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Abstract: Articulation modeling, feature extraction, and classification are the important components
of pedestrian segmentation. Usually, these components are modeled independently from each other
and then combined in a sequential way. However, this approach is prone to poor segmentation
if any individual component is weakly designed. To cope with this problem, we proposed
a spatio-temporal convolutional neural network named PedNet which exploits temporal information
for spatial segmentation. The backbone of the PedNet consists of an encoder–decoder network for
downsampling and upsampling the feature maps, respectively. The input to the network is a set
of three frames and the output is a binary mask of the segmented regions in the middle frame.
Irrespective of classical deep models where the convolution layers are followed by a fully connected
layer for classification, PedNet is a Fully Convolutional Network (FCN). It is trained end-to-end and
the segmentation is achieved without the need of any pre- or post-processing. The main characteristic
of PedNet is its unique design where it performs segmentation on a frame-by-frame basis but it uses
the temporal information from the previous and the future frame for segmenting the pedestrian in the
current frame. Moreover, to combine the low-level features with the high-level semantic information
learned by the deeper layers, we used long-skip connections from the encoder to decoder network
and concatenate the output of low-level layers with the higher level layers. This approach helps to get
segmentation map with sharp boundaries. To show the potential benefits of temporal information,
we also visualized different layers of the network. The visualization showed that the network
learned different information from the consecutive frames and then combined the information
optimally to segment the middle frame. We evaluated our approach on eight challenging datasets
where humans are involved in different activities with severe articulation (football, road crossing,
surveillance). The most common CamVid dataset which is used for calculating the performance of
the segmentation algorithm is evaluated against seven state-of-the-art methods. The performance
is shown on precision/recall, F1, F2, and mIoU. The qualitative and quantitative results show that
PedNet achieves promising results against state-of-the-art methods with substantial improvement in
terms of all the performance metrics.

Keywords: pedestrian; convolutional neural network; classification; long-skip; feature concatenation;
spatio-temporal information; segmentation

1. Introduction

Segmentation is an active field of research in computer vision community and it has wide
range of applications including video surveillance [1], crowd analysis [2], robot navigation [3],
object recognition [4], medical imaging [5], and human behavior analysis [6]. In fact, segmentation
is the equivalent of human perceptual grouping where human vision system groups high-level
semantics (shape, geometry, and object category) from low-level information (color, texture, and edge).
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The perceptual grouping is easy for human and it is carried out on daily basis. However, for a computer,
it is a very complex and challenging task.

Segmentation can be carried out either in a supervised or in an unsupervised fashion. The former
approach consists of feature extraction followed by a classification module where either image patch
or image pixels are classified into different classes. In the latter approach, segmentation is performed
in terms of perceptual grouping which is commonly known as clustering. In general, supervised
approaches for segmentation can be classified into traditional hand-crafted feature based and more
recent deep learning based approaches which train a deep network on manually annotated data.
During training, the network parameters are optimized and then pixel-wise segmentation is performed
on the test images. Usually, segmentation is performed on a per image/frame basis. However, if the
aim is to segment a sequence of frames, due to temporal continuity, there is meaningful temporal
information that could be exploited. Some of the video features that change frame to frame are the
viewpoint, scale of pedestrian, background, and illumination. If these factors are not model properly,
it can deteriorate the performance of segmentation to a great extent. Unfortunately, techniques that
reply on a single-frame for segmentation don’t get the perspective knowledge of the scene and have
no mechanism for modeling these attributes of a video. However, by exploiting the continuity of video
signal, these problems could be addressed. Inspired by this idea, our proposed PedNet segments a
frame in a supervised fashion considering both past and future frames. The design of our network
exploits temporal information for spatial segmentation. To the best of our knowledge, our PedNet is
the first deep FCN that incorporates temporal information for spatial per-pixel segmentation and trains
the model end-to-end from scratch. Moreover, compared to standard approaches where computational
intensive pre- or post-processing is performed to enhance the segmentation mask, our network does not
rely on any pre- or post-processing modules such as super-pixels [7,8], region proposal generation [9],
post-hoc refinement through random fields or discriminative classifiers [7,8].

