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Abstract: Inverse scattering problems (ISPs) stand at the center of many important imaging
applications, such as geophysical explorations, industrial non-destructive testing, bio-medical
imaging, etc. Recently, a new type of contraction integral equation for inversion (CIE-I) has been
proposed to tackle the two-dimensional electromagnetic ISPs, in which the usually employed
Lippmann–Schwinger integral equation (LSIE) is transformed into a new form with a modified
medium contrast via a contraction mapping. With the CIE-I, the multiple scattering effects,
i.e., the physical reason for the nonlinearity in the ISPs, is substantially suppressed in estimating
the modified contrast, without compromising physical modeling. In this paper, we firstly propose
to implement this new CIE-I for the three-dimensional ISPs. With the help of the FFT type twofold
subspace-based optimization method (TSOM), when handling the highly nonlinear problems with
strong scatterers, those with higher contrast and/or larger dimensions (in terms of wavelengths),
the performance of the inversions with CIE-I is much better than the ones with the LSIE, wherein
inversions usually converge to local minima that may be far away from the solution. In addition,
when handling the moderate scatterers (those the LSIE modeling can still handle), the convergence
speed of the proposed method with CIE-I is much faster than the one with the LSIE. Secondly,
we propose to relax the contraction mapping condition, i.e., different contraction mappings are used
in updating contrast sources and contrast, and we find that the convergence can be further accelerated.
Several numerical tests illustrate the aforementioned interests.

Keywords: inverse scattering; nonlinear problem; contraction integral equation for inversion
(CIE-I); imaging

1. Introduction

Inverse scattering problems (ISPs) in electromagnetics and acoustics are of great interest in
industries due to important imaging applications in various areas, such as geophysical survey,
non-destructive testing, ground-penetrating radar, bio-medical imaging, etc., as solving the ISPs
provides rich information about the unknown targets, such as locations, shapes, and material
distributions within some structures [1–4]. For instance, microwave imaging has been used to inspect
the abnormalities in human bodies like bleeding in the head and tumours in breasts. On the other
hand, they are also quite important due to the representative difficulties in solving a large group
of inverse problems concerning waves and fields, and thus researchers in mathematics, physics,
and engineering societies have devoted great efforts to improving efficiencies and accuracies of the
numerical solvers [5]. As shown in Figure 1, solving ISPs is to determine the unknown scatterers
within a domain, when the domain is illuminated by several different incidences and we can measure
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the scattered fields outside the domain (usually contaminated by noise) for each incidence. It is well
known that the main difficulties in such ISPs are their two intrinsic properties, i.e., ill-posedness and
nonlinearity [1]. As most of the practical problems are three-dimensional (3-D) ones, which require
much more computational resources than those in two-dimensional cases, they are often more difficult
to solve due to the data deficiency (measurement aperture usually covers a small solid angle), and
therefore also stronger ill-posedness and nonlinearity. Great efforts have been paid to tackle these
demanding problems, for instance [6–9].
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Figure 1. Schematics of inverse scattering problems.

Methods for solving ISPs can be catalogued into two types of optimization approaches:
deterministic and stochastic. The deterministic type of the inversion methods has been developed for
decades, such as the contrast source inversion (CSI) method [6,10,11], the Born iterative method
and distorted Born iterative method [12,13], the level set method [14,15], the subspace-based
optimization method (SOM) [8,16–18], etc. The second type, the stochastic type of the inversion
methods, usually employs a group of initial guesses and uses the stochastic optimization scheme to
minimize the objective function, such as the genetic algorithm and the evolutionary optimization.
The stochastic type methods increase the possibilities of finding the global minimum rather than being
trapped in a local minimum as the deterministic optimization techniques [19,20]. Both techniques
have also been applied to solve 3-D inverse scattering problems [6,21–24]. Other than the quantitative
methods mentioned above, some qualitative methods, such as the linear sampling method [25] and
other methods, like [26], are proposed to retrieve the geometric supports of the unknown scatterers.

