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Abstract: FPGA-based embedded image processing systems offer considerable computing resources
but present programming challenges when compared to software systems. The paper describes an
approach based on an FPGA-based soft processor called Image Processing Processor (IPPro) which can
operate up to 337 MHz on a high-end Xilinx FPGA family and gives details of the dataflow-based
programming environment. The approach is demonstrated for a k-means clustering operation and
a traffic sign recognition application, both of which have been prototyped on an Avnet Zedboard
that has Xilinx Zynq-7000 system-on-chip (SoC). A number of parallel dataflow mapping options
were explored giving a speed-up of 8 times for the k-means clustering using 16 IPPro cores, and a
speed-up of 9.6 times for the morphology filter operation of the traffic sign recognition using
16 IPPro cores compared to their equivalent ARM-based software implementations. We show that for
k-means clustering, the 16 IPPro cores implementation is 57, 28 and 1.7 times more power efficient
(fps/W) than ARM Cortex-A7 CPU, nVIDIA GeForce GTX980 GPU and ARM Mali-T628 embedded
GPU respectively.

Keywords: FPGA; hardware acceleration; processor architectures; image processing;
heterogeneous computing

1. Introduction

With improved sensor technology, there has been a considerable growth in the amount of data
being generated by security cameras. In many remote environments with limited communication
bandwidth, there is a clear need to overcome this by employing remote functionality in the system such
as employing motion estimation in smart cameras [1]. As security requirements grow, the processing
needs will only need to increase.

New forms of computing architectures are needed. In late 70’s, Lamport [2] laid the foundation
of parallel architectures exploiting data-level parallelism (DLP) using work load vectorisation and
shared memory parallelisation, used extensively in Graphical Processing Units (GPUs). Current energy
requirements and limitations of Dennard scaling have acted to limit clock scaling and thus reduce
future processing capabilities of GPUs or multi-core architectures [3]. Recent field programmable gate
array (FPGA) architectures represent an attractive alternative for acceleration as they comprise ARM
processors and programmable logic for accelerating computing intensive operations.
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FPGAs are proven computing platforms that offer reconfigurability, concurrency and pipelining,
but have not been accepted as a mainstream computing platform. The primary inhibitor is the need to
use specialist programming tools, describing algorithms in hardware description language (HDL), altough
this has been alleviated by the introduction of high-level programming tools such as Xilinx’s Vivado
High-level Synthesis (HLS) and Intel’s (Altera’s) compiler for OpenCL. While the level of abstraction
has been raised, a gap still exists between adaptability, performance and efficient utilisation of FPGA
resources. Nevertheless, the FPGA design flow still requires design synthesis and place-and-route that
can be time-consuming depending on the complexity and size of the design [4,5]. This FPGA design
flow is alien to software/algorithm developers and inhibits wider use of the technology.

One way to approach this research problem is to develop adaptable FPGA hardware architecture
that enables edit-compile-run flow familiar to software and algorithm developers instead of hardware
synthesis and place-and-route. This can be achieved by populating FPGA logic with a number of efficient
soft core processors used for programmable hardware acceleration. This underlying architecture will
be adaptable and can be programmed using conventional software development approaches. However,
the challenge is to build an FPGA solution that is more easily programmed whilst still providing high
performance. Whilst FPGA-based processor architectures exist such as Xilinx’s MicroBlaze, Altera’s
NIOS and others [6–9], we propose an Image Processing Processor (IPPro) processor [10] tailored to
accelerate image processing operations, thereby providing an excellent mapping between FPGA
resources, speed and programming efficiency. The main purpose of the paper is to give insights into
the multi-core processor architecture built using the IPPro architecture, its programming environment
and outline its applications to two image processing applications. Our main contributions are:

• Creation of an efficient, FPGA-based multicore processor which advances previous work [10],
[11] and an associated dataflow-based compiler environment for programming a heterogeneous
FPGA resource comprising it and ARM processors.

• Exploration of mapping the functionality for a k-means clustering function, resulting in a possible
speedup of up to 8 times that is 57, 28 and 1.7 times more power efficient (fps/W) than ARM
Cortex-A7 CPU, nVIDIA GeForce GTX980 GPU and ARM Mali-T628 embedded GPU.

• Acceleration of colour and morphology operations of traffic sign recognition application, resulting
in a speedup of 4.5 and 9.6 times respectively on a Zedboard.

The rest of paper is organized as follows: Section 2 outlines the various image processing
requirements and outlines how these can be matched to FPGA; relevant research is also reviewed.
System requirements are outlined in Section 3 and the soft core processor architecture is also briefly
reviewed in Section 4. The system architecture is outlined in Section 5. Experiments to accelerate a
k-means clustering algorithm and a traffic sign recognition example, are presented in Sections 6 and 7
respectively. Conclusions and future work are described in Section 8.

2. Background

Traditionally, vision systems have been created in a centralized manner where video from
multiple cameras is sent to a central back-end computing unit to extract significant features. However,
with increasing number of nodes and wireless communications, this approach becomes increasingly
limited, particularly with higher resolution cameras [12]. A distributed processing approach can be
employed where data-intensive, front-end preprocessing such as sharpening, object detection etc. can
be deployed remotely, thus avoiding the need to transmit high data, video streams back to the server.

2.1. Accelerating Image Processing Algorithms

Nugteren et al. has characterized image processing operations based on the computation and
communication patterns [13] as highlighted in Table 1. The vision processing architecture can be
composed of general and special purpose processors, FPGAs or combinations thereof. FPGAs offer
opportunities to exploit the fine/coarse grained parallelism that most of the image processing
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applications exhibit at front-end processing. Heterogeneous architectures comprising CPUs and FPGA
fabrics thus offer a good balance in terms of performance, cost and energy efficiency.

Brodtkorb et al. has compared architectural and programming language properties of
heterogeneous architectures comprising CPU, GPU and FPGA [14] showing that FPGAs deliver
a better performance/W ratio for fixed-point operations; however, they are difficult to program.
Different design approaches have been adopted by the research community to build FPGA-based
hardware accelerators. These include:

• Customised hardware accelerator designs in HDLs which require long development times but
can be optimised in terms of performance and area.

• Application specific hardware accelerators which are generally optimized for a single function,
non-programmable and created using IP cores.

• Designs created using high-level synthesis tools such as Xilinx’s Vivado HLS tool and
Altera’s OpenCL compiler which convert a C-based specification into an RTL implementation
synthesizable code [15] allowing pipelining and parallelization to be explored.

• Programmable hardware accelerator in the form of vendor specific soft processors such as
Xilinx’s Microblaze and Altera’s NIOS II processors and customized hard/soft processors.

Table 1. Categorisation of image processing operations based on their memory and execution
patterns [13] allow features of compute and memory patterns to be highlighted and therefore identifying
what can be mapped into FPGA.

Operation
Type

Domain Output
Depends on

Memory
Pattern

Execution
Pattern

Examples

Point and
Line

Spatial Single input
pixel

Pipelined One-to-one Intensity change by factor,
Negative image-inversion.

Area/Local Spatial Neighbouring
pixels

Coalesced Tree Convolution functions: Sobel,
Sharpen, Emboss.

Geometric Spatial Whole frame Recursive
non-coalesced

Large reduction
tree

Rotate, Scale, Translate, Reflect,
Perspective and Affine.