Our proposed PedNet consists of a single mutually combined encoder–decoder network.
Generally, the lower layers in a deep network learn low-level features like edges, curves,
and semi-circles. The deeper layers learn high-level semantic information. For segmentation,
both pieces of information are very useful since high-level semantic information helps to localize
and differentiate between the pedestrian and background. The low-level information helps to draw
sharp and high-resolution boundaries between the pedestrian and the background. The encoder
network in PedNet is responsible for extracting low-level features and the decoder network learns
high-level semantic information. The long-skip and feature map concatenation from the encoder to the
decoder network combines the low-level fine-grained features learned by the encoder network with
the high-level semantic information learned by the decoder network. As a result, better segmentation
with sharp boundaries is achieved.

Our PedNet is inspired from U-net [5] that introduced the long-skip connections and was used
for medical images segmentation specifically, cell segmentation in microscopy images. Compared to
U-net, our architecture has the following differences.

• Instead of a single input frame, our network takes three frames as input and exploits the temporal
information for spatial segmentation.

• Our proposed PedNet is deeper and we fixed the size of convolution filter to 3 × 3 and a fixed
max-pooling window size of 2 × 2 throughout the network. We tested ReLu and SeLu activation
functions and used batch normalization after every convolution layer.

• The network is trained from scratch and data augmentation strategies are adopted which enables
the network to train on a limited amount of data.

Our PedNet network is generic and can be used for any computer vision application having
a sequence of frames including medical imaging and video surveillance. The rest of the paper
is organized in the following order. Section 2 briefly explains the related work in the literature.
The overview of the proposed method is presented in Section 3. The architecture of the model is
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elaborated in Section 4. Training strategy, the objective function, and data augmentations are explained
in Section 5. Quantitative results are provided in Section 6. Network analysis and future directions are
discussed in Section 7 and the paper is concluded in Section 8.

2. Related Work

In a nutshell, segmentation techniques can be classified into two broad categories i.e., traditional
approaches using hand engineered features and deep learning based approaches. Usually, traditional
approaches use a multi-stage pipeline that is inefficient, slow, and inelegant. The usual steps in
the pipeline are pre-processing, feature extraction, a classification module, and post-processing.
For post-processing, a conditional random field is used that refines the segmentation result. Most often,
each step of the pipeline is designed independently and there is very little coherency between different
step. Compared to traditional approaches, deep learning based methods design a framework for
segmentation where features are learned from the data and all the steps work in a hierarchical fashion
in a consistent and coherent way. The training of deep models are done end-to-end and it gives better
performance with a large margin compared to techniques relying on hand-crafted features. In the
following, a brief overview is given for each approach.

2.1. Hand-Crafted Feature Based Segmentation

In such approaches, first features are extracted from an image or a patch of image through
a pre-defined rule (color histogram, gradient histogram, local binary pattern) and then it is fed to
a classifier, e.g., SVM, boosting [10,11] or random forest [12,13] to calculate the class probability of the
patch or whole image. For example, Sturgess et al. [10] use appearance and motion features (textons,
color, location and HoG [14]) in a probabilistic CRF model for segmentation. They used a boosting
approach to constructively combine the appearance and motion cues. Moreover, higher-order potentials
are incorporated in the CRF model for accurate boundary delineation in the segmentation map.
Jamie et al. [12] introduced a low-level feature descriptor named as semantic texton forest (STF) for
segmentation. Technically, STF is an ensemble of randomized decision forest and use simple pixel
comparisons on whole image or image patch for the classification of patch category. Lubor et al. [11]
come up with a probabilistic model and defined a single energy function which combines cues
from a sliding window object detector and low-level pixel values for segmentation. Yang et al. [15]
introduced local label descriptor for segmentation. Local label descriptor is a histogram which
is acquired by concatenating pixel label over a fixed size cell in an image patch. They applied
sparse coding [16] on the descriptor for introducing sparsity and used the random forest for patch
classification. Kontschieder et al. [17] exploited structural feature for segmentation. Structural feature
refers to the topological distribution of different object classes in an image. It is inspired by the
fact that different object form a coherent region in an image and it is not randomly dispersed in
the image. Moreover, they used a classical random forest classifier but modify it according to the
structural information. By exploiting the depth information, Chenxi et al. [18] use a dense depth
map for the segmentation. They extracted five features (surface normal, height above ground, surface
local planarity, surface neighboring planarity, and distance to camera path) from the depth maps
and used the random forest for the classification. Similarly, Xiaofeng et al. [19] combined RGB-D
feature with kernel descriptor (gradient, color, local binary pattern, depth gradient, surface normal,
and Kernel principal component analysis [20]) to generate super-pixel and used a linear SVM for
super-pixel classification.