To tackle the nonlinearity, the major difficulty in efficiently solving the ISPs, different types
of integral equations have been proposed, such as in [27–29]. In particular, motivated by the
contraction integral equation (CIE) in solving the direct scattering problems with highly conductive
background media [30], a new type of contraction integral equation for inversion (CIE-I) has been
proposed [29] to tackle the two-dimensional highly nonlinear ISPs by transforming the usually
employed Lippmann–Schwinger integral equation (LSIE) into a new form with a modified medium
contrast via a contraction mapping. With the CIE-I, the global multiple scattering effects (MSE) are
substantially suppressed in estimating the modified contrast in the CSI type methods. With the FFT
type twofold SOM regularization scheme [8], the inversion solver with CIE-I is capable of effectively
alleviating the nonlinearity of the two-dimensional ISPs, especially those highly nonlinear ones with
strong scatterers with large contrast and/or large dimensions (in terms of wavelengths). In this paper,
this new CIE-I will be implemented in tackling the 3-D ISPs.

In summary, the contributions of the paper include:

1. The CIE-I is firstly implemented to tackle the computationally costly full 3-D ISPs, to address the
highly nonlinear 3-D ISPs, and to accelerate the convergence of the inversions.

2. A relaxed type of inversion scheme based on CIE-I is proposed, with different auxiliary
parameters β (the parameter in CIE-I to control the portion of MSE in estimating the contrast) in
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updating the contrast sources and in updating the contrast. This means to further accelerate the
convergence of the inversions.

3. Several numerical tests are provided with details, for the sake of further algorithmic studies.

After the Introduction, the proposed 3-D inversion method is detailed in Section 2. In Section 3,
three numerical examples are given to validate the proposed method. Finally, conclusions are drawn.

2. Inversion with CIE-I

In this paper, the domains of interest (DoI) are chosen to be rectangular cuboid in order to
implement the conjugate gradient fast Fourier transform (CG-FFT) scheme and apply the Fourier
basis in TSOM. For the convenience of reading, in this paper, we denote the one-dimensional tensor
as a, two-dimensional tensor as a, three-dimensional tensor as â, and four-dimensional tensor as ˆ̂a.
Unless otherwise specified, the subscript of the tensors denotes the index of the element, such as
am,n denotes the element in a with index {m, n}. We use bold symbols to denote vectorial physical
quantities, such as the positions r and the electric fields E in 3-D cases.

2.1. 3-D Modeling

In 3-D cases, there are Ni incident waves from different angles impinging onto the rectangular
cuboid DoI D (D ⊂ R3, the background 3-D homogeneous medium with permittivity ε0 and
permeability µ0), where nonmagnetic scatterers are located, and these incident waves are expressed
as Einc

l (r), l = 1, 2, . . . , Ni, r ∈ D. For each incidence, the scattered fields are collected by Nr receivers
located at r′j, j = 1, 2, . . . , Nr. With all such information, including every incident field inside the
domain of interest and the corresponding scattered fields at the positions of all detectors, we aim at
determining the dielectric profile ε(r), r ∈ D.

The scattering models are governed by the following electric field volume integral equation based
on the well-known Lippmann–Schwinger integral equation (LSIE). For the lth incidence, the field
equation in the domain D is expressed as

I l(r) = χ(r)Einc
l (r) + χ(r)(G3D

D I l)(r), (1)

where χ(r) = (εr(r)− 1) is the contrast, εr(r), I l(r) = χ(r)Etot
l (r) and Einc

l (r) are the relative
permittivity, the contrast source and the incident electric field at r, respectively, and (G3D

D I l)(r)
is an integral operator with the dyadic Green’s function as the integral kernel, which can be
written as [8,31],

(G3D
D I l)(r) := k2

0

∫
D

(
I +
∇∇
k2

0

)
· g(r, r′)I l(r

′)dr′, (2)

with k0 = ω
√

ε0µ0 as the wave number of the background medium, and g(r, r′) as the 3-D Green’s
function for the background homogeneous medium. Notice that the I l(r) is the contrast source in this
paper, while, in [8], it is the physically induced current that includes a multiplicative factor −iωε0

compared to the contrast source. Otherwise, as we know, the dyadic Green’s function is composed of
nine scalar elements, which represent the mapping from the three components of the contrast source
to the three components of the scattered fields inside the DoI.