2.2. Soft Processor Architectures

Numerous FPGA multiprocessor architectures have been created to accelerate applications.
Strik et al. used a heterogeneous multiprocessor system with a reconfigurable network-on-chip to
process multiple video streams concurrently in real-time [16]. VectorBlox MXP [7] is the latest of a
series of vector-based soft core processor architectures designed to exploit DLP by processing vectors.
Optimizations employed include replacing a vector register file with a scratchpad memory to allow for
arbitrary data packing and access, removing vector length limits, enabling sub-word single-instruction,
multiple-data (SIMD) within each lane and a DMA-based memory interface.

Zhang et al. has created composable vector units [17] and allows a vector program of a dataflow
graph (DFG) to be statically compiled and clusters of operations to be composed together to create a
new streaming instruction that uses multiple operators and operands. This is similar to traditional
vector chaining but is not easily extended to support wide SIMD-style parallelism. The reported
speed-ups were less than a factor of two. Further optimizations have been employed in a custom
SVP Bluespec [18] where they compared a custom pipeline to the SVP implementation and found that
performance was within a factor of two given similar resource usage. Kapre et al. has proposed a
GraphSoC custom soft processor for accelerating graph algorithms [19]. It is a three-stage pipelined
processor that supports graph semantics (node, edge operations). The processor was designed with
Vivado HLS. Each core uses nine BRAMs and runs at 200 MHz.

Octavo [20] is a multi-threaded, ten-cycle processor that runs at 550 MHz on a Stratix IV, equivalent
to the maximum frequency supported by memory blocks. A deep pipeline is necessary to support this
high operating frequency, but suffers from the need to pad dependent instructions to overcome data
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hazards. The authors sidestep this issue by designing Octavo as a multi-processor, thus dependent
instructions are always sufficiently far apart and NOP padding is not needed. Andryc et al. presented
a GPGPU architecture called FlexGrip [8] which like vector processors, supports wide data parallel,
SIMD-style computation using multiple parallel compute lanes, provides support for conditional
operations, and requires optimized interfaces to on- and off-chip memory. FlexGrip maps pre-compiled
CUDA kernels on soft core processors which are programmable and operate at 100 MHz.

3. System Implementation

Whilst earlier versions of FPGAs just comprised multiple Lookup Tables (LUT) connected to
registers and accelerated by fast adders, FPGAs now comprise more coarse-grained functions such as
dedicated, full-custom, low-power DSP slices. For example, the Xilinx DSP48E1 block comprises a
25-bit pre-adder, a 25 × 18-bit multiplier and a 48-bit adder/subtracter/logic unit, multiple distributed
RAM blocks which offer high bandwidth capability (Figure 1), and a plethora of registers which
supports high levels of pipelining.

Off-chip	
memory	of	
several	GB

Block	RAM	
(67.7	MB)

Distributed	RAM	
(21.6	MB) Datapath

6.4	GB/s 15	TB/s 80	TB/s

Figure 1. Bandwidth/memory distribution in Xilinx Virtex-7 FPGA which highlight how bandwidth
and computation improves as we near the datapath parts of the FPGA.

Whilst FPGAs have been successfully applied in embedded systems and communications,
they have struggled as a mainstream computational platform. Addressing the following considerations
would make FPGAs a major platform rival for “data-intensive” applications:

• Programmability: there is a need for a design methodology which includes a flexible data
communication interface to exchange data. Intellectual Property (IP) cores and HLS tools [15]/
OpenCL design routes increase programming abstraction but do not provide the flexible system
infrastructure for image processing systems.

• Dataflow support: the dataflow model of computation is a recognized model for data-intensive
applications. Algorithms are represented as a directed graph composed of nodes (actors) as
computational units and edges as communication channels [21]. While the actors run explicitly in
parallel decided by the user, actor functionality can either be sequential or concurrent. Current
FPGA realizations use the concurrency of the whole design at a higher level but eliminate
reprogrammability. A better approach is to keep reprogrammability while still maximizing
parallelism by running actors on simple “pipelined” processors; the actors still run their code
explicitly in parallel (user-specified).

• Heterogeneity: the processing features of FPGAs should be integrated with CPUs. Since dataflow
supports both sequential and concurrent platforms, the challenge is then to allow effective
mapping onto CPUs with parallelizable code onto FPGA.

• Toolset availability: design tools created to specifically compile user-defined dataflow programs at
higher levels to fully reprogrammable heterogeneous platform should be available.

3.1. High-Level Programming Environment

The proposed methodology employs a reprogrammable model comprising multi-core processors
supporting SIMD operation and an associated inter-processor communication methodology.
A dataflow design methodology has chosen as the high-level programming approach as it offers
concurrency, scalability, modularity and provides data driven properties, all of which match the design
requirements associated with image processing systems. A dataflow model allows algorithms to be
realized as actors with specific firing rules that are mapped into directed graphs where the nodes
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represent computations and arcs represent the movement of data. The term data-driven is used to
express the execution control of dataflow with the availability of the data itself. In this context, an actor
is a standalone entity, which defines an execution procedure and can be implemented in the IPPro
processor. Actors communicate with other actors by passing data tokens, and the execution is done
through the token passing through First-In-First-Out (FIFO) units. The combination of a set of actors
with a set of connections between actors constructs a network, which maps well to the system level
architecture of the IPPro processors. An earlier version of the programming environment has been
is detailed in [11] allowing the user to explore parallel implementation and providing the necessary
back-end compilation support.

In our flow, every processor can be thought of as an actor and data is fired through the FIFO
structures but the approach needs to be sensitive to FPGA-based limitations such as restricted memory.
Cal Actor Language (CAL) [22] is a dataflow programming language that has been focussed at image
processing and FPGAs and it offers the necessary constructs for expressing parallel or sequential
coding, bitwise types, a consistent memory model, and a communication between parallel tasks
through queues. RVC-CAL is supported by an open source dataflow development environment and
compiler framework, Orcc, that allows the trans-compilation of actors and generates equivalent code
depending on the chosen back-ends [23]. An RVC-CAL based design is composed of a dataflow
network file (.xdf file) that supports task and data-level parallelism.

Figure 2 illustrates the possible pipelined decomposition of dataflow actors. These dataflow
actors need to be balanced as the worst-case execution time of the actor determines the overall
achievable performance. Data-level parallelism is achieved by making multiple instances of an actor
and requires SIMD operations that shall be supported by the underlying processor architecture.
In addition, it requires software configurable system-level infrastructure that manages control and data
distribution/collection tasks. It involves the initialisation of the soft core processors (programming the
decomposed dataflow actor description), receiving data from the host processor, distributing them to
first-level actors, gathering processed data from the final-level actors and send it back to host processor.

Data-level parallelism directly impacts the system performance; the major limiting factor is the
number of resources available on FPGA. An example pipeline structure with an algorithm composed
of four actors each having different execution times, and multiple instances of the algorithm realised
in SIMD fashion is shown in Figure 2. The performance metric, frames-per-second (fps) can be
approximated using N(total_pixels) the number of pixels in a frame, N(pixel_consumption) the number of
pixels consumed by an actor in each iteration and f(processor) is operating frequency of processor.

fps ≈
f(processor) ∗ N(pixel_consumption)

N(total_pixels)
(1)

To improve the f ps, the following options are possible:

• Efficient FPGA-based processor design that operates at higher operating frequency f(processor).
• Reducing the actor’s execution time by decomposing it into multiple pipelined stages, thus reducing

t(actor) to improve the f ps. Shorter actors can be merged sequentially to minimise the data transfer
overhead by localising data into FIFOs between processing stages.

