.

In this paper, we have demonstrated an alternative approach to resolve stale labels on-the-fly by
using a zig-zag scan. This allows continuous streamed images to be processed with no data dependent
overheads, while retaining the use of memory for buffering the previous row.

The cost of this approach is slightly increased control logic over prior memory based approaches.
This is to handle the zig-zag scan, and to manage multiple lookups within the merger table.
The memory requirements are reduced because fewer auxiliary data structures are required.
The presented design also allows a slightly higher clock frequency than prior state-of-the-art designs,
in addition to the improved throughput. The use of memory rather than a multiplexed shift register
makes it significantly faster than the architecture of [23].

Conversion from a raster scan to a zig-zag scan does increase the latency (in terms of the number
of clock cycles). This has been mitigated to some extent by a new algorithm that detects when objects
are completed at the earliest possible time. Overall, the proposed changes give an improvement over
current state-of-the-art methods.

J. Imaging 2019, 5, 45 25 of 26

Author Contributions: Conceptualization, D.G.B.; Methodology, D.G.B.; Software, D.G.B. & M.J.K.; Validation,
M.J.K.; Investigation, D.G.B. & M.J.K.; Writing—Original Draft Preparation, D.G.B. & M.J.K.; Writing—Review &
Editing, D.G.B. & M.J.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AXI Advanced extensible interface [27]
AT Active tag—indicates whether a component is still active
CCA Connected components analysis
DT Data table—accumulates the component feature vector
FIFO First in first out buffer
FPGA Field programmable gate array
IFV Initial feature vector—the feature vector of a single pixel
LUT Look up table—the logic element on an FPGA
MT Merger table—indicates equivalent labels, for obtaining the representative label
RAM Random access memory
RB Row buffer—caches labels assigned for use in the following row

References

1. He, L.; Ren, X.; Gao, Q.; Zhao, X.; Yao, B.; Chao, Y. The connected-component labeling problem: A review of
state-of-the-art algorithms. Pattern Recognit. 2017, 70, 25–43, doi:10.1016/j.patcog.2017.04.018.

2. Chang, F.; Chen, C.J.; Lu, C.J. A linear-time component-labeling algorithm using contour tracing technique.
Comput. Vis. Image Underst. 2004, 93, 206–220, doi:10.1016/j.cviu.2003.09.002.

3. AbuBaker, A.; Qahwaji, R.; Ipson, S.; Saleh, M. One scan connected component labeling technique.
In Proceedings of the IEEE International Conference on Signal Processing and Communications (ICSPC 2007),
Dubai, UAE, 24–27 November 2007; pp. 1283–1286, doi:10.1109/ICSPC.2007.4728561.

4. Suzuki, K.; Horiba, I.; Sugie, N. Linear-time connected-component labeling based on sequential local
operations. Comput. Vis. Image Underst. 2003, 89, 1–23, doi:10.1016/S1077-3142(02)00030-9.

5. Rosenfeld, A.; Pfaltz, J. Sequential operations in digital picture processing. J. Assoc. Comput. Mach. 1966, 13,
471–494, doi:10.1145/321356.321357.

6. Klaiber, M.; Bailey, D.G.; Simon, S. Comparative study and proof of single-pass connected components
algorithms. J. Math. Imaging Vis. 2019, submitted.

7. Di Stefano, L.; Bulgarelli, A. A simple and efficient connected components labeling algorithm. In Proceedings
of the International Conference on Image Analysis and Processing, Venice, Italy, 27–29 September 1999;
pp. 322–327, doi:10.1109/ICIAP.1999.797615.

8. Wu, K.; Otoo, E.; Suzuki, K. Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl.
2009, 12, 117–135, doi:10.1007/s10044-008-0109-y.

9. Lacassagne, L.; Zavidovique, B. Light speed labeling: Efficient connected component labeling on RISC
architectures. J. Real-Time Image Process. 2011, 6, 117–135, doi:10.1007/s11554-009-0134-0.

10. He, L.; Chao, Y.; Suzuki, K. A run-based one-and-a-half-scan connected-component labeling algorithm. Int. J.
Pattern Recognit. Artif. Intell. 2010, 24, 557–579, doi:10.1142/S0218001410008032.

11. He, L.; Chao, Y.; Suzuki, K. A new two-scan algorithm for labeling connected components in binary images.
In Proceedings of the World Congress on Engineering, London, UK, 4–6 July 2012; Volume II, pp. 1141–1146.

12. He, L.; Zhao, X.; Chao, Y.; Suzuki, K. Configuration-transition-based connected-component labeling.
IEEE Trans. Image Process. 2014, 23, 943–951, doi:10.1109/TIP.2013.2289968.

13. Zhao, X.; He, L.; Yao, B.; Chao, Y. A new connected-component labeling algorithm. IEICE Trans. Inf. Syst.
2015, 98, 2013–2016, doi:10.1587/transinf.2015EDL8135.

