
Journal of

Imaging

Article

Measuring the Spatial Noise of a Low-Cost Eye
Tracker to Enhance Fixation Detection

Kristien Ooms 1,* ID and Vassilios Krassanakis 2,3 ID

1 Department of Geography, Ghent University, 9000 Gent, Belgium
2 Polytech Nantes, Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes,

44306 Nantes CEDEX 3, France; krasanakis-v@univ-nantes.fr or krasvas@teiath.gr
3 Department of Surveying & Geoinformatics Engineering, University of West Attica, 12243 Aigaleo, Greece
* Correspondence: kristien.ooms@ugent.be; Tel.: +32-9-264-4636

Received: 1 June 2018; Accepted: 25 July 2018; Published: 28 July 2018
����������
�������

Abstract: The present study evaluates the quality of gaze data produced by a low-cost eye tracker
(The Eye Tribe©, The Eye Tribe, Copenhagen, Denmark) in order to verify its suitability for the
performance of scientific research. An integrated methodological framework, based on artificial
eye measurements and human eye tracking data, is proposed towards the implementation of the
experimental process. The obtained results are used to remove the modeled noise through manual
filtering and when detecting samples (fixations). The outcomes aim to serve as a robust reference for
the verification of the validity of low-cost solutions, as well as a guide for the selection of appropriate
fixation parameters towards the analysis of experimental data based on the used low-cost device.
The results show higher deviation values for the real test persons in comparison to the artificial eyes,
but these are still acceptable to be used in a scientific setting.
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1. Introduction

Eye movement analysis constitutes one of the most popular ways to examine visual perception
and cognition. The effectiveness of the method can be easily proved by the wide range of applications
in several research disciplines, including: Research in psychology [1], human-computer interaction
(HCI) and usability [2,3], training [4] and learning processes [5], marketing [6], reading behavior [7],
etc. Eye tracking techniques allow capturing the visual reaction in an objective way. Considering
the complexity of the spatiotemporal distribution of eye tracking data, the need for robust analysis
techniques to efficiently process the recorded signals is well-known from the early eye movement
surveys [8,9]. The analysis of eye tracking protocols is connected with the implementation of fixation
identification algorithms, which constitute the basis for the development of other analysis software
tools. Over the last years, different fixation identification algorithms have been proposed by the eye
tracking community (e.g., [10–13]), while at the same time several eye movement analysis tools have
been developed. It is worth mentioning that the last decades several toolboxes, libraries, and/or
standalone, such as ILAB [14], OGAMA [15], GazeAlyze [16], EyeMMV [12], ETRAN [17], and
ASTEF [18,19], have been proposed and distributed as open-source projects.

The wide acceptance of eye tracking methods in both basic and applied research disciplines
resulted in a technological revolution of the recording devices. Modern approaches of eye localization
are based on ordinary webcams (e.g., References [20–22]), which also holds true for low-cost eye
trackers (e.g., References [23–25]). These types of eye tracking devices have several advantages
in comparison with the traditional ones, as they have a low-cost and a typically a small size,
which facilitates their transport and the use of multiple trackers at the same time [26]. An excellent
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presentation of the current panorama in low-cost eye tracking services (methods, datasets, software
etc.) is provided in a recent review article by Ferhat and Vilariño (2016) [27].

Among the existing commercial devices, Eye Tribe (The Eye Tribe©, The Eye Tribe, Copenhagen,
Denmark) has already been used in several research studies and applications (e.g., References [28–31]).
Based on the results of a recent study, presented by [26], the accuracy and the precision of this device
may be considered comparable with these of well-established trackers. Despite the fact that this type
of low-cost eye trackers can be served as excellent utilities for HCI applications (e.g., typing using only
the eyes and virtual keyboards, manipulate software applications etc.), a large challenge is to verify if
these devices can be used for scientific purposes. For this it is essential to verify the captured signal’s
quality (i.e., accuracy and precision), under real experimental conditions, while at the same time
selecting the appropriate experimental set-up (i.e., sampling frequency, recording software, distance
between monitor and participant, analysis parameters) [26,32].

In the present study, two researchers combined their previous experience the field of eye
movement research: (1) The evaluation of the Eye Tribe Tracker’s accuracy, which also includes
a statistical comparison with other eye trackers (e.g., SMI RED [26]), and (2) the development of
a fixation detection algorithm, capable of removing spatial noise (EyeMMV [12]). The proposed work
is a combined follow-up study on these two independent initiatives.