• Vertical scaling to exploit data parallelism by mapping an actor on multiple processor cores, thus

reducing (n ∗ N(total_pixels)
N(pixel_consumption)

) at the cost of additional system-level data distribution, control, and

collection mechanisms.
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Actor 1 Actor 2 Actor 3 Actor 4

...

Actor 1 Actor 2 Actor 3 Actor 4

Actor 1 Actor 2 Actor 3 Actor 4
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Figure 2. Illustration of possible data and task parallel decomposition of a dataflow algorithm found in
image processing designs where the numerous of rows indicate the level of parallelism.

The developed tool flow (Figure 3) starts with a user-defined RVC-CAL description composed
of actors selected to execute in FPGA-based soft cores with the rest to be run in the host CPUs.
By analyzing behaviour, software/hardware partitioning is decided by two main factors, the actors
with the worse execution time (determined exactly by number of instructions and the average waiting
time to receive the input tokens and send the produced tokens), and the overheads incurred in
transferring the image data to/from the accelerator. The behavioural description of an algorithm could
be coded in different formats:

• No explicit balanced actors or actions are provided by the user.
• The actors include actions which are balanced without depending on each other, e.g., no global

variables in an actor is updated by one action and then used by the other ones; otherwise,
these would need to be decomposed into separate actors.

• The actors are explicitly balanced and only require hardware/software partitioning.

Software/Hardware 
Partitioning

Interface Settings

System Implementation

Behavioural Description in
RVC CAL

Compiler Infrastructure

XDF Analysis

Actor Code Generation

Control‐Register Value/
Parameter Generation

Redesign of FPGA‐Targeted 
Actors in RVC CAL

Redesign of CPU‐Targeted 
Actors in RVC CAL

RVC CAL – C Compilation

SIMD Application

Figure 3. A brief description of the design flow of a hardware and software heterogeneous system
highlighting key features. More detail of the flow is contained in reference [11].

There are two types of decomposition, “row-” and “column-wise”. The newly generated data-
independent actors can be placed row-wise at the same pipeline stage; otherwise they can be placed
column-wise as consecutive pipeline stages. Row-wise is preferred as the overhead incurred in token
transmission can be a limiting factor but typically a combination is employed.

If the actors or actions are not balanced, then they need to be decomposed. This is done by
detecting a sequence of instructions without branches (unless this occurs at the end) and then breaking
the program into basic blocks. The “balance points” whereby the actor needs to be divided into
multiple sets of basic blocks such that if each set is placed in a new actor, then need to be found;
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this will ensure that the overhead of transferring tokens among the sets will not create a bottleneck
and infer the selection and use of one with the lowest overhead (See Ref. [11]). Once the graph is
partitioned, the original xdf file no longer represents the network topology, so each set of actors must
be redesigned separately and their input/output ports fixed and a new set of xdf dataflow network
description files, generated. The actors to run on the host CPU are compiled from RVC-CAL to C
using the C backend of Orcc development environment, whereas the FPGA-based functionality is then
created using the proposed compiler framework.

The degree of SIMD applied will affect the controller interface settings. For a target board,
the design will have a fixed number of IPPro cores realized and interconnected with each other and
controllers, determined by the FPGA resources and fan-out delay; for the Zedboard considered here,
32 cores are selected. The compilation infrastructure is composed of three distinctive steps:

• Examination of the xdf dataflow network file and assignment and recording of the actor mapping
to the processors on the network.

• Compilation of each actor’s RVC-CAL code to IPPro assembly code.
• Generation of control register values, mainly for AXI Lite Registers, and parameters required by

the developed C-APIs. running on the host CPU

While FPGA-targeted actor interaction is handled by the compiler, the processes for receiving
the image data and storing the output in the edge actors need to be developed. Multiple controllers
(programmable by the host CPU) are designed to provide the interface to transfer the data to the
accelerators, gather the results and transfer them back to the host. With the host CPU running part
of the design and setting control registers, and the IPPro binary codes of the other actors loaded to
the proper cores on the accelerator, and the interface between the software/hardware sections set
accordingly, the system implementation is in place and ready to run.

4. Exploration of Efficient FPGA-Based Processor Design

Image processing applications extensively use multiply and accumulate operations for image
segmentation and filtering which can be efficiently mapped to FPGA. On the FPGA, the dedicated
memory blocks are located next to the DSP blocks to minimise any timing delays and it is this that
determines the maximum operating frequency ( fmax) of the processor. It is one of the reasons that
many-core and multi-core architectures use simple, light-weight processing datapaths over complex
and large out-of-order processors. However, to maintain the balance among soft processor functionality,
scalability, performance and efficient utilisation of FPGA resources remain an open challenge.

Figure 4 presents the impact of different configurations of DSP48E1 and BRAM on fmax and
the parameters required by the developed C-APIs running on the host CPU using different FPGAs.
The DSP48E1 has five configurations that offer different functionalities (multiplier, accumulator,
pre-adder and pattern detector) based on different internal pipeline configurations that directly
impacts fmax. It varies 15–52% for the same speed grade and reduces by 12–20% when the same design
is ported from −3 to −1 speed grade. Configuring the BRAM as a single and true-dual port RAM,
Figure 4b has been created to show that a true-dual port RAM configuration gives a reduction of 25%
in fmax. However an improvement of 16% is possible by migrating the design from Artix-7 to Kintex-7
FPGA technology.

Table 2 shows the distribution of compute (DSP48E1) and memory (BRAM) resources, and
highlights the raw performance in GMAC/s (giga multiply-accumulates per second) across the largest
FPGA devices covering both standalone and Zynq SoC chips. A BRAM/DSP ratio metric is reported
to quantify the balance between compute and memory resources. In Zynq SoC devices, it is higher
than standalone devices because more memory is required to implement substantial data buffers to
exchange data between FPGA fabric and the host processor, while it is close to unity for standalone
devices. This suggests that BRAM/DSP ratio can be used to quantify area efficiency of FPGA designs.
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Figure 4. (a) Impact of DSP48E1 configurations on maximum achievable clock frequency using
different speed grades using Kintex-7 FPGAs for fully pipelined with no (NOPATDET) and with
(PATDET) PATtern DETector, then multiply with no MREG (MULT_NOMREG) and pattern detector
(MULT_NOMREG_PATDET) and a Multiply, pre-adder, no ADREG (PREADD_MULT_NOADREG)
(b) Impact of BRAM configurations on the maximum achievable clock frequency of Artix-7, Kintex-7
and Virtex-7 FPGAs for single and true-dual port RAM configurations.

Table 2. Computing resources (DSP48E1) and BRAM memory resources for a range of Xilinx Artix-7,
Kintex-7, Virtex-7 FPGA families implemented using 28nm CMOS technology.