14. Grana, C.; Borghesani, D.; Cucchiara, R. Optimized block-based connected components labeling with
decision trees. IEEE Trans. Image Process. 2010, 19, 1596–1609, doi:10.1109/TIP.2010.2044963.

https://doi.org/10.1016/j.patcog.2017.04.018
https://doi.org/10.1016/j.cviu.2003.09.002
https://doi.org/10.1109/ICSPC.2007.4728561
https://doi.org/10.1016/S1077-3142(02)00030-9
https://doi.org/10.1145/321356.321357
https://doi.org/10.1109/ICIAP.1999.797615
https://doi.org/10.1007/s10044-008-0109-y
https://doi.org/10.1007/s11554-009-0134-0
https://doi.org/10.1142/S0218001410008032
https://doi.org/10.1109/TIP.2013.2289968
https://doi.org/10.1587/transinf.2015EDL8135
https://doi.org/10.1109/TIP.2010.2044963

J. Imaging 2019, 5, 45 26 of 26

15. Grana, C.; Baraldi, L.; Bolelli, F. Optimized connected components labeling with pixel prediction.
In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems
(ACIVS 2016), Lecce, Italy, 24–27 October 2016; Springer International Publishing: Cham, Switzerland, 2016;
Volume 10016, pp. 431–440, doi:10.1007/978-3-319-48680-2_38.

16. Schwenk, K.; Huber, F. Connected component labeling algorithm for very complex and high-resolution
images on an FPGA platform. In Proceedings of the High Performance Computing in Remote Sensing V,
Toulouse, France, 20–21 September 2015; Volume 9646, 14p, doi:10.1117/12.2194101.

17. Appiah, K.; Hunter, A.; Dickenson, P.; Owens, J. A run-length based connected component algorithm for
FPGA implementation. In Proceedings of the International Conference on Field Programmable Technology,
Taipei, Taiwan, 8–10 December 2008; pp. 177–184, doi:10.1109/FPT.2008.4762381.

18. Bailey, D.; Johnston, C. Single pass connected components analysis. In Proceedings of the Image and Vision
Computing New Zealand (IVCNZ), Hamilton, New Zealand, 5–7 December 2007; pp. 282–287.

19. Johnston, C.T.; Bailey, D.G. FPGA implementation of a single-pass connected components algorithm.
In Proceedings of the IEEE International Symposium on Electronic Design, Test and Applications
(DELTA 2008), Hong Kong, China, 23–25 January 2008; pp. 228–231, doi:10.1109/DELTA.2008.21.

20. Ma, N.; Bailey, D.; Johnston, C. Optimised single-pass connected components analysis. In Proceedings
of the International Conference on Field Programmable Technology, Taipei, Taiwan, 8–10 December 2008;
pp. 185–192, doi:10.1109/FPT.2008.4762382.

21. Klaiber, M.J.; Bailey, D.G.; Baroud, Y.O.; Simon, S. A resource-efficient hardware architecture for
connected component analysis. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1334–1349,
doi:10.1109/TCSVT.2015.2450371.

22. Trein, J.; Schwarzbacher, A.T.; Hoppe, B.; Noffz, K.H.; Trenschel, T. Development of a FPGA based real-time
blob analysis circuit. In Proceedings of the Irish Signals and Systems Conference, Derry, UK, 13–14 September
2007; pp. 121–126.

23. Jeong, J.-w.; Lee, G.-b.; Lee, M.-j.; Kim, J.-G. A single-pass connected component labeler without label
merging period. J. Signal Process. Syst. 2016, 84, 211–223, doi:10.1007/s11265-015-1048-7.

24. Zhao, F.; Lu, H.Z.; Zhang, Z.Y. Real-time single-pass connected components analysis algorithm. EURASIP J.
Image Video Process. 2013, 2013, 21, doi:10.1186/1687-5281-2013-21.

25. Tang, J.W.; Shaikh-Husin, N.; Sheikh, U.U.; Marsono, M.N. A linked list run-length-based single-pass
connected component analysis for real-time embedded hardware. J. Real-Time Image Process. 2016, 15,
197–215, doi:10.1007/s11554-016-0590-2.

26. Wu, K.; Otoo, E.; Shoshani, A. Optimizing connected component labelling algorithms. In Proceedings
of the Medical Imaging 2005: Image Processing, San Diego, CA, USA, 15–17 February 2005; Volume 5747,
pp. 1965–1976, doi:10.1117/12.596105.

27. ARM. AMBA 4 AXI4-Stream Protocol Specification; Volume IHI 0051A; ARM: Cambridge, UK, 2010.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1007/978-3-319-48680-2_38
https://doi.org/10.1117/12.2194101
https://doi.org/10.1109/FPT.2008.4762381
https://doi.org/10.1109/DELTA.2008.21
https://doi.org/10.1109/FPT.2008.4762382
https://doi.org/10.1109/TCSVT.2015.2450371
https://doi.org/10.1007/s11265-015-1048-7
https://doi.org/10.1186/1687-5281-2013-21
https://doi.org/10.1007/s11554-016-0590-2
https://doi.org/10.1117/12.596105
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Approach
	Definitions
	Update Neighbourhood
	Update Data Structures

	Architecture
	Zig-Zag Scan
	Merger Table Processing
	Data Table

	Analysis
	Row Buffer
	Path Compression
	Merger Table
	Data Table

	Comparison and Discussion
	Memory Requirements
	Implementation Results
	Comparison of CCA Hardware Architecture
	Throughput
	Latency

	Summary and Conclusions
	References