Techniques based on hand-crafted features were quite popular for segmentation until the
breakthrough work of Krizhevsky et al. [21] for image classification. Inspired by his work, many deep
learning based techniques were introduced in the last couple of years. They become the method of
choice for segmentation because, generally, they outperform the traditional hand-crafted features based
approaches by a large margin. In the following, the most prominent deep learning-based techniques
for segmentation are briefly explained.
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2.2. Deep Learning Based Segmentation

A hierarchical architectural model where features are learned from the data is referred to
as a deep learning model. There are a variety of model for different applications; from image
classification [4,21–24], image segmentation [25–27] to speech processing [28,29]. In such approaches,
rather than extracting features from an image or image patch by a pre-defined rule, convolution
filters are learned from the data to get the features. For image segmentation, the most suitable deep
learning model is a feed-forward Fully Convolutional Network (FCN) [5,30]. It is because FCN can be
trained end-to-end, pixels-to-pixels which is an essential part of pixel-wise segmentation. Moreover,
segmentation based on FCN can take the whole image as an input and perform agile and precise pixel
inference. Architectural wise, FCN is a special convolutional neural network which doesn’t have any
fully connected layers. In connection with FCN, Long et al. [31] introduced a fully convolutional
neural network for semantic segmentation. The backbone of their architecture relies on standard
image classification networks like [4,21,22] and fine-tuned it without the fully connected layers for
the segmentation. Similarly, Badrinarayana et al. [25] came up with a deep architecture where they
used the first 13 layers of pre-trained VGG net [22] as an encoder for reducing the resolution of
feature maps and a similar architecture as a decoder for up-sampling the feature maps. Different
from [5,31], Badrinarayana et al. [25] uses fully connected layers at the end of the network for
pixel classification. Noh et al. [30] used a similar approach as [25,31] and used a pre-trained VGG
network [22] for downsampling and corresponding network for upsampling but they did not use any
long skip connections. Their architecture works in a sequential way where the input goes at one end
and processing is done step by step in a hierarchical fashion and generate the segmentation mask at
the output. Moreover, they also didn’t use any fully connected layer for the pixel-wise classification.
Chen et al. [26,32] explored Atrous Convolution (AC) and Atrous Spatial Pyramid Pooling (ASPP) in a
Deep Convolutional Neural Network (DCNN) for segmentation at multi-scale. To improve boundary
delineation and localization accuracy, they combined the output of DCNN with a fully connected
conditional random field. Lin et al. [27] used a similar architecture [31] but instead of max-pooling, they
introduced chained residual pooling which enables the network to capture the background context
from a large image region. It downsamples the feature maps at multiple window sizes and then
combines with the low-level feature maps through long-skip connections. Zanjani and Gerven [33]
tried to use temporal information and proposed a hybrid approach for pixel-wise segmentation.
Initially, they used a well define convolutional neural network i.e., Deeplab [26] to get the pixel-wise
segmentation. In the second step, a spatial CRF model is used as a post-processing for refining the
segmentation results. The CRF model use scene appearance and dense optical flow information
for inference. Hence, they incorporate temporal information as a post processing for segmentation.
Shelhamer et al. [34] focused on the execution time of a CNN and tried to exploit the temporal
continuity of a video for faster network execution. They introduced clockwork CNN where different
layers of CNN are connected to a clock signal. The argument is, even though, a scene changes from
frame to frame but the semantic content of the scene changes slowly. Given that different layers of a
CNN learns different features (from low-level to high-level semantic information), hence, the feature
maps that learn high-level semantic information should change slowly as the video is processed from
one frame to the next frame. Luc et al. [35] trained an autoregressive convolutional neural network
named S2S model for predicting the semantic segmentation maps of the future frames. The input to
the network is segmentation maps of N previous frames and the network predict the segmentation
map of the future frames. In essence, the network learns the pattern of the segmentation maps of the
previous frames and based on the previous results, predict the segmentation map of the future frames
without seeing the RGB frame. In this setup, the predicted segmentation mask of the future maps
shows convincing results until half a second.
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3. Proposed PedNet Overview