Product Family Part BRAM DSP48E1 GMAC/s BRAM/
Number (18 Kb Each) DSP

Standalone Artix-7 XC7A200T 730 740 929 0.99
Standalone Kintex-7 XC7K480T 1910 1920 2845 0.99
Standalone Virtex-7 XC7VX980T 3000 3600 5335 0.83
Zynq SoC Artix-7 XC7Z020 280 220 276 1.27
Zynq SoC Kintex-7 XC7Z045 1090 900 1334 1.21

4.1. Exploration of FPGA Fabric for Soft Core Processor Architecture

A system composed of light-weight and high-performance soft core processors that supports
modular computation with fine and coarse-grained functional granularity is more attractive than fixed
dedicated hardware accelerators. A lightweight, soft core processor allows more programmable
hardware accelerators to be accommodated onto a single SoC chip which would lead to better
acceleration possibilities by exploiting data and task-level parallelism.

Gupta et al. [24,25] have reported different dataflow graph models where the functionality
corresponds to soft core datapath models 1©, 2© and 3© as shown in Figure 5. These dataflow models
are used to find a trade-off between the functionality of soft core processor and fmax and laid the
foundation to find the suitable soft core datapath to map and execute the dataflow specification.
The input/output interfaces are marked in red while the grey box represents the mapped functionality
onto the soft core datapath models as shown in Figure 6.

The first model 1© exhibits the datapath of a programmable ALU as shown in Figure 6a. It has an
instruction register (IR) that defines a DFG node (OP1) programmed at system initialisation. On each
clock cycle, the datapath explicitly reads a token from the input FIFO, processes it based on the
programmed operation and stores the result into the output FIFO that is then consumed by the
following dataflow node (OP3). This model only allows the mapping of data independent, fine-grained
dataflow nodes as shown in Figure 5a which limits its applicability due to lack of control and data
dependent execution, commonly found in image processing applications where the output pixel
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depends on the input or neighbouring pixels. This model is only suitable for mapping a single
dataflow node.

The second model 2© increases the datapath functionality to a fine-grained processor by including
BRAM-based instruction memory (IM), program counter PC and kernel memory (KM) to store constants as
shown in Figure 6b. Conversely, 2© can support mapping of multiple data independent dataflow nodes
as shown in Figure 5b. The node (OP2) requires a memory storage to store a variable (t1) to compute
the output token (C) which feeds back from the output of the ALU needed for the next instruction in
the following clock cycle. This model supports improved dataflow mapping functionality over 1© by
introducing an IM which comes at the cost of variable execution time and throughput proportional
to the number of instructions required to implement the dataflow actor. This model is suitable for
accelerating combinational logic computations.

The third model 3© increases the datapath functionality to map and execute a data dependent
dataflow actor as shown in Figure 5c. The datapath has memory in the form of a register file (RF) which
represents a coarse-grained processor shown in Figure 6c. The RF stores intermediate results to execute
data dependent operations, implements (feed-forward, split, merge and feedback) dataflow execution
patterns and facilitates dataflow transformations (actor fusion/fission, pipelining etc.) constraints
by the size of the RF. It can implement modular computations which are not possible in 1© and 2©.
In contrast to 1© and 2©, the token production/consumption (P/C) rate of 3© can be controlled through
program code that allows software-controlled scheduling and load balancing possibilities.

(a) (b) (c)
Figure 5. A range of dataflow models taken from [24,25]. (a) DFG node without internal storage
called configuration 1©; (b) DFG actor without internal storage t1 and constant i called configuration
2©; (c) Programmable DFG actor with internal storage t1, t2 and t3 and constants i and j called

configuration 3©.

(a) (b) (c)
Figure 6. FPGA datapath models resulting from Figure 5. (a) Programmable ALU corresponding to
configuration 1©; (b) Fine-grained processor corresponding to configuration 2©; (c) Coarse-grained
processor corresponding to configuration 3©.

4.2. Functionality vs. Performance Trade-Off Analysis

The presented models show that the processor datapath functionality significantly impacts the
dataflow decomposition, mapping and optimisation possibilities, but also increases the processor
critical path length and affects fmax by incorporating more memory elements and control logic.

Figure 6 shows the datapath models and their memory elements, where the memory resources
(IM, KM, RF) have been incrementally allocated to each model. Each presented model has been coded
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in Verilog HDL, synthesised and placed and routed using the Xilinx Vivado Design Suite v2015.2 on
Xilinx chips installed on widely available development kits which are Artix-7 (Zedboard), Kintex-7
(ZC706) and Virtex-7 (VC707). The obtained fmax results are reported in Figure 7.

In this analysis, fmax is considered as the performance metric for each processor datapath model
and has a reduction of 8% and 23% for 2© and 3© compared to 1© using the same FPGA technology.
For 2©, the addition of memory elements specifically IM realised using dedicated BRAM affects fmax

by ≈ 8% compared to 1©. Nevertheless, the instruction decoder (ID) which is a combinational part of a
datapath significantly increases the critical path length of the design. A further 15% fmax degradation
from 2© to 3© has resulted by adding memory elements KM and RF to support control and data
dependent execution, which requires additional control logic and data multiplexers. Comparing
different FPGA fabrics, a fmax reduction of 14% and 23% is observed for Kintex-7 and Artix-7. When 3©
is ported from Virtex-7 to Kintex-7 and Artix-7, a maximum fmax reduction of 5% and 33% is observed.

This analysis has laid firm foundations by comparing different processor datapath and dataflow
models and how they impact the fmax of the resultant soft-core processor. The trade-off analysis
shows that an area-efficient, high-performance soft core processor architecture can be realised that
supports requirements to accelerate image pre-processing applications. Among the presented models,
3© provides the best balance among functionality, flexibility, dataflow mapping and optimisation

possibilities, and performance. This model is used to develop a novel FPGA-based soft core IPPro
architecture in Section 4.3.
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Figure 7. Impact of the various datapath models 1©, 2©, 3© on fmax across Xilinx Artix-7, Kintex-7 and
Virtex-7 FPGA families.

4.3. Image Processing Processor (IPPro)

The IPPro is a 16-bit signed fixed-point, five-stage balanced pipelined RISC architecture that
exploits the DSP48E1 features and provides balance among performance, latency and efficient resource
utilization [10]. The architecture here is modified to support mapping of dataflow graphs by replacing
the previously memory mapped, data memory by stream driven blocking input/output FIFOs as
shown in Figure 8. The IPPro is designed as in-order pipeline because: (1) it consumes fewer area
resources and can achieve better timing closure leading to the higher processor operating frequency
fmax; (2) the in-order pipeline execution is predictable and simplifies scheduling and compiler
development. The datapath supports the identified execution and memory access patterns (Table 1),
and can be used as a coarse-grained processing core. IPPro has an IM of size 512 × 32, a RF of size 32 ×
16 to store pixels and intermediate results, a KM of size 32 × 16 to store kernel coefficients and constant
values, blocking input/output FIFOs to buffer data tokens between a producer, and a consumer to
realise pipelined processing stages.
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Figure 8. Block diagram of FPGA-based soft core Image Processing Processor (IPPro) datapath
highlighting where relevant the fixed Xilinx FPGA resources utilised by the approach.

Table 3 outlines the relationship between data abstraction and the addressing modes, along with
some supported instructions for the IPPro architecture, facilitating programmable implementation of
point and area image processing algorithms. The stream access reads a stream of tokens/pixels from
the input FIFO using GET instruction and allows processing either with constant values (Kernel
Memory-FIFO) or neighbouring pixel values (Register File-FIFO or Register File-Register File).
The processed stream is then written to the output FIFO using PUSH instruction. The IPPro supports
arithmetic, logical, branch and data handling instructions. The presented instruction set is optimized
after profiling use cases presented in [10,26].