An integrated methodological framework, based on artificial eyes measurements and human eye
tracking data, is proposed for the implementation of the process. The results of this work aim to serve
as a reference for the verification of the validity of low-cost solutions in scientific research and the
enhancement of the resulting fixation detections through the selection of appropriate parameters for
noise removal (e.g., using EyeMMV’s algorithm).

2. Related Work

2.1. The Eye Tribe and its Low-Cost Eye Tracker

When it was founded in 2011, the ambition of the company “The Eye Tribe” was “to make
eye tracking available for everyone at an affordable price”. In 2014, they started shipping their
first eye tracker with the slogan that it was “The world’s first $99 eye tracker with full SDK” [26].
The specifications of this device can be found in Table 1. It is a very small and lightweight eye
tracker, making it flexible to transport and use. Furthermore, it can be placed ‘freely’—for example,
beneath a laptop screen, underneath a monitor on a small tripod (standardly included in the package),
or optionally attached to a tablet.

Table 1. Specifications of the Eye Tribe low-cost device (see Reference [26]).

Eye Tracker Eye Tribe Tracker

Eye tracking principle Non-invasive, image-based eye tracking—pupil with corneal reflection
Sampling rate 30 Hz or 60 Hz

Accuracy 0.5◦–1◦

Spatial resolution 0.1◦ (RMS)
Latency <20 ms at 60 Hz

Calibration 9, 12 or 16 points
Operating range 45 cm–75 cm

Tracking area 40 cm × 30 cm at 65 cm distance (30 Hz)
Gaze tracking range Up to 24”

Dimensions 20 cm × 1.9 cm × 1.9 cm
Weight 70 g

Although this eye tracking system was not accompanied by a fully-fledged software package
to set-up and conduct analyses, it got picked up by researchers rather quickly. A search of Google
Scholar resulted in a list of more than 50 research publications which at least mention the Eye Tribe eye
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tracker. From this list, six were already published in 2014 already, and 25 in 2015. Because of this recent
evolution it is not surprising that the majority of these publications were conference contributions,
a much smaller portion of journal articles were counted. The remainder of the publications were master
theses or other reports. Furthermore, the research fields of these publications are also diverse, including:
Human-computer interaction, psychology (including sub-fields such as perception, cognition, and
attention), computer science, eye tracking, medicine, gaze as input, and education.

As was indicated before, The Eye Tribe eye tracker was not used in all publications, others just
mention its existence. From this large collection of publications, three deserve special attention because
they focus on evaluating the eye tracking device itself. Dalmaijer (2014) [32] was the first to question
whether this new low-cost eye tracker could be used for research purposes. He compared the accuracy
and precision of the tracker from The Eye Tribe (60 Hz sampling rate) with that of the high-quality
Eye-Link100 (from SR Research, 1000 Hz sampling rate). He concluded that the device was suitable for
analyses related to fixations, points of regard and pupillometry, but that the low sampling rate hinders
it use for high-accurate saccade metrics. The paper also introduces some open-source toolboxes
and plugins (e.g., Pytribe, PyGaze plugin for OpenSesame, and Eye Tribe Toolbox for Matlab) to
communicate with the Eye Tribe Tracker. This study was further extended by Ooms et al. (2015) [26],
who measured the accuracy and precision of the Eye Tribe Tracker at 30 Hz and 60 Hz, comparing the
recordings registered through different tools (JAVA using the API and OGAMA) and applying different
fixation detection tools (OGAMA and EyeMMV). The obtained results were compared with those
registered with a high-qualitative eye tracker from SMI (RED250) which recorded eye movements at
60 Hz and 120 Hz. These authors also concluded that, when set-up correctly and used in a correct
context, the Eye Tribe tracker can be a valuable alternative for the well-established commercial eye
trackers. Popelka et al. (2016) [33] also compared the results of the Eye Tribe tracker with those
registered with an SMI RED250, but they performed a concurrent registration with both eye trackers.
The data recorded from the Eye Tribe tracker was registered using HypOgama, which is a combination
of OGAMA (to record the eye tracking data itself) and Hypothesis (to register additional quantitative
data). They also registered minimal deviations between both systems.

When focusing on the studies which actually used the eye tracker, most of them did not mention
the sampling rate at which the recordings were registered. Nevertheless, the experiments had to be
set-up, the data registered and finally analyzed using some kind of software. Most of them do not
mention specific software or indicate they used the accompanying SDK (e.g., PeyeTribe—a python
interface) [34]. Other authors managed to combine the Eye Tribe tracker with other equipment such as
EEG or Emotive EPOC [29,35].