The architecture of our network is given in Figure 1. The input to the network is set of three
frames and output is a binary mask. After the first convolution in the encoder network, the resolution
of feature maps keep reducing but the number keeps increasing. The network learns to incorporate
temporal information from t− 1 and t + 1 frame in such a way that it gives optimal segmentation for
the middle frame. In the decoder network, rather than adding the feature maps, we concatenate it so
that every feature map contribution in the segmentation. At the end of the network, a 1× 1 convolution
is applied that gives a single binary mask. The binary mask is processed to highlight the pedestrian
in the original frame Figure 2. The details of the architecture are given in Section 4. It is important
to note that we have only 3979 samples for training the network. These are collected from 8 datasets
Section 6.1 and manually annotated to highlight the pedestrian and the background. To increase
the size of the dataset, we applied data augmentation Section 5.2 strategies which not only handle
the problem of under-fitting but also enhance the generalization ability of the network. Moreover,
extensive experiments are conducted on a variety of datasets (sports, surveillance, and traffic) to
validate the performance of our network. In the following sections, each step of the proposed PedNet
is explained in details.

Figure 1. PedNet: proposed architecture. The input to the network is set of three frames at time
instant t− 1, t, and t + 1. The network learned visual and temporal features and exploit it for spatial
segmentation. The output is a binary mask which shows the region belonging to a pedestrian in the
middle frame.

Figure 2. Cont.
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Figure 2. Qualitative results of our PedNet on 8 Challenging datasets. The row 1, 5, and 7 shows
Pets2009 [36] dataset that is the commonly used for tracking. Second, sixth and the eighth row
corresponds to TUD [37,38] dataset which is also used for evaluating tracking algorithms. The third
row shows CamVid [39] dataset which is used for segmentation. The fourth row shows AFL [40]
dataset which is used for tracking sports player.

4. PedNet Architecture

The network architecture is illustrated in Figure 1. The structure of PedNet is symmetric and
has an encoder network with a corresponding decoder network. In the context of deep architecture,
resolution reduction of the feature maps is done by the encoder network through a subsequent
2 × 2 max-pooling layers that are followed by every convolution step in encoder network. Similarly,
an increase in the resolution of feature maps is reflected by the decoder network. The structure of
encoder and decoder network follows a classical architecture of feed-forward convolutional neural
network similar to [4,21–24]. However, unlike these models, we have long skip connections which
transfer the feature maps from the encoder network to the decoder network. The encoder network
consists of 17 convolution layers, each followed by downsampling. The size of the convolution filter
is fixed to 3 × 3 and each convolution is followed by a rectified linear unit (ReLU) and a 2 × 2 max
pooling operation with stride 2 for downsampling. We also tried Self-Normalizing linear unit (SeLU)
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instead of ReLU but the performance was not affected. At each downsampling step, the resolution of
the feature map decreases but the number of feature channels increases. Every step in the decoder
network consists of an upsampling of the feature map, a concatenation with the corresponding feature
map from the encoder network (long-skip), and two 3 × 3 convolutions, each followed by a ReLU.
Hence, the decoder network reduces the number of feature channels but increase the resolution of
feature maps. The complete architecture and details about each layer are given in Table 1.

Table 1. A detailed configuration of PedNet. “En_Conv” and “Dec_Conv” corresponds to the
convolution in the encoder and decoder network. Batch normalization and ReLu are omitted from the
table for clarity but each convolution is followed by these two layers.