Table 3. IPPro supported addressing modes highlighting the relation to the data processing
requirements and the instruction set.

Addressing Mode Data Abstraction Supported Instructions

FIFO handling Stream access get, push
Register File–FIFO Stream and randomly accessed data addrf, subrf, mulrf, orrf, minrf, maxrf etc
Register File–Register File Randomly accessed data str, add, mul, mulacc, and, min, max etc.
Kernel Memory–FIFO Stream and fixed values addkm, mulkm, minkm, maxkm etc.

The IPPro supports branch instructions to handle control flow graphs to implement commonly
known constructs such as if-else and case statements. The DSP48E1 block has a pattern detector that
compares the input operands or the generated output results depending on the configuration and
sets/resets the PATTERNDETECT (PD) bit. The IPPro datapath uses the PD bit along with some
additional control logic to generate four flags zero (ZF), equal (EQF), greater than (GTF) and sign (SF)
bits. When the IPPro encounters a branch instruction, the branch controller (BC) compares the flag
status and branch handler (BH) updates the PC as shown in Figure 8.

The IPPro architecture has been coded in Verilog HDL and synthesized using Xilinx Vivado
v2015.4 design suite on Kintex-7 FPGA fabric giving a fmax of 337 MHz. Table 4 shows that the
IPPro architecture has achieved 1.6–3.3× times higher operating frequency ( fmax ) than the relevant
processors highlighted in Section 2.2 by adopting the approach presented in Section 4. Comparing
the FPGA resource usage of Table 4, the flip-flop utilisation (FF) is relatively similar except for the
FlexGrip which uses 30× more flip-flops. Considering LUTs, the IPPro uses 50% less LUT resources
compared to MicroBlaze and GraphSoC. To analyse design efficiency, a significant difference (0.76–9.00)
in BRAM/DSP ratio can be observed among processors. Analysing design area efficiency, a significant
difference 0.76–9.00 in BRAM/DSP ratio is observed which makes IPPro an area-efficient design based
on the proposed metric.
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Table 4. Comparison of IPPro against other FPGA-based processor architectures in terms of FPGA
resources used and timing results achieved.

Resource IPPro Graph-SoC [19] FlexGrip 8 SP * [8] MicroBlaze

FFs 422 551 (103,776/8 =) 12,972 518
LUTs 478 974 (71,323/8 =) 8916 897
BRAMs 1 9 (120/8 =) 15 4
DSP48E1 1 1 (156/8 =) 19.5 3
Stages 5 3 5 5
Freq. (MHz) 337 200 100 211

* Scaled to a single streaming processor.

4.4. Processor Micro-Benchmarks

A commonly used performance metric for a processor is the time required to accomplish a defined
task. Therefore, a set of commonly used micro-benchmarks [9,27] has been chosen and implemented
on the IPPro and compared against a well-established MicroBlaze soft core processor as shown in
Table 5a. Each of the chosen micro-benchmarks are fundamental kernels of larger algorithms and
often the core computation of more extensive practical applications. The micro-benchmarks were
written in standard C and implemented using Xilinx Vivado SDK v2015.1 Xilinx, San Jose, CA, USA.
MicroBlaze has been configured for performance with no debug module, instruction/data cache and
single AXI-Stream link enabled to stream data into the MicroBlaze using getfsl and putfsl instructions
in C, equivalent to (GET and PUT) in assembly.

Table 5a reports the performance results of the micro-benchmarks and Table 5b shows the area
utilisation comparison of the IPPro and the MicroBlaze both implemented on the same Xilinx Kintex-7
FPGA. It shows that the IPPro consumes 1.7 and 2.3 times fewer FFs and LUTs respectively than
the MicroBlaze. It can be observed that for streaming functions (3 × 3 filter, 5-tap FIR and Degree-2
Polynomial), the IPPro achieved 1.80, 4.41 and 8.94 times better performance compared to MicroBlaze
due to support of single cycle multiply-accumulate with data forwarding and get/push instructions
in the IPPro processor. However, as the IPPro datapath does not support branch prediction that
impacts its performance implementing data dependent or conditional functions (Fibonacci and Sum of
absolute differences); thus, the SAD implementation using the IPPro resulted in a 5% performance
degradation compared to Microblaze. On the other hand, for memory-bounded functions such as
Matrix Multiplication, IPPro performed 6.7 times better than MicroBlaze due to higher frequency.

Table 5. Performance comparison of IPPro and MicroBlaze implementations (a) Comparison of
micro-benchmarks. (b) Area comparison.

a

Processor MicroBlaze IPPro

FPGA Fabric Kintex-7
Freq (MHz) 287 337
Micro-benchmarks Exec. Time (us) Speed-up
Convolution 0.60 0.14 4.41
Degree-2 Polynomial 5.92 3.29 1.80
5-tap FIR 47.73 5.34 8.94
Matrix Multiplication 0.67 0.10 6.7
Sum of Abs. Diff. 0.73 0.77 0.95
Fibonacci 4.70 3.56 1.32

b

Processor MicroBlaze IPPro Ratio

FFs 746 422 1.77
LUTs 1114 478 2.33
BRAMs 4 2 2.67
DSP48E1 0 1 0.00
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5. System Architecture

The k-means clustering and Traffic Sign Recognition algorithms has been used to explore and
analyse the impact of both data and task parallelism using a multi-core IPPro implemented on a
ZedBoard. The platform has a Xilinx Zynq XC7Z020 SoC device interfaced to a 256 MB flash memory
and 512 MB DDR3 memory. The SoC is composed of a host processor known as programmable system
(PS) which configures and controls the system architecture, and the FPGA programmable logic (PL)
on which the IPPro hardware accelerator is implemented, as illustrated in Figure 9. The SoC data
communication bus (ARM AMBA-AXI) transfers the data between PS and PL using the AXI-DMA
protocol and the Xillybus IP core is deployed as a bridge between PS and PL to feed data into the
image processing pipeline. The IPPro hardware accelerator is interfaced with the Xillybus IP core
via FIFOs. The Linux application running on PS streams data between the FIFO and the file handler
opened by the host application. The Xillybus-Lite interface allows control registers from the user space
program running on Linux to manage the underlying hardware architecture.

Figure 9 shows the implemented system architecture which consists of the necessary control
and data infrastructure. The data interfaces involve stream (Xillybus-Send and Xillybus-Read);
uni-directional memory mapped (Xillybus-Write) to program the IPPro cores; and Xillybus-Lite
to manage Line buffer, scatter, gather, IPPro cores and the FSM. Xillybus Linux device drivers are used
to access each of these data and control interfaces. An additional layer of C functions is developed
using Xillybus device drivers to configure and manage the system architecture, program IPPro cores
and exchange pixels between PS and PL.

Figure 9. System architecture of IPPro-based hardware acceleration highlighting data distribution and
control infrastructure, FIFO configuration and Finite-State-Machine control.

5.1. Control Infrastructure

To exploit parallelism, a configurable control infrastructure has been implemented using the PL
resources of the Zynq SoC. It decomposes statically the data into many equal-sized parts, where each
part can be processed by a separate processing core. A row-cyclic data distribution [28] has been used
because it allows buffering of data/pixels in a pattern suitable for point and area image processing
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operations after storing them into the line buffers. The system-level architecture (Figure 9) is composed
of line buffers, a scatter module to distribute the buffered pixels, a gather module to collect the
processed pixels and a finite-state-machine (FSM) to manage and synchronise these modules.