2.2. Research with Webcams or DIY Eye Trackers

Besides the rise of the commercially available low-cost eye trackers, such as the Eye Tribe Tracker,
other related trends could be noticed in scientific research: Do-it-yourself (DIY) or home-made eye
trackers. These DIY eye trackers are typically constructed using a webcam and an IR light source (e.g.,
Reference [23]). These eye trackers are also often accompanied by custom made open-source software
tools, such as open Eyes [36], ExpertEyes [25] and ITU Gaze-Tracker [37]. The reported costs for these
DIY eye trackers varies from 17 to 70 euros and the reported accuracies from “less than 0.4◦” [25] to
1.42◦ [23].

Recently, webcams (stand-alone or integrated in a laptop, without additional IR-lighting) are
also used to track a users’ eyes (e.g., Reference [38]). This new trend would be a great revolution in
eye tracking research, making it possible to conduct eye tracking research at a distance with nearly
any user that works with a device that contains a camera or webcam. Because no additional IR light
source is used, eye trackers solely based on a webcam take a different approach. Gómez-Poveda and
Gaudioso (2016) [21] describe a multi-layered framework, based on (1) face detection; (2) eye detection,
and (3) pupil detection. They evaluated this approach using three different cameras. WebGazer is
such an eye tracking system that is available online which can connect to any common webcam [21].
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To use the webcam as an eye tracker, the user has to calibrate the system by watching certain points
on the screen in a game-like setting. Similar examples of such online services are EyeTrackShop
(http://eyetrackshop.com) and GazeHawk [39]. Interesting to note is that the latter joined Facebook.
Other companies that offer webcam-based eye tracking are Xlabs (http://xlabsgaze.com/) and EyeSee
(http://eyesee-research.com/). Another example is TurkerGaze, which is linked with Amazon
Mechanical Turk (AMTurk) in order to support large-scale crowdsourced eye tracking [20].

2.3. Eye Tracking Data Quality

Eye tracking data quality is related to the raw data produced by eye tracking devices [40].
Data quality can be mainly expressed by two measures; accuracy and precision. Accuracy refers to
the difference between the measurement and the real eye position, while precision characterizes the
consistency among the captured data [21]. These measures are also discussed in detail and applied
in the paper of the study that precedes the current experiments [26]. According to Holmqvist et al.
(2012) [41], the overall quality of eye tracking data is a subject of several factors, including participants,
operators, executed tasks, recording environment, geometry of the system camera-participant-stimulus,
and the eye tracking device. Additionally, more specific factors, such as calibration process, contact
lenses, vision glasses, color of the eyes, eyelashes and mascara [42], as well as participants’ ethnicity
and experimental design [43], may also have a critical role. Furthermore, it is worth mentioning that
recent studies also examine the affection of additional parameters (e.g., head and position movements)
in the case of infants (e.g., Reference [44]). As it becomes obvious, issues related to data quality are
considered very important for the performance of eye tracking experimentation in both stable and
removable devices (see e.g., the work described by Clemotte, et al. (2014) [45] about a remote eye
tracker model by Tobii), DIY devices (see e.g., the recent work of Mantiuk (2016) [46]) and low-cost
devices (see e.g., the recent evaluation of Tobii Eye X Controller described by Gibaldi, et al. (2016) [47]).
Except from the aforementioned research studies, an extended description and discussion about the
eye tracking data quality measures can be also found in a research article by Reingold (2014) [48].

The computation of the accuracy of an eye tracking device can be based on the collection of
real (human) eye tracking data, during the observation of fixed targets, with uniform (or not) spatial
distribution, projected on a computer monitor or observed within a real or 3D virtual environment (for
the case of mobile devices). This procedure is also able to validate the process of eye tracker calibration
and to serve as an indicator of the recording uncertainty. For example, in a research study presented by
Krassanakis, et al. (2016) [49], the calibration process is validated based on the performance of the fuzzy
C-means (FCM) algorithm clustering, using as number of clustering classes and the number of fixed
targets. Generally, the use of fixed targets and the calculation of the performed accuracy, before and
after the presentation of the experimental visual stimuli, may serve as a quantitative indicator of
calibration quality and the quality of the collected gaze data [12,50–53].

The complexity of eye tracking data can already be derived from the fact that the sampling rates
of the available eye tracking devices can vary between 25–2000 Hz [40]. Therefore, the aggregation of
eye tracking events in fundamental metrics (i.e., fixations and saccades) is a crucial process. Moreover,
the results of this process are directly connected with the quality of the recorded data, as well as with
the implemented algorithms for events detection (see also the section Fixation identification algorithms
and thresholds).