The nonlinearity of ISPs comes from the MSE, as shown in Equation (1). To alleviate the
nonlinearity of the model, in [29], by some mathematical manipulation on Equation (1), another
new-type integral equation, which is denoted as CIE-I herein, can be obtained

β(r)I l(r) = R(r)β(r)I l(r) + R(r)
[

Einc
l (r) + (G3D

D I l)(r)
]

, (3)

where R(r) = β(r)χ(r)
/
[β(r)χ(r) + 1] is the modified contrast function, and β(r) is a chosen auxiliary

parameter to control the portion of the MSE in estimating the contrast [29], which can be a constant
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or a variable at the different position in the DoI. For the convenience of discretizing the equation,
we rewrite the dyadic Green’s function as

(G3D
D;uv Il;v)(r) :=


k2

0(1 +
1
k2

0

∂2

∂ι2u
)
∫
D g(r, r′)Il;v(r′)dr′, if u = v,

∂2

∂ιu∂ιv

∫
D g(r, r′)Il;v(r′)dr′, if u 6= v,

(4)

where u, v = 1, 2, 3 represent the x-, y- and z-components of a vector, respectively, and ι1 = x, ι2 = y,
and ι3 = z.

Following the conventions in [8], we can rewrite the vectorial Equation (3) into three coupled
scalar equations in the discrete forms. Thus, we first discretize the rectangular domain of interest
into small cuboid subdomains, whose dimensions are much smaller than the wavelength and the
center of which are located at rm,n,p, with m, n, p integers and m ∈ [1, M1], n ∈ [1, M2] and p ∈ [1, M3].
Here, M1, M2, and M3 are the total number of subdomains along x-, y-, and z-directions, respectively,
and we let M = M1 × M2 × M3 be the total number of the subdomains. With such discretization,
we have

β̂m,n,p Îl;u;m,n,p = R̂m,n,p β̂m,n,p Îl;u;m,n,p + R̂m,n,p

[
Êinc

l;u;m,n,p +
3

∑
v=1

Ĝ3D
D;uv;m,n,p( Îl;v)

]
, (5)

where R̂m,n,p = β̂m,n,pχ̂m,n,p
/[

β̂m,n,pχ̂m,n,p + 1
]

, χ̂m,n,p is the contrast at rm,n,p, whereas Êinc
l;u;m,n,p and

Îl;u;m,n,p are the incident electric field and the induced current at rm,n,p, respectively. Subscript u = 1, 2, 3
denotes the x, y, and z components of a vector. Note that the convolution-type operators Ĝ3D

D;uv are
obtained via the Equation (4). For further details of the discretization of Equation (1) and the finite
difference scheme to generate (G3D

D I l)(r), please refer to the Appendix of [6].
Similarly, the integral operator relating the contrast sources and the scattered fields could also be

expressed as the summation of the contribution from all the subdomains,

Esca
l = G

3D
S · Il , (6)

where Esca
l =

[
Esca

l;1
T

, Esca
l;2

T
, Esca

l;3
T]T

is a 3Nr dimensional vector with Esca
l;κ =

[
Esca

l;κ;1, Esca
l;κ;2, . . . , Esca

l;κ;Nr

]T

(κ = 1, 2, 3 denotes the x, y, z component of the corresponding vector, respectively), Il is a 3M
dimensional vector obtained by Il = vec

{
ˆ̂Il

}
. In a 3-D scenario, the vectorization operation vec {·} is

defined to vectorize a four-dimensional tensor into a vector, i.e., if Il = vec
{

ˆ̂Il

}
, we have Il;ϑ = ˆ̂Il;m,n,p,κ

with ϑ = (κ − 1)× M + (p − 1)× (M1 × M2) + (n − 1)× M1 + m. In Equation (6), the scattering
operator is defined as

G
3D
S =

 GS;11 GS;12 GS;13

GS;21 GS;22 GS;23

GS;31 GS;32 GS;33

 , (7)

a 3Nr × 3M matrix, with GS;uv, a Nr ×M matrix, the mapping from the v component of the induced
current to the u component of scattered fields (the subscripts u, v = 1, 2, 3 are not indexed for tensor
elements). The explicit expression of GS;uv is