Layer Filter Param Output

Input-1 - - 512 × 512 × 3
Input-2 - - 512 × 512 × 3
Input-3 - - 512 × 512 × 3
En_Conv2D-1 3 × 3 224 512 × 512 × 8
En_Conv2D-3 3 × 3 896 512 × 512 × 32
En_Conv2D-5 3 × 3 224 512 × 512 × 8
En_Conv2D-2 3 × 3 584 512 × 512 × 8
En_Conv2D-4 3 × 3 9248 512 × 512 × 32
En_Conv2D-6 3 × 3 584 512 × 512 × 8
Concat_1 - - 512 × 512 × 48
En_Conv2D-7 3 × 3 13,856 512 × 512 × 32
En_Pool2D-1 2 × 2 - 256 × 256 × 32
En_Conv2D-8 3 × 3 18,496 256 × 256 × 64
En_Conv2D-9 3 × 3 36,928 256 × 256 × 64
En_Pool2D-2 2 × 2 - 128 × 128 × 64
En_Conv2D-10 3 × 3 73,856 128 × 128 × 128
En_Conv2D-11 3 × 3 147,584 128 × 128 × 128
En_Pool2D-3 2 × 2 - 64 × 64 × 128
En_Conv2D-12 3 × 3 295,168 64 × 64 × 256
En_Conv2D-13 3 × 3 590,080 64 × 64 × 256
En_Pool2D-4 2 × 2 - 32 × 32 × 256
En_Conv2D-14 3 × 3 1,180,160 32 × 32 × 512
En_Conv2D-15 3 × 3 2,359,808 32 × 32 × 512
En_Pool2D-5 2 × 2 - 16 × 16 × 512
En_Conv2D-16 3 × 3 4,719,616 16 × 16 × 1024
En_Conv2D-17 3 × 3 9,438,208 16 × 16 × 1024
Dec_UpSample2D-1 2 × 2 - 32 × 32 × 1024
Concat-2 - - 32 × 32 × 1536
Dec_Conv2D-18 3 × 3 7,078,400 32 × 32 × 512
Dec_Conv2D-19 3 × 3 2,359,808 32 × 32 × 512
Dec_UpSample2D-2 2 × 2 - 64 × 64 × 512
Dec_Conv2D-18 3 × 3 7,078,400 32 × 32 × 512
Dec_Conv2D-19 3 × 3 2,359,808 32 × 32 × 512
Dec_UpSample2D-2 2 × 2 - 64 × 64 × 512
Concat-3 - - 64 × 64 × 768
Dec_Conv2D-20 3 × 3 1,769,728 64 × 64 × 256
Dec_Conv2D-21 3 × 3 590,080 64 × 64 × 256
Dec_UpSample2D-3 2 × 2 - 128 × 128 × 256
Concat-4 - - 128 × 128 × 384
Dec_Conv2D-22 3 × 3 44,2496 128 × 128 × 128
Dec_Conv2D-23 3 × 3 147,584 128 × 128 × 128
Dec_UpSample2D-4 2 × 2 - 256× 256× 128
Concat-5 - - 256× 256× 192
Dec_Conv2D-24 3 × 3 110,656 256 × 256 × 64
Dec_Conv2D-25 3 × 3 36,928 256 × 256 × 64
Dec_UpSample2D-5 2 × 2 - 512 × 512 × 64
Concat-6 - - 512 × 512 × 96
Dec_Conv2D-26 3 × 3 13,840 512 × 512 × 16
Dec_Conv2D-27 3 × 3 2320 512 × 512 × 16
Dec_Conv2D-28 3 × 3 17 512 × 512 × 1
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5. Network Training

We labeled our training data such that for each image, we generated a binary mask where the
white regions correspond to the pedestrian and the black region corresponds to the background.
The binary masks and its corresponding original frame makes a single sample of the training set.
The batch size was set to 7 (7× 3 = 21 frames and corresponding masks) and stochastic gradient descent
is used to train the network end-to-end. Classical stochastic gradient descent has three problems i.e.,
it is slow, often get stuck in the local minima and has an oscillatory behavior while converging to the
solution. To address these issues, we used RMSprop [41] while updating the hyper-parameters of the
networks. The update of the parameters is done by introducing intermediate parameters Idb, and Idw
which are also known as the running average of the squared gradients.

Let us assume at iteration t, we compute the derivative of the parameter w as dw (convolutions
filters) and b (bias) as db using stochastic gradient descent on the current batch. Then, the intermediate
terms are calculated as:

Idwt = γIdwt−1 + (1− γ)dw2
t (1)

and
Idbt = γIdbt−1 + (1− γ)db2

t (2)

Once the intermediate terms are calculated, the main parameters are updated according to
the following:

wt+1 = wt − η
dwt√

Idwt + ε
(3)

and
bt+1 = bt − η

dbt√
Idbt + ε

(4)

For the numeric stability, a small number ε is added in the denominator of both terms to avoid
division by zero. The learning rate η is chosen to be 10−4 while the γ is set to 0.9. With RMSprop,
we can also use bigger learning rate without the fear of divergence as the intermediate terms Idb and
Idw keeps the update in control.