Since accuracy depends on real gaze data, the eye trackers’ precision can be measured through the
use of artificial eyes (e.g., References [49,54,55] and the computation of root mean square (RMS) error,
sample distances, or standard deviation metrics [56]. For example, Wang et al. (2016) [55] present an
extensive examination on different types of artificial eyes in conjunction with different eye tracking
devices. More specifically, Wang et al. (2016), using four models of artificial eyes, examined monocular
and binocular devices—with sampling rates and precisions (as reported by the manufacturers) in the
ranges 30–1000 Hz, and 0.01◦–0.34◦, correspondingly, while a comparison with real gaze data is also
implemented. The results of studies, such as those presented by Wang et al. (2016) [55], may serve as
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critical guides to set-up experimental designs and the analysis of the resulting data. Since, artificial
eyes seem an effective way to evaluate the precision of eye tracking devices, it is worth mentioning that
other approaches simulate the eyes using render images produced by 3D models (e.g., Reference [57]).

2.4. Fixation Identification Algorithms and Thresholds

Although the accuracy of eye trackers is determined solely on raw data, it is important to consider
the algorithms that identify the relevant samples. When the noise of a certain eye tracker is (partially)
modelled, it can be filtered out when processing the raw data. For a majority of the studies, this fixation
detection step has to be carried out anyhow. Fixations and saccades constitute the fundamental events
occurred during the performance of any visual procedure. The implementation of event detection
algorithms has a direct influence in the next steps of the analysis and in the overall experimental
results interpretation.

A basic classification of fixation detection algorithms is proposed by Salvucci and Goldberg
(2000) [58]. This taxonomy has been adapted by several research studies (see e.g., the current
review article presented by Punde and Manza (2016) [59]). The proposed classification is based
on the parameters that can be used for the characterization of fixation events. More specifically,
these parameters are related to velocity-based, dispersion-based, or area-based criteria. Among the
proposed approaches, dispersion-based (I-DT) and velocity-based (I-VT) algorithms seem to have wide
acceptance [60]. Indeed, both commercial (e.g., Tobii, SMI, etc.) and open-source tools (e.g., OGAMA,
EyeMMV etc.) are based on I-DT and I-VT types of algorithms. Additionally, there are also research
studies, which propose the identification of fixations and saccades by combining criteria inspired by
I-DT and I-VT types (see, for example, the research study presented by Karagiorgou, Krassanakis,
Nakos, and Vescoukis (2014) [61], and the proposed work by Li, et al. (2016) [62], where the process of
events identification is based on the implementation of DBSCAN algorithm).

Except from the selection of the suitable identification algorithm, the used algorithms’ parameters
play also a critical role. Different parameter values may produce different outcomes [63]. Therefore,
considering the spatiotemporal nature of fixation events, the corresponded spatial and temporal
thresholds must be very carefully chosen and adapted to the nature of the executed visual task.
As a consequence, several methods have proposed towards the examination on the optimum fixation
parameters’ thresholds (see e.g., the analytical/statistical method recently proposed by Tangnimitchok,
et al. (2016) [64]). The range of the radius value for the detection of fixation point cluster is well
reported in several research studies; reported ranges refer the values between 0.25◦–1◦ [18,58,65] and
0.7◦–1.3◦ [66,67] of visual angle. Similarly, temporal thresholds are also mentioned in the literature
and correspond to the minimum duration that may characterize a fixation event. Typical literature
refers the values of 100–200 ms [3,65], 100–150 ms [68], 150 ms [69], while in other studies report also
the value of 80 ms as the minimum value [70].

3. Materials and Methods

3.1. Participants

Two types of participants can be distinguished: Artificial and real participants (in short, AP and
RP respectively). The AP was constructed out of a polystyrene egg shape—30 cm from top to bottom,
wide side at the top—on which two artificial eyes (in glass, used for stuffed animals, 2 cm diameter)
were attached. The position of the eye (on the head and mutual distance) was adjusted until the Eye
Tribe UI indicated a stable detection of both artificial eyes. To guarantee a fixed position of the artificial
eyes and head, the latter was attached to a horizontal bar of which both ends were placed on tripods.
This distance between the artificial eyes and the screen was 60 cm. This set-up is further illustrated
in Figure 1.