G
3D
S;uv(a, b) =

{(
k2

0 +
ik0
Ra,b
− 1

R2
a,b

)
δ(u− v)+[

(r′a)u − (rm,n,p)u
] [

(r′a)v − (rm,n,p)v
] (
− k2

0
R2

a,b
− 3ik0

R3
a,b

+ 3
R4

a,b

)}
g(r′a, rm,n,p),

(8)
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where δ(y) is 1 when y = 0 and is 0 otherwise, Ra,b =
∣∣r′a − rm,n,p

∣∣ in which b = (p− 1)× (M1 ×
M2) + (n − 1) × M1 + m with a = 1, 2, . . . , Nr, b = 1, 2, . . . , M, m = 1, 2, . . . , M1, n = 1, 2, . . . , M2,
and p = 1, 2, . . . , M3. Here, (r)u denotes the u component of r.

2.2. Objective Function for Inversions

In this subsection, we build the objective function used in the proposed inversion method,
in which we will use the FFT-TSOM [8] as the regularization to stabilize the inversion, as done in [29].
Emphasize that the twofold subspace constraints have different regularization effects. The first fold,
the original SOM, balances the two mismatches in the objective function, whereas the second fold,
the TSOM, is the key to stabilize the inversions with CIE-I. Details are given in below.

For the original SOM part, as given in [16], with the spectral information of G
3D
S (the singular

value decomposition–SVD of G
3D
S tells G

3D
S · vS

j = σS
j uS

j and the complexity of thin SVD of G
3D
S is

O(27N2
r M), assuming that the singular values σS

j is a non-increasing sequence), the contrast sources
can be decomposed into two parts, deterministic part of the contrast sources (DPCS) and ambiguous
part of the contrast sources (APCS), the former being obtained as

Id
l =

L

∑
j=1

uS∗
j · E

sca
l

σS
j

vS
j = V

+

S · α+l , (9)

where V
+

S =
[
vS

1, vS
2, . . . , vS

L

]
, α+l =

[
α+l;1, α+l;2, . . . , α+l;L

]T
with α+l;j = (uS∗

j · E
sca
l )/σS

j , j = 1, 2, . . . , L,
and the superscript ∗ denotes the Hermitian operation while superscript + refers to the dominant
current subspace, the subspace corresponding to the dominant singular values. The value of L is
chosen according to the noise level [16]. Later, we will see how this might work after introducing the
objective function for the inversion.

For the second fold subspace constraint, according to the FFT-TSOM [8], the APCS can be written as

Ia
l ( ˆ̂γl) = Itmp

l −V
+

S ·
(

V
+∗
S · I

tmp
l

)
, (10)

where ˆ̂γl =
[
γ̂x;l ; γ̂y;l ; γ̂z;l

]
, Itmp

l =
[

Itmp
x;l ; Itmp

y;l ; Itmp
z;l

]
with

Itmp
u;l = vec

{
IDFT

{
γ̂u;l
}}

(11)

and u = x, y, and z, IDFT {} is the inverse discrete Fourier transform operator, the vec{·} is the
vectorization operator. Note that the inverse discrete Fourier transform (IDFT) is performed by the 3-D
FFT algorithm, the computational complexity of which is O(M log2 M), with M = M1 ×M2 ×M3.

By using the low-frequency Fourier components, we are able to constrain the APCS within
a low-dimensional subspace. The reason [17] is to use only the contrast sources components in this
subspace that is influential to the scattered fields within the DoI, such that the stability of the inversions
is substantially increased. To reduce the computational costs, such a subspace can be approximately
spanned by low-frequency Fourier bases [8]. Here, if we use all Fourier bases, the construction of the
APCS becomes the one in the original SOM. Otherwise, we can use the low-frequency components,
and set the coefficients for those high-frequency components as zeros. This can be achieved via using
a mask with eight corners being 1, with size MF (1 ≤ MF ≤ M1/2, M2/2, M3/2), and other positions
being 0. The details can be found in [8].