6. Case Study 1: k-Means Clustering Algorithm

k-means clustering classifies a data set into k centroids based on the measure e.g., a distance
between each data item and the k centroid values. It involves: Distance Calculation from each data
point to the centroids which gives k distances and the associated pixels, and a minimum distance is
computed from the k distance values; Averaging where data pixels in the dimension are added up
and divided by the number in their dimensions for each cluster, giving an updated centroid value for
the following frame. Here we accelerate a functional core of the k-means clustering algorithm with
4 centroids to be applied to a 512 × 512 image.

6.1. High-Level System Description

The behavioural description is captured in RVC-CAL using Orcc and includes mainly the actor
CAL files and the xdf network, derived from .xml format. A dataflow network is constructed with
FIFO channels between actors to allow high-throughput passage of tokens from one actor’s output
port to another’s input port. The size of FIFO channels can be set. Whilst the length of execution times
are the key factor for FPGA acceleration, overheads incurred in transferring the data to/from the PL
and accelerators are also important. The SIMD degree was explored by redesigning the FPGA-targeted
actors in RVC-CAL and using the compiler to generate the IPPro assembly code. This is done by
analysing the xdf file to decide the allocation of actors to the processors and then compiling the function
and interconnections.

Every IPPro core sets the hardware units around input/output port connections for the proper
flow of tokens, and the compiler is designed to provide the proper signals required by each core.
The compiler also generates the setup registers settings and C-APIs parameters, in order to help the
controllers distribute the tokens among the cores and gather the produced results. Figure 10 shows the
two stages of k-means clustering algorithm to be accelerated, and also cores port connections, sample
distance calculation code in RVC-CAL and its compiled IPPro assembly code. As Xillybus IP has
been used in the system architecture (Section 5), it restricts the clock rate to 100 MHz on Zedboard.
To evaluate the IPPro architecture and different dataflow mapping possibilities by exploiting data and
task-level parallelism, the k-means clustering is accelerated using four acceleration designs listed in
Table 6 and illustrated in Figure 11.

Table 6. Dataflow actor mapping and supported parallelism of IPPro hardware accelerator design
presented in Figure 11.

Design Acceleration Paradigm Mapping Parallelism

Data Task

1© Single core IPPro Single actor No No
2© 8-way SIMD IPPro Single actor Yes No
3© Dual core IPPro Dual actor No Yes
4© Dual core 8-way SIMD IPPro Dual actor Yes Yes
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<?xml version="1.0" encoding="UTF-8"?>
<XDF name="TopKMeansOrcc">
    ...
    <Instance id="Distance">
        ...
    </Instance>
    <Instance id="Averaging">
        ...
    </Instance>
    <Connection dst="Averaging" dst-port="AvInput" 

src="Distance" src-port="DisOutput"/>
    <Connection dst="Distance" dst-port="DisInput" 

src="" src-port="InputPort"/>
    <Connection dst="" dst-port="OutputPort" 

src="Averaging" src-port="AvOutput"/>
</XDF>

TopKMeansOrcc.xdf

package org.proj.kmeansorcc; 
actor Distance () int(size=8) DisInput ==> int(size=8) DisOutput:
  //Get 2 8‐bit pixels and push each with its associated centroid
  DistCal: action DisInput:[Pix1, Pix2] ==> DisOutput:[Pix1, 

Cent1, Pix2, Cent2]
  var
   uint Cent1, 
   uint Cent2,
   uint Cent [4] = [31, 40, 50, 76], //4 initial centroids
   uint Temp1 [4], 
   uint Temp2 [4],
   uint Temp3 [4],
   uint Temp4 [4]
  do
   //Manhattan distance estimation

foreach int (size=8) count in 1 .. 4 do
//Pixel 1's distance from every centroid
Temp1 [count] := Pix1 ‐ Cent [count];
//Pixel 1's absolute value estimation by squaring
Temp3 [count] := Temp1 [count] * Temp1 [count];
//Pixel 2's distance from every centroid
Temp2 [count] := Pix2 ‐ Cent [count];
//Pixel 2's absolute value estimation by squaring
Temp4 [count] := Temp2 [count] * Temp2 [count];

end
...

  end
  ...  
end

Distance.cal

DISTCAL:
GET R1, 1
GET R2, 1
STR R3, 31
STR R4, 40
STR R5, 50
STR R6, 76
SUB R7, R1, R3
SUB R8, R1, R4
SUB R9, R1, R5
SUB R10, R1, R6
SUB R11, R2, R3
SUB R12, R2, R4
SUB R13, R2, R5
SUB R14, R2, R6
MUL R15, R7, R7
MUL R16, R8, R8
MUL R17, R9, R9
MUL R18, R10, R10
MUL R19, R11, R11
MUL R20, R12, R12
MUL R21, R13, R13
MUL R22, R14, R14
...

Distance.ippro

(a)

(b) (c)

(d)

Figure 10. High-level implementation of k-means clustering algorithm: (a) Graphical view of Orcc
dataflow network; (b) Part of dataflow network including the connections; (c) Part of Distance.cal file
showing distance calculation in RVC-CAL where two pixels are received through an input FIFO channel,
processed and sent to an output FIFO channel; (d) Compiled IPPro assembly code of Distance.cal.

Figure 11. IPPro-based hardware accelerator designs to explore and analyse the impact of parallelism
on area and performance based on Single core IPPro 1©, eight-way parallel SIMD IPPro 2©, parallel
Dual core IPPro 3© and combined Dual core 8-way SIMD IPPro called 4©.

6.2. IPPro-Based Hardware Acceleration Designs

Table 6 shows the dataflow actor mapping and the exploited parallelism for each design. The block
diagram of each IPPro hardware acceleration design is illustrated in Figure 11. Design 1© and 2© are
used to accelerate Distance Calculation and Averaging stages, where each stage is mapped separately
onto individual IPPro cores. To investigate the impact of data and task parallelism, design 3© and 4© are
used to accelerate both Distance Calculation and Averaging stages as shown in Figure 11. The detailed
area and performance results are reported in Tables 7 and 8. The execution time depends on the
number of IPPro instructions required to compute the operation and the time require to execute a
instruction which corresponds to the operating frequency ( fmax ) of IPPro.

Table 7 reports the results obtained by individually accelerating the stages of k-means clustering
using 1© and 2©. In each iteration, the distance calculation takes two pixels and classifies them into



J. Imaging 2019, 5, 16 16 of 22

one of the four clusters which take an average of 45 cycles/pixel. To classify the whole image, it takes
118.2 ms which corresponds to 8.45 fps. On the other hand, the averaging takes four tokens and
produces four new cluster values, which takes an average of 55 clock cycles/pixel results in 145 ms or
6.88 fps. Both the stages involve point-based pixel processing. Therefore design 2© was developed
and used to exploit data-level parallelism. As a result, the execution time is reduced to 23.32 ms
and 27.02 ms for distance calculation and averaging respectively. This is an improvement of 5.1 and
5.4 times over 1© (and not the expected 8 times) of the 8-way SIMD implementation ( 2© over 1©) as
the overhead of data transfer time from/to the accelerator restricts the performance improvement.
This came at the cost of 4.1, 2.3 and 8.0 times more BRAMs, LUTs and DSP blocks respectively
as reported in Table 8. The major contributor to increased area utilisation is data distribution and
control infrastructure.