It must be noted however that the initial idea for the artificial participant was to have a set of
printed artificial eye on paper based on real eyes (see Figure 2 for a sample), as in Krassanakis et al.
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(2016) [49]. However, the Eye Tribe UI did not detect these eyes, even when they were printed on
alternative types of backgrounds (e.g., plastic to create a reflection). It was discovered that the software
takes a multi-layered detection approach, similar to what is described by Gómez-Poveda and Gaudioso
(2016) [21], starting with the distinction of the shape of the head. Therefore, a curved surface is required,
which was approximated by the egg-shape.
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Figure 2. First approach to design a pair of artificial eyes based on images of real eyes.

Next, five real participants were invited to take part in the test. These were all employees of the
Department of Geography at Ghent University who were asked to execute a simple task on the screen
(see Section 3.3). These participants were seated at a distance of 60 cm from the screen. They were
informed that their eyes were being monitored and that their data would be analyzed anonymously.
All participants agreed to this procedure.

3.2. Apparatus

All data were registered with an Eye Tribe Tracker (see Table 1 for specifications). For the AP,
the eye movements were recorded at 30 Hz and 60 Hz. Furthermore, the device was connected with
three types of monitors on which different settings for the resolution were selected. An overview of
the specifications of the three monitors can be found in Figure 3. The default resolution of the monitors
is underlined, and the colors indicate which resolutions were available on multiple monitors. The data
of the RPs was only recorded at 60 Hz, using M2 with its default resolution.
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3.3. Stimuli and Tasks

With the AP no stimuli were created as the artificial eyes only gazed continuously at one fixed
point. This gaze was recorded for 5 min in each trial, varying in monitor set-up (dimensions and
resolution) and sampling rate of the tracker (see Section 3.2).

For the RPs, a set of stimuli were created which all had the same grey background (RGB = 225, 225,
225). On this background, targets were placed (see Figure 4) which constitute out of a red circle with
a black dot in the center. The size of the circle (radius in pixels, R) was based on the reported accuracy
of the visual angle that could be recorded by the Eye Tribe Tracker (0.5◦–1.0◦) and the distance between
the participant and the screen (60 cm). The radius of the circle corresponds to 36.7 px and 73.3 px with
visual angle of 0.5◦ and 1.0◦ respectively. Therefore, it was opted to take the rounded average in this
interval, which is 50 px (corresponding to a visual angle of about 0.7◦). The size of the black dot in the
center is 10 px.

In total, 14 stimuli were created, from which 13 contained only one target. These latter images
were displayed one by one to the participant in a random order, which was the same for all participants.
Table 2 lists the coordinates of all targets (in screen coordinates). Each stimulus, and therefore each
target, was displayed for five seconds and the participants were asked to fixate on the central dot in
the red circle. The last image contained five targets, which were numbered (in white, see Figure 4).
This stimulus remained visible for 25 s and the participants were asked to fixate each target for about
five seconds.
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Table 2. Targets’ coordinates in pixels (maximum values of horizontal and vertical dimensions
correspond to the values of 1680 px and 1050 px, respectively).

nr 13 Targets nr 5 Targets X (px) Y (px)
1 1 750 75
2 8400 75
3 2 16,050 75
4 4575 300
5 12,225 300
6 750 525
7 3 8400 525
8 16,050 525
9 4575 750
10 12,225 750
11 4 750 975
12 8400 975
13 5 16,050 975

3.4. Procedure

All tests were conducted at the Eye Tracking Laboratory of the Department of Geography at
Ghent University. The eye movement data was recorded using PyTribe, a Python wrapper for the Eye
Tribe tracker—based on PyGaze7—which can be downloaded from GitHub [32,71].

The tests with the AP did not require any calibration as the AP’s gaze is fixed on one
point. In total 50 trials of five minutes each were recorded with the AP (25 different “monitor x
resolution”-combinations and two sampling rates), which were saved in a text file. This file contains
a timestamp (in ms), state (how many eyes were detected), the x and y locations of the gaze (left and
right eye separately and combined, including the raw and average values) and information on the
pupil (size and position).

For each of the 50 trials, the deviation (Euclidean distance between target and gaze position) was
calculated expressed in pixels and in visual angle, considering a theoretical viewing distance of 50 cm,
55 cm, 60 cm, and 65 cm for the left eye, right eye, and the combined value.

The tests with the RPs were preceded by a calibration procedure—using the Eye Tribe UI—based
on five calibration points. Similarly, as with the AP, all eye movements were recorded using the PyTribe
code, in which the stimuli (including their timings) could be implemented.