Having expressed the contrast sources as aforementioned, it is straightforward to define the
objective function. Firstly, it is natural to give the mismatch of the scattered fields by

∆fie
l ( ˆ̂γl) =

∥∥∥GS · I
a
l + GS · I

d
l − Esca

l

∥∥∥2
, (12)
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where Id
l and Ia

l are as in Equations (9) and (10), respectively, and ‖·‖ denotes the L2 norm of a tensor.
The current equation in Equation (5) is another key equation to satisfy. Using the APCS construction
Equation (10), we define an operator as

(
L3D ( ˆ̂γl

))
κ;m,n,p

= β Îa
l;κ;m,n,p − βR̂m,n,p Îa

l;κ;m,n,p − R̂m,n,p

[
3

∑
v=1

Ĝ3D
D;κv;m,n,p( Îa

l;v)

]
. (13)

With this definition, we could write the mismatch of Equation (5) as

∆cur
l ( ˆ̂γl , R̂) =

∥∥∥L3D( ˆ̂γl)− ˆ̂Γ3D
l

∥∥∥2
, (14)

where ˆ̂Γ
3D
l;κ;m,n,p = −β Îd

l;κ;m,n,p + βR̂m,n,p Îd
l;κ;m,n,p + R̂m,n,p

[{
∑3

v=1 Ĝ3D
D;κv;m,n,p( Îd

l;v)
}
+ ˆ̂Einc

l;κ;m,n,p

]
.

Then, the objective function can be given as

f ( ˆ̂γ1, ˆ̂γ2, . . . , ˆ̂γNi , R̂) =
Ni

∑
l=1

(
∆fie

l /
∥∥∥Esca

l

∥∥∥2
+ ∆cur

l /
∥∥∥∥E

inc
l

∥∥∥∥2
)

. (15)

The inversion is to minimize this objective function. As in [8], the conjugate gradient (CG) type
algorithm that is used in contrast source inversion (CSI) method is adopted to minimize this nonlinear
problem by alternatively updating the ˆ̂γl and R̂ at every iteration of the optimization.

2.3. Sketch of the Inversion Method

Following the inversion method in [8,29], we summarize it as follows:

1. Set the background medium and null APCS as the initial guesses and choose an L value such

that the corresponding first L singular values of G
3D
S are larger than the noise level (assuming

that the noise is a white Gaussian one).
2. Set proper values for β in CIE-I modeling and proper value for MF to control the number of

Fourier bases being used.
3. Carry out the CG type optimization algorithm to alternatively update the two types of variables,

where the APCS is updated with a one-step Polak–Ribière CG scheme and the contrast is updated
with the least squares method.

4. Stop the optimization if a termination condition is met, which can be a maximum number of
iterations or a pre-defined relative change of APCS coefficients.

5. If the maximum number of rounds of inversion is met, go to Step 6. Otherwise, the obtained
contrast and APCS will be used as the initial guesses for the next round of optimization with
smaller β and larger MF in Step 3.

6. Output the obtained contrast.

As mentioned in [29], the first round inversion with a large β and with a low-dimensional
subspace enables a fast convergence to a meaningful coarse result that could be used as an initial guess
in the second round. By increasing the dimension of the APCS subspace and including more MSE
in estimating the contrast, the inversion gives us a result with better resolution. Since in the second
round a (supposedly) good initial guess is given, the convergence is also very fast. For some difficult
problems, the inversion could be carried out with multi-round optimizations by gradually increasing
the dimensions of the APCS subspace in each round while decreasing the values of β in estimating
the contrast.
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2.4. Updating Contrast and Contrast Sources with Different β

As mentioned above, there are two updates at each iteration for the two types of unknowns. In [29],
the same β is used in each round of optimization for both updates. In the first round optimization
in inversions, to tackle the nonlinearity, a large β is needed in updating the modified contrast,
and therefore we use the same β for the update of APCS. In the subsequent rounds (instead of
the first round) of optimization, for the sake of stability, a small β is used in estimating the modified
contrast to cope with a high-dimensional APCS subspace, as discussed in [29]. However, there is not
such a need to use a small β in updating the APCS. Consequently, in the second round of optimization,
we can use a CIE-I model with larger value β1 for the update of the APCS and another with smaller
value β2 for the update of the contrast at the same iteration. The same applies to the third round
optimization, if there is such a need. The purpose of doing so is to further accelerate the convergence
of these computationally burdensome 3-D inversions after the first round optimization.