Table 8 reports the execution time and performance (fps) numbers of both stages together to
exploit task and data parallelism using designs 3© and 4©. The reported results of 1© and 2© were
obtained by combining the execution time of both stages previously reported in Table 7. Using design
3©, the effect of task parallelism implemented via intermediate FIFO results in an average of 63 clock
cycles/pixel which is 163 ms (6 fps). By pipelining both actors, 3© has achieved 1.6 times better
performance compared to 1© at the cost of 1.6 and 2.0 times more BRAM and DSP blocks using the
same Xillybus IP infrastructure as 1©. The reason for the improvement is the localisation of intermediate
data within FPGA fabric using an intermediate FIFO, which hides the data transfer overhead to and
from host processor as shown in Figure 11. Investigating the reported area utilisation numbers in
Table 8 shows that the area utilisation for design 3© and 4© is not twice as big as 1© and 2© respectively
due to the FPGA resources utilised by the input and output data ports of Xillybus IP. Design 1© and
3© requires a single input and output data port, while 2© and 4© requires eight input and output data

ports. Therefore, a part of FPGA logic used by the Xillybus IP is constant/fixed for 1©, 3© and 2©, 4©.
Analysing the impact of exploiting both task and data-level parallelism using 4© results on average

14 clock cycles/pixel and an execution time of 35.9 ms (2 fps). It is 1.4, 4.5 and 7.3 times better than
2©, 3© and 1© respectively. For comparison, both stages were coded in C language and executed on
an embedded ARM Cortex-A7 processor that achieved execution time of 286 ms (354 fps) which is
8 times slower than the performance achieved by 4©.

Table 7. Performance measurements for designs 1© and 2© highlighted in Figure 11.

Single Actor
1© Single Core IPPro 2© 8-Way SIMD IPPro

Exec. (ms) fps Exec. (ms) fps

Distance Calculation 118.21 8.45 23.37 42.78
Averaging 145.17 6.88 27.02 37.00

Table 8. Area utilisation and performance results of IPPro-based hardware accelerator designs in
Figure 11 exploiting data and task parallelism namely 1©, 2©, 3© and 4©.

k-Means Acceleration Area Performance

LUT FF BRAM DSP Exec. (ms) fps

1© Combined stages using Single-core IPPro 4736 5197 4.5 1 263.38 3.8
2© Combined stages using 8-way SIMD IPPro 10,941 12,279 18.5 8 50.39 19.8
3© Dual-core IPPro 4987 5519 4.5 2 163.2 6
4© Dual 8-way SIMD IPPro 13,864 16,106 18.5 16 35.9 28

Software implementation on ARM Cortex-A7 - - - - 286 3.5

6.3. Power Measurement

This section presents the details of adopted power measurement methods and compares the
IPPro-based implementation to the equivalent k-means implementation on GPU and CPU. The IPPro
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power measurements obtained by running post-implementation timing simulation. A Switch activity
interchange format (SAIF) file is used to record the switching activity of designs data and control signals
of each presented IPPro designs. The Xilinx Power Estimator (XPE) takes the SAIF file and reports
the power consumption. An equivalent version of k-means in CUDA and OpenCL was implemented
and profiled on nVIDIA GeForce GTX980 (desktop GPU), ODRIOD-XU3 (Embedded GPU) and ARM
Cortex-A7 (CPU) due to in-house availability of both GPU platforms. The nVIDIA desktop GPU card
supports 2048 CUDA cores running at a base frequency of 1126 MHz. OpenCL and CUDA were
used for programming the GPU, and both stages merged into the single kernel. For performance
measurement, OpenCL’s profiling function clGetEventProfilingInfo is used which returns the execution
time of kernel in nanoseconds. The power consumption during kernel execution was logged using
nVIDIA System Management Interface (nvidia-smi) which allows to measure the power consumed by
the GPU and the host processor separately. It is a command line utility, based on top of the nVIDIA
Management Library (NVML), intended to aid the management and monitoring of nVIDIA GPUs.

To set the base line figures and for fair comparison of the FPGA against the GPU technology,
an embedded CPU (ARM Cortex-A7) and an embedded GPU (ARM Mali-T628) implementation were
carried out on a ODROID-XU3 platform. This is a heterogeneous multi-processing platform that hosts
28 nm Samsung Exynos 5422 application processor which has on-chip ARM Cortex-A7 CPUs and an
ARM Mali-T628 embedded GPU. The platform is suitable for power constraint application use cases
where the ARM Cortex-A7 CPU and mid-range ARM Mali-T628 GPU runs at 1.2 GHz and 600 MHz
respectively. The platform have separate current sensors to measure the power consumption of ARM
Cortex-A7 and ARM Mali-T628, thus allowing component-level power measurement capability.

Table 9 shows the results of IPPro-based accelerator designs running on Zedboard where both data
and task parallel implementation achieved 4.6 times better performance over task only implementation
at the cost of 1.57 times higher power consumption. Table 10 shows the performance results of the
k-means implementation on Kintex-7 FPGA and compares them against equivalent embedded CPU
(ARM Cortex-A7), embedded GPU (ARM Mali-T628) and desktop GPU (nVIDIA GeForce GTX680)
implementations in terms of speed (MHz), Power (W) and transistors utilised (TU). The presented
embedded CPU results has been considered as a baseline for the comparison.

Table 9. Power, resource and combined efficiency comparisons of IPPro-based k-means clustering
implementations on Zedboard (Xilinx Zynq XC7Z020 Artix-7).

Power (mW) Freq. Exec. Power TU Efficiency
Impl. Static Dyn. Tot. (MHz) (ms) fps Efficiency (×106) (fps/TU) (fps/W/TU)

(fps/W) (×10−8) (×10−9)

3© 118 18 136 100 163.2 6 44.1 591 (9%) 1.0 74.6
4© 122 92 214 100 35.9 28 130.8 1564 (23%) 1.8 83.6

Table 10. Power, resource and combined efficiency comparisons for k-means clustering for Xilinx Zynq
XC7Z045 Kintex-7 FPGA, nVIDIA GPU GTX980, embedded ARM Mali-T628 GPU and embedded ARM
Cortex-A7 CPU.

Power (W) Freq. Exec. Power TU Efficiency
Plat. Impl. Static Dyn. Tot. (MHz) (ms) fps Effic. (×109) (fps/TU) (fps/W/TU)

(fps/W) (×10−8) (×10−9)

FPGA
3© 0.15 0.03 0.19 337 48.43 21 114.1 0.6 (9%) 3.6 193.1
4© 0.16 0.15 0.31 337 10.65 94 300.3 1.0 (6%) 6.0 192.0

GPU OpenCL 37 27 64 1127 1.19 840 13.1 1.3 (26%) 63.1 9.8
CUDA 37 22 59 1127 1.58 632 10.7 1.2 (24%) 51.5 8.7

eGPU Mali 0.12 - 1.56 600 3.69 271 173 - - -
eCPU Cortex 0.25 - 0.67 1200 286 3.49 5.2 - - -



J. Imaging 2019, 5, 16 18 of 22

Both FPGA implementations achieved 6 and 27 times better fps performance than the embedded
CPU, whilst the embedded GPU delivered 6.7 times better performance over the FPGA by exploiting
parallelism and higher operating frequency. Focusing on the power consumption results, the FPGA
consumed 2.1 and 4.9 times less power than both the embedded CPU and embedded GPU respectively.
It shows that the FPGA technology delivers a power-optimised solution while the GPU approach
provides a performance-optimised solution. Considering the performance and power together,
the power efficiency (fps/W) numbers shows that FPGA and embedded GPU implementations
are 57 and 33 times more power efficient than embedded CPU and that the FPGA implementation is
24 times more power efficient than embedded GPU. Nevertheless, this power efficiency edge can be
further improved by applying dataflow transformations and increasing the number of IPPro cores.