5.1. Objective Function

Compared to the state-of-the-art techniques [5,30,31] where they usually use a pre-trained VGG
network [24], we designed our own network and initialized the parameters using the strategy of [42].
The input to our network is a set of three frames at three different time instants i.e., t− 1, t and t + 1.
Segmentation is performed for the frame at time instant t. The frames at time instant t− 1 and t + 1
only provide temporal information and assist the segmentation. The output of our decoder network is
a single channel binary mask of the frame at time instant t where pixels correspond to the pedestrians
are marked white. The loss of the network is defined by applying convolution with sigmoid activation.
Let us assume that P is the predicted mask and G is the groundtruth, the binary cross entropy, and
dice coefficient loss between the two binary images is calculated as the following:

L(P, G) = − 1
N

N

∑
i=1

(
λ

2
.gi. log pi) +

(
1− 2 ∑N

i=1(gi.pi) + ε

∑N
i=1 pi + ∑N

i=1 gi + ε

)
(5)

where λ and ε are false negatives (FN) penalty and smoothing factor, respectively. The first term in
Equation (5) penalizes false negative (FN) and the second term weights false positive (FP) and false
negative (FN) equally. In other words, the second term is the same as the negative of F1-score. This is
to avoid miss detection (false positive) of the pedestrian. We give more weight to miss a pedestrian
than giving a FP. Hence, the summed loss function gives a good balance between FN and FP.
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5.2. Data Augmentation

The purpose of an FCN is to approximate a function from the training data through inductive
learning. The approximated function should map the input variables to the output variable. In our
case, the input is the set of three frames and the output is a binary mask of the central frame. A crucial
aspect of learning is how well the learned model generalizes to the new data. Generalization is essential
because the training data that we labeled is only a partial portrait of the original test data that the
machine will actually segment. When the training data is small, generalization is difficult to achieve and
there is the problem of under-fitting. To increase the training data, one possible approach is to generate
the data synthetically. However, in our case, it needs sophisticated 3D modeling of the pedestrian
which is beyond the scope of this paper. Instead of 3D modeling, we adopted data augmentation
strategies. Data augmentation is crucial because it teaches the network the desired invariance and
robustness properties in a customized fashion. Different data augmentations are possible like rotation,
scaling, robustness to deformation and gray value variations. In the case of pedestrians, the rotation
is not relevant as pedestrian usually follow a linear motion and in most cases, the shape remains
rotation invariant. We used scaling and light intensity variation for augmenting the data Figure 3.
Both types of augmentation are performed randomly. Roughly, 50% of the training samples are used
without any augmentation. In the remaining 50%, scaling and light intensity variation is introduced.
For scaling, we crop the region in a frame. While for the light intensity variation, we first introduced a
Gaussian noise with zero means and unit standard deviation. After that, gamma correction is applied
for varying the gray level values. The samples of original frames and its augmented versions are
shown in Figure 4.

Figure 3. While training the network, the samples are randomly selected from the training set. With 50%
probability, the original training sample is used for training. With the other 50% probability, it can go
through two types of augmentation i.e., either scaling of light intensity variation. Scaling is introduced
by cropping a random region in the original frame. While light intensity variation, first Gaussian blur
is applied and then gamma correction is used.
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(a) Pets2009 [36] (b) Scaled (c) Light (d) Mask

(e) TUD [37,38] (f) Scaled (g) Light (h) Mask

(i) CamVid [39] (j) Scaled (k) Light (l) Mask

(m) AFL [40] (n) Scaled (o) Light (p) Mask

Figure 4. The first column shows the original frame. The 2nd column corresponds to the scaled version
of the frame. The third column shows different lighting condition that is introduced through the
Gaussian noise and gamma correction. The fourth column corresponds to the binary mask for training
the network.

6. Experiment

This section first explains the datasets that we used for evaluating our PedNet. Second, features
learned by the network are visualized and the effectiveness of temporal information is argued.
For visualization, Grad-CAM [43] is used. Third, the implementation details are briefly reviewed.
And in the last, the performance metric that is used for quantitative analysis are discussed and results
are shown against state-of-art methods. Quantitative results of PedNet are given in Tables 2 and 3.
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Table 2. Quantitative results of our PedNet on 8 different datasets.

Datasets Recall Precision F1 F2 mIoU Accuracy

CamVid 0.877 0.945 0.910 0.890 0.764 0.988
Pets2009 (View1) 0.883 0.953 0.917 0.896 0.755 0.989
TUD-crossing 0.880 0.955 0.916 0.894 0.741 0.989
AFL-football 0.880 0.955 0.916 0.894 0.746 0.987
Pets2009 (view5) 0.877 0.943 0.909 0.889 0.724 0.988
Pets2009 (view7) 0.878 0.949 0.912 0.891 0.767 0.989
TUD-Stadmitt 0.880 0.955 0.916 0.894 0.741 0.988
TUD-Campus 0.886 0.944 0.914 0.897 0.692 0.989

Table 3. Quantitative results of our PedNet against state-of-the-art methods on CamVid dataset.
The results of [10,11,17] are based on hand-crafted features. The results of [25,30–32] are based on
deep model. It is apparent that the deep model outperforms the classical approaches and our PedNet
outperformed the deep models by a good margin.