As for the value range for β2, we carry out a similar calculation as in [29], which reflects the norm
of the scattering operator that maps the contrast sources to the scattered fields within DoI. The results
shown in Figure 2 indicate that, if we want to suppress the MSE in estimating the contrast when using
the least squares method, we might need to choose a value for β2 that is larger than 3.5, and this is
the guideline for the first round optimization. For the second or subsequent rounds, as good initial
guesses are provided, we can include more MSE to retrieve the fine features of the unknown scatterers.
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Figure 2. The values of |(G3D
D;xx Ix)(r)| in the plane x = 0 when Ix = 1 for a DoI with size (a) 3λ× 3λ× 3λ

and (b) 5λ× 5λ× 5λ.

3. Numerical Simulations

In this section, we will test the proposed inversion methods in three examples. We will use the
same physical setup of sources and receivers for the 3-D example in [8], as shown in Figure 3. The DoI
are all the same, a box with size 3λ× 3λ× 3λ. The box is illuminated by 60 electric dipole antennas at
300 MHz (λ = 1m in air), located at three circles (with 20 dipole antennas evenly distributed on each)
with the same radius 3 m. The three circles are in x− y, y− z and x− z planes, and their centers are at
(0.2, 0, –0.1), (0.1, 0, –0.15), and (–0.05, 0.1, 0), respectively. The direction of the electric dipole sources
in the y− z plane are in the x-direction, while those in the x− z and x− y planes are in the y- and
z-directions, respectively. Scattered fields are measured by 60 receivers, located at the same positions as
the 60 dipole sources. We collect all three components of the fields. Consequently, we have a 60× 180
synthetic data matrix. In all three tests, the synthetic data are calculated with a 60× 60× 60 mesh,
while, in the inversions, a 30× 30× 30 mesh is used. All synthetic data are contaminated with additive
Gaussian white noise with level of 10%.
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32-2 10-1-2-3

Figure 3. The physical setup for the numerical tests.

The termination condition in each round of optimization is to reach a pre-defined relative changing
rate of the APCS coefficients, given as

δ3D =

√√√√ 1
Ni

Ni

∑
l=1

‖ ˆ̂γ(h)
l − ˆ̂γ(h−1)

l ‖2

‖ ˆ̂γ(h−1)
l ‖2

, (16)

where ˆ̂γ(h)
l is the APCS Fourier coefficient for the lth incidence at hth iteration. We set δ3D < 10−3 as

the termination condition.
The reconstruction results are quantitatively evaluated by the following error:

Err =

√√√√ 1
M ∑

m,n,p

|ε̂est
r;m,n,p − ε̂tr

r;m,n,p|2

|ε̂tr
r;m,n,p|2

. (17)

When running on a workstation with eight threads and 32 Gb RAM, every iteration of the
proposed inversion method costs about 25 seconds CPU time in MATLAB, including one update
on the contrast sources and one update on the contrast. Due to the independence between different
incidences, we use 8 MATLAB workers to update the contrast sources in parallel.

3.1. Example 1

We reuse the 3-D test in [8], where a coated cube is employed. The cube is with an outer layer
(εr2 = 1.5 + i0.3) and an inner layer (εr1 = 2 + i0.8), where the outer edge length is b = 2λ and inner
edge length is a = 1λ, as shown in Figure 4a. In [8], we observe that the inversion with LSIE and
FFT-TSOM is able to satisfactorily retrieve the cube while the LSIE with SOM fails. Here, we illustrate
how the proposed inversion method with CIE-I and FFT-TSOM performs. Similarly, we carry out
two rounds of optimization for this inversion as done in [8] with MF = 6 and 10, but with CIE-I,
we use β = 6 in the first round and β = 1 for the second round. The reconstruction results are
shown in Figure 5, with <{ε̂est

r } as the real part of the reconstructed relative permittivity and
={ε̂est

r } as the imaginary part, where we see after two rounds of optimization that the coated cube is
successfully found.