Table 10 compares the FPGA results against desktop GPU and reports resource efficiency as a
metric due to significant difference in the power consumption numbers. The resource efficiency has
been presented in terms of frames-per-second-per-Transistor-Utilisation (fps/TU) which is 6 and 63 for
the 28 nm FPGA and GPU technologies. For embedded CPU and GPU, these results are not reported
due to unavailability of transistor count numbers for the ARM. The reported resource efficiency
results shows that GPU utilises area resources more efficiently than the FPGA when power is kept
out of the equation. Combining all three metrics (fps/W/TU) shows that the advantage gained from
FPGA designs is significant i.e., 22 times more efficient than GPU. This advantage becomes more
valuable when it is acknowledged that the FPGA-based SoC design is adaptable and allows exploration,
profiling and implementation of different dataflow transformation possibilities over dedicated FPGA
approaches to accelerate image processing applications for low energy applications.

7. Case Study 2: Traffic Sign Recognition

Traffic sign recognition is applied in driver assistance systems [29]. In the detection stage, sign
candidate areas are extracted from the original image and matched against a list of known templates
in the recognition stage. The processing stages along with their execution time and percentage
contribution to the overall execution time for 600 × 400 image sign recognition implemented on
ARM Cortex-A9 are shown in Figure 12. It involves a colour filter to convert RGB to HSV, morphology
filters (erosion and dilation) using 3 × 3 and 5 × 5 circular kernels, edge detection, circles detection to
guide the matching process and reduce the number of shapes, bounding box detection to transform
the remaining objects into their convex hulls, classification by shape and then template matching.
The colour and morphology filters have been chosen for hardware acceleration as they are dominant
processing components as shown in Figure 12.

Pixel 
Stream Colour Filter Morphology

Edge 
Detection/

Contour Filling

Circles 
Detection

Bounding 
Boxes 

Detection

Classification 
by Shape

Template 
Matching

Exe. Time (ms) /
Percentage of total

88.865 / 9.28 % 399.793 / 41.75 % 151.768 / 15.85 % 126.823 / 13.24 % 90.421 / 9.44 % 5.620 / 0.59 % 94.270 / 9.85 %

PS / PL 
Implementation

PL PL PS PS PS PS PS

Detection Stage Recognition Stage

Figure 12. Section execution times and ratios for each stage of the traffic sign recognition algorithm.

7.1. Acceleration of Colour and Morphology Filter

The IPPro-based hardware accelerators for colour and morphology filter were implemented on
Zedboard using the system architecture presented in Section 5 that allows to distribute pixels for point
and window image processing operations. The high-level system description of colour filter actor
from RVC-CAL produced program code consists of 160 IPPro assembly instructions. A 3 × 3 circular
mask has been used for morphology filter as shown in Figure 13a, to find the maximum (dilation) or
minimum (erosion) value in a set of pixels contained within a masked region around the input pixel.
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The simplified generated code of RVC CAL-IPPro compilation is shown in Figure 13a. GET and
PUSH instructions set the input or output port numbers through which the tokens are received or sent.
GET instructions read 9 pixels values and stores them into the register file from R1 to R9. Then, the
corner pixels are ignored to impose 3 × 3 circular mask, a maximum value among the remaining pixels
max(R1, R4, R5, R6, R8) is computed and stored in R7 to apply dilation operation. This value is
then pushed to the output using PUSH instruction. The output result of the implemented design are
shown in Figure 13b.

DILATION3X3:

GET R1, 1

GET R2, 1

GET R3, 1

GET R4, 1

GET R5, 1

GET R6, 1

GET R7, 1

GET R8, 1

GET R9, 1

MAX R30, R2, R5

MAX R29, R4, R6

MAX R28, R30, R8

MAX R27, R28, R29

PUSH R27, 1

JMP DILATION3X3

(a)
(b)

Figure 13. (a) The simplified IPPro assembly code of 3 × 3 dilation operation. (b) The output result of
implemented design.

Table 11 presents the results from the Zedboard implementation that has been tested with a set
of real images. The hardware accelerated implementation of colour filter stage using 32 IPPro cores
reduces the execution time from 88.87 ms down to 19.71 ms compared to software implementation
on-chip ARM Cortex-A9. Similarly, the morphology filter stage using 16 IPPro cores has reduced the
execution time from 399 ms down to 41.3 ms. The presented IPPro-based hardware acceleration design
has achieved a speed-up of 4.5 and 9.6 times over ARM for colour and morphology filters respectively.
The achieved speed up for colour filter stage using 32 cores is lower than that of morphology stage
using 16 cores, because of the higher number of clock cycles spent on every pixel for colour filter stage;
this is due to larger execution time of division coprocessor used for colour filtering.

Table 11. IPPro-based acceleration of colour and morphology operations implemented on Zedboard.

Description Colour Morphology

No. of cores 32 16
FF 41,624 (39%) 43,588 (41%)
LUT 29,945 (56%) 33,545 (63%)
DSP48E1 32 (15%) 48 (22%)
BRAM 60 (42%) 112 (80%)

Cycles/Pixel 160 26
Exec. (ms) 19.7 (8.7 *) 41.3 (18.3 *)
Speed-up 4.5× (10.3× *) 9.6× (21.75× *)

* The achievable performance using Zynq XC7Z045 Kintex-7.

Figure 14 shows the stage-wise acceleration of traffic sign recognition by accelerating colour and
morphology filters. Edge/contours detection and bounding boxes stages were improved partially by
accelerating the morphology operations. The edge detection is based on the morphology operations
by taking the difference between erosion and dilation. Therefore the morphology results obtained by
acceleration are further exploited in the host to factor out some operations when doing edge detection.
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Figure 14. Stage-wise comparison of traffic sign recognition acceleration using ARM and IPPro
based approach.

8. Conclusions and Future Work

The paper has presented an FPGA-based hardware acceleration approach for image processing
applications using soft core processors which maps efficiently to FPGA resources thereby maintaining
performance. By using the DFG model of computations, a design flow has been created which allows
the user to partition the design based on processing needs and allows programming of each function.
The work has been demonstrated for a k-means clustering function and a traffic sign recognition
example where maximum speed up of 8 and 9.6 times, respectively, were achieved when compared to
software implementation on ARM CPU. For k-means clustering, the 16 IPPro cores implementation is
57, 28 and 1.7 times more power efficient (fps/W) than ARM Cortex-A7 CPU, nVIDIA GeForce GTX980
GPU and ARM Mali-T628 embedded GPU. The future work to improve this work is to investigate
further dataflow decomposition/mapping optimisations and software-controlled power optimisation
techniques such as on-demand enable/disable the IPPro cores.
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