Methods mIoU Accuracy

SegNet [25] 0.500 0.888
Ladicky et al. [11] - 0457
Chen et al. [32] 0.501 0.859
Long et al. [31] 0.560 0.832
Noh et al. [30] 0.396 0.852
Kontschider et al. [17] - 0.430
Sturgess et al. [10] - 0.536
Ours PedNet 0.764 0.988

6.1. Datasets

We quantify the performance of PedNet on 8 datasets that are most commonly used for
segmentation and tracking. The first is Cambridge-driving Labeled Video Database (CamVid) [39] that
is recorded from driving automobile. It is recorded with a frame rate of 30 and consist of 702 frames in
total. As the automobile moves, the heterogeneity of the observed classes changes. However, our focus
is only segmenting the pedestrians. Similarly, Pets2009 is a video surveillance dataset and commonly
used for evaluating tracking algorithms. It has three views and recorded at a university campus.
At most, ten people move in the scene. There are a total of 795 frames in each view and it is recorded
at a low frame rate of 7 fps. Like Pets2009, TUD also has three variant (crossing, campus, stadmitt).
It is recorded from a short distance and the pedestrian comparatively looks big. We also included a
dataset from sports (AFL). In the scene, the players look considerably small and the maximum number
of the players changes from 10 to 20. The visual results can be seen in Figure 2.

6.2. Feature Visualization

To justify our claim regarding the temporal information, we visualized the activation of different
layers of the network. Technically, the layers of the network should learn different information in
order to extract discriminative features from each frame. We focused mainly on the convolution layers
Conv2d_2, Conv2d_4, and Conv2d_6. It is because these are the first convolutions in the encoder
network. After these convolutions, the feature maps are fused and it is not possible to differentiate
the frames at t− 1, t, and t + 1. We used Grad-CAM [43] to get the maximum activation of the layer.
In Figure 5d,j corresponds to the activation of frame at t− 1. Similarly, Figure 5e,k gives the activation
at time t and Figure 5f,l is related to activation at t− 1. It is obvious from the figures that the activations
are different from each other. Especially, the RGB value response is different which is also proved
by [22] that the first layers learn mainly the color features. Given that the network layer learned
different features, we can infer that it is extracting different information from the frame at t− 1, t,
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and t + 1. In the subsequent layers, the network fuses the features maps of the input frames and
implicitly exploit the encoded temporal information for segmentation. We also visualized the last layer
of the network before the 1 × 1 convolution which shows the response of the network in the region
related to the pedestrian Figure 6.

(a) Frame 574 (b) Frame 575 (c) Frame 576

(d) Conv2d_2 (e) Conv2d_4 (f) Conv2d_6

(g) Frame 395 (h) Frame 396 (i) Frame 397

(j) Conv2d_2 (k) Conv2d_4 (l) Conv2d_6

Figure 5. The first column shows the original frames of Pets2009 S2L1 View 1 [36] dataset. The 2nd
column corresponds to the activation of Conv2d_2 for frame at t− 1, Conv2d_4 for frame at t, and
Conv2d_6 for frame at t. The third and fourth column shows the original frame of Pets2009 S2L1
View 7 [36] dataset and their corresponding activation. The layers Conv2d_2, Conv2d_4, and Conv2d_6
learned different features during training, therefore, their response is different.
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(a) View 7 (Frame 396) (b) View 1 (Frame 575)

Figure 6. The activation of layer Conv2d_27 achieved through Grad-CAM [43]. It is the 2nd last layer
in the decoder network and shows the maximum response of the network on the middle frame given
the three input frames.

6.3. Implementation

Our model is implemented in python using Tensorflow and Keras and run on a single 12 GB
NVIDIA TitanX GPU. Due to different image resolution in the dataset, we first normalize all the images
into fixed dimensions with the spatial size of 512 × 512 before feeding to encoder network. We used
RMSProp (Equations (1) and (2)) as the optimizer with batch size 7 and learning rate η set to 10−4.
We monitor dice coefficient and use early-stop criteria on the validation set error.