Now, we compare the convergence speeds of inversions with LSIE and CIE-I. We plot the
reconstruction errors for both cases, as shown in Figure 6, in which the inversion with CIE-I appears to
be converging much faster than the one with LSIE, with the same reconstruction quality. This confirms
again the speeding convergence of inversions in two-dimensional cases shown in [29]. We would like
to emphasize that this fast convergence property is extremely important in handling the 3-D ISPs, since
the computational costs in 3-D problems are much higher than in two-dimensional cases.
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(a) The coated cube in Example 1.
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(b) Real part of the true profile of the coated cube.

-0.2

0

0.2

0.4

0.6

0.8

1

(c) Imaginary part of the true profile of the coated cube.

Figure 4. Coated cube used in Example 1.
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(a) <{ε̂est
r } after the first round optimization.
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(b) ={ε̂est
r } after the first round optimization.
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(c) <{ε̂est
r } after the second round optimization.

0
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0.4
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0.8

1

(d) ={ε̂est
r } after the second round optimization.

Figure 5. Reconstruction results of inversions with CIE-I. In the four subfigures, the 30 slices of DoI
with each at z = zq plane, where zq, q = 1, . . . , 30, are the grid points along z-direction, and zp < zq if
p < q. The displaying sequence is with the convention of left to right, and top to down. For instance,
the top left corner one is with z1, and the top row second column one is with z2. The same applies to
the figures hereafter. In the first round, β1 = β2 = 6. In the second round, β1 = β2 = 1.
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Figure 6. Errors of reconstructions obtained by different inversion methods for Example 1.

With this example, we further test the relaxed scheme with different β for updating the APCS and
the contrast. The termination condition remains the same, δ3D < 10−3. We apply this scheme in the
second round optimization, with β1 = 6 for the APCS update and β2 = 1 for the contrast update. For
comparison, the recorded reconstruction error at each iteration is plotted in Figure 6 as well, which
shows that the convergence is further accelerated compared with the case of using β1 = 1.

3.2. Example 2

In this test, we use a profile with four cubes with increasing contrasts. Having edge length 0.8λ,
they are centered at (−0.7, 0.7,−0.7)λ, (0.7,−0.7,−0.7)λ, (−0.7,−0.7, 0.7)λ, and (0.7, 0.7, 0.7)λ, with
εr = 2, 3, 4 and 5, respectively, as shown in Figure 7.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 7. True permittivity profile (real part) for Example 2.

Two inversions are carried out with LSIE and CIE-I, each with two rounds (MF = 6 and 10).
For CIE-I, the choices of β are 6 and 1 in the two rounds. The reconstruction results and errors are
shown in Figures 8–10. From these results, we clearly observe that the inversion with LSIE is only
able to find the bottom two cubes with lower contrasts, whereas the inversion with CIE-I succeeds in
finding all four of four cubes. Reconstruction errors displayed in Figure 9 confirm it, inversion with
LSIE diverging while converging with CIE-I.
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r } after the first round optimization

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) ={ε̂est
r } after the first round optimization

0.5

1

1.5

2

2.5

3

(c) <{ε̂est
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(d) ={ε̂est
r } after the second round optimization

Figure 8. Reconstruction results of inversions with LSIE for Example 2.
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Figure 9. Errors of reconstructions obtained by different inversion methods for Example 2.

In addition, we test the inversion scheme with different β for updating the APCS and for updating
the contrast. Firstly, we choose β1 = 6 for the update of APCS and β2 = 1 for the update of the contrast
in the second round of optimization with MF = 10, which however immaturely converges. This might
be due to the reason of using a large β1. Then, we choose β1 = 3, and the optimization converges to
a good solution with a convergence speed faster than when using β1 = 1.

From this example, the inversion with CIE-I is able to handle the highly nonlinear problems
consisting of strong scatterers, those with either large contrasts or large dimensions (in terms of
wavelength), while the inversion with LSIE may fail.
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r } after the first round optimization
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(c) <{ε̂est
r } after the second round optimization
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r } after the second round optimization

Figure 10. Reconstruction results of inversions with CIE-I for Example 2. In the first round, β1 = β2 = 6.
In the second round, β1 = β2 = 1.

3.3. Example 3

We will use another highly nonlinear example to confirm the large difference between the
performances of inversion methods with CIE-I and LSIE. In this example, we use a profile that
is similar to the famous two-dimensional “Austria” that has an annular and two separated disks. Here,
we use a coated cube with a hollow inside and two rods outside the cube, as shown in Figure 11, all of
which are with εr = 2.5.

0.5
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1.5

2

2.5

3

Figure 11. True permittivity profile (real part) for Example 3.
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We still carry out inversions with LSIE and CIE-I with two rounds of optimization, the first with
MF = 6 and the second with MF = 10. For the CIE-I, β1 = β2 = 6 is used in the first round, and
β1 = β2 = 1 in the second round. The reconstructions and errors are shown in Figures 12, 13a and 14.
We see that the inversion with LSIE fails to find the profile while the one with CIE-I succeeds. This can
also be seen from the errors of the reconstructions in Figure 13a, where the error by the inversion with
LSIE diverges.
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Figure 12. Reconstruction results of inversions with LSIE for Example 3.
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Figure 13. Errors of reconstructions obtained by different inversion methods for Example 3.
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Figure 14. Reconstruction results of inversions with CIE-I for Example 3. In the first round, β1 = β2 = 6.
In the second round, β1 = β2 = 1.

In the reconstruction results in Figure 14, we see that there is an artefact within the coated cube,
where the medium is supposed to be air. This artefact appears in the reconstructed result after the first
round optimization with MF = 6, meaning that the inversion, though capable of retrieving most of the
main features of the scatterers, is still not stable enough. Therefore, we carry out another inversion with
three rounds of optimization, with MF = 4, 8, and 10 in each round, and β = 6, 1, and 0.5, respectively.
The final reconstruction result is given in Figure 15, and we see that there is no more such an artefact.
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(a) <{ε̂est
r } after three rounds of optimization
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Figure 15. Reconstruction results of inversions with CIE-I after three rounds of optimization for Example
3. In the first round, β1 = β2 = 6 and MF = 4. In the second round, β1 = β2 = 1 and MF = 8. In the
third round, β1 = β2 = 0.5 and MF = 10.

At last, we also carry out the inversions with different β values for the updates of the APCS and
the contrast, and the results are shown in Figure 13. We see that with larger β1 value for the update of
the APCS in the second round optimization, the convergence speed is indeed faster.

From this example, we again confirm the great resolvability of the inversion method with CIE-I
against the high nonlinearity of the ISPs.

4. Conclusions

In this paper, we propose an inversion method with CIE-I to tackle the 3-D electromagnetic
ISPs, especially for highly nonlinear problems with strong scatterers, those with high contrasts or
electrically large dimensions. With the CIE-I modeling, the multiple scattering effects in estimating
the contrast can be suppressed such that the nonlinearity of inversion can be effectively alleviated.
Together with the FFT-TSOM regularization scheme, this largely increases the ability of retrieving the
profile of strong scatterers, and effectively accelerates the convergence when handling the moderate
scatterers. In addition, by relaxing the contraction mapping, i.e., different contraction mappings are
used in updating the contrast sources and in updating the contrast, the convergence of the inversions
can be further accelerated. Through numerical examples, we clearly show that the inversions with
CIE-I outperform the ones with LSIE, in terms of the resolvability against the nonlinearity and the
convergence speed. As shown in [32], the resolvability of the inversion solver with CIE-I against
nonlinearity can be further improved in the two-dimensional case if proper regularization techniques
are implemented, which should be expected in the 3-D case as well.
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Abbreviations

The following abbreviations are used in this manuscript:

CIE-I Contraction integral equation for inversion
LSIE Lippmann–Schwinger integral equation
3-D Three-dimensional
CSI Contrast source inversion
SOM Subspace-based optimization method
FFT-TSOM FFT type twofold subspace-based optimization method
APCS Ambiguous part of the contrast source
DPCS Deterministic part of the contrast source
DoI Domain of interest
MSE Multiple scattering effects
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