6.4. Performance Metrics

We evaluate the performance of our network using the recall/precision rate and Intersection over
Union (IoU). IoU is also known as Jaccard index and it is a standard metric and commonly used for
evaluating segmentation accuracy. We calculate recall and precision on per pixel basis while IoU is
calculated based on region overlap between the predicted mask and the groundtruth mask. In the
context of pedestrian, precision and recall can be argued as, If the recall or true positive rate is low,
then the model will miss regions that correspond to the pedestrian. And if precision is low, then the
model will identify many regions in the frame that does not belong to the pedestrian. In addition to
precision and recall, we also calculated F1 and F2 scores Equations (6) and (7) which gives a balance
between missed regions of the frame and false alarms. In order to calculate F1-score and F2-score we
use the following equations:

F1 =
2PR

P + R
F2 =

5PR
4P + R

(6)

where P and R is the precision and recall and calculated as:

P =
NTP

NTP + NFP
R =

NTP
NTP + NFN

(7)

Similarly, mathematically, IoU can be written as:

IoU =
I

U
=
|Pred ∩ GT|
|Pred ∪ GT| (8)

where, I is the number of pixels in the overlapping region between the predicted (Pred) and
groundtruth (GT) mask. And U is the number of pixel in the union of the area between the predicted
and groundtruth.

6.5. Qualitative Comparison

To show the effectiveness of our proposed PedNet, we trained U-net [5] on our own dataset.
U-net has a very similar architecture to PedNet but does not use multi-frames for segmentation.
We tested U-net and PedNet on the parking-lot [44,45] dataset. The parking-lot dataset was not
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included in the training set of either network. The Figure 7 show example frames where PedNet
performs well and U-net fails to segment regions corresponds to the pedestrian.

(a) U-net (Frame 184) (b) PedNet (Frame 184)

(c) U-net (Frame 189) (d) PedNet (Frame 189)

(e) U-net (Frame 574) (f) PedNet (Frame 574)

(g) U-net (Frame 846) (h) PedNet (Frame 846)

Figure 7. U-net [5] and PedNet are trained on the training datasets. The first column shows the result
of U-net while the second column shows the result of PedNet. Even though PedNet has never seen
Parking-lot [44,45] dataset, it gives better segmentation results.
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7. Discussion and Future Work

Deep learning models have shown outstanding performance on segmentation compared to
hand-crafted features based models. However, all the deep models only rely on visual learned
features. Our work is first effort to incorporate the temporal information in the deep network for
segmentation. After training the network, the network should be able to extract different information
from the frames at t− 1, t, and t + 1. To prove our claim, we used Grad-CAM [43] to visualize the
activations of the layers. The visualization showed that the response of the network is different
on each frame. Hence, the network learned to combine the optimal temporal features for spatial
segmentation. Furthermore, we tested the parking-lot dataset which the network has never seen.
The qualitative results show that PedNet successfully segments the regions in frames corresponding to
the pedestrians. We trained the current architecture only for a single class i.e., pedestrian. However,
it could be trained for any other class and potentially, for multi-classes. While evaluating the network,
it was challenging to find relevant datasets. As almost all the segmentation datasets like Pascal VOC
consist of single-frames. However, our model needs sequential data in order to exploit the temporal
information for segmentation. The datasets that is commonly used for tracking pedestrian was a good
fit to evaluate our model. Moreover, we evaluated the model on CamVid which is most commonly
used for segmentation. In future, our aim is to train the network for more than one classes and also
increase the temporal window i.e., rather than considering only three frames, consider a batch of
frames for even more temporal rich information.

8. Conclusions

We proposed a spatio-temporal deep convolutional neural network that exploits temporal
information for spatial segmentation. The backbone of our architecture consists of an encoder–decoder
network for downsampling and upsampling the feature maps, receptively. For boundary delineation
of the segmented mask, long-skip connections are introduced which helps to combine the low-level
fine-grained features with high-level semantic information. The network is trained end-to-end from
scratch. Two types of data augmentations are used which enhances the network generalization
and avoid the problem of under-fitting. Different layers of the network are visualized and the
maximum response of the consecutive frames are calculated through Grad-CAM. The variance in
the response showed that the network is forced to learn features from the previous and future frame
for spatial segmentation of the current frame. We evaluated the network on 8 datasets and achieved
state-of-the-art performance. Qualitative results are also shown against single-frame segmentation
approaches and the effectiveness of temporal information has been proved.
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