The data is processed using different manual and automatic procedures in order to optimize
its quality. The Eye Tribe Tracker provides two sets of positions—The raw positions (raw) and
average (avg) positions. The latter are already initially processed by the Eye Tribe server while
recording—smoothed positions. First these two data sets are manually filtered based on two criteria:

1. The recordings during the first second of a trial is removed as the participant has to redirect its
gaze towards the target point.

2. The recordings indicated by a state “8” are removed. This corresponds to the situation where the
eye tracker was unable to determine the position of the right and left eye.

Next, the data (avg and raw, both unfiltered and filtered) is further processed by applying
a fixation detection which is capable of removing noise. The identification of fixation events is based
on the implementation of the dispersion-based algorithm of EyeMMV toolbox [52]. This toolbox was
selected because (1) it is open-source, and (2) it has the capability to filter out noise when detecting
samples within the raw data. This algorithm implements both spatial and temporal criteria: The spatial
dispersion threshold is implemented in two steps, while the temporal one corresponds to the minimum
value of fixation duration. Hence, the execution of EyeMMV’s algorithm requires the selection of
two spatial parameters. The first parameter is related to the range of central vision (i.e., the spatial
dispersion of raw data during a fixation event, see also the section fixation identification algorithms
and thresholds), while the second one is applied towards the verification of each fixation cluster
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consistency. The second spatial parameter can be based on the statistical interval of 3 s for each cluster,
or to be considered as a constant value. In the first case the second parameter is adapted to each
cluster separately. In the second case (the accuracy of the eye tracking device is well-known_ the
second spatial parameter can be based on these reported accuracy values. A detailed description of
the algorithm and its parameters can be found in Krassanakis et al. (2014) [52]. The latter study also
illustrates that the use of the constant value as second parameters results in a better performance
compared to the statistical interval of 3 s.

The execution of EyeMMV’s algorithm was performed only for the RPs. More specifically,
considering the fixation thresholds’ values reported in the literature (see Section 2.4, on fixation
identification algorithms and thresholds), the performance of the algorithm was based on the range
between 0.7◦–1.3◦, with an interval of 0.1◦ for the selection of first spatial dispersion parameter.
The second parameter of the algorithm will be based on the average noise calculated derived from the
recordings with the AP (see Section 4.1). Additionally, the value of 80 ms (minimum reported value in
the literature) was selected as the minimum fixation duration for the execution of EyeMMV’s algorithm.

Finally, the deviation of the gaze position, relative to the actual target point, is calculated for all
combinations, as illustrated in Table 3.

Table 3. Overview of the data sets and processing steps considered in the analysis.

Unfiltered Filtered

Org Fix
0.7

Fix
0.8

Fix
0.9

Fix
1.0

Fix
1.1

Fix
1.2

Fix
1.3 Org Fix

0.7
Fix
0.8

Fix
0.9

Fix
1.0

Fix
1.1

Fix
1.2

Fix
1.3

raw x x x x x x x x x x x x x x x x
avg x x x x x x x x x x x x x x x x

4. Results

4.1. Artificial Participant

Figure 5 shows the deviations of the registered gaze locations (in pixels) from the real target
locations on M1, M2, and M3 at their default resolution, recorded at 30 Hz (left), and 60 Hz (right).
These give insights in the precision of the recordings. Separate values are given for (based on Eye
Tribe measures): The raw and the average (smoothed) coordinates, the x and y values, and the
obtained values for the left and right eye. Since we used the (unprocessed) Eye Tribe output values,
the results are presented in pixels (without a recalculation to visual angle). The smoothed (avg)
coordinates are also registered from the Eye Tribe’s output, without any additional modifications.
However, no information from the Eye Tribe documentation is available on how these coordinates
were calculated. Firstly, when considering the smoothed coordinates (avg), the value for the deviations
is much lower in comparison with the raw coordinates. The obtained values for avg are in the order of
5 px and less. Secondly, a larger deviation can be noted in the y-coordinates, although the y-dimension
of the monitor is smaller than the x-dimension. Thirdly, a variation between the deviations for the left
and right eye can be noted. Finally, better results are obtained when a sampling rate of 60 Hz is used
compare to the 30 Hz recordings in this specific set-up.
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Figure 5. Deviations (px) for the artificial participants (AP) computed for the default resolutions of M1,
M2, and M3 for both 30 Hz and 60 Hz set-ups; raw versus avg data (a) and left versus right eye (b).

The obtained deviations are recalculated in terms of visual angle, which is dependent on the
viewing distance. Besides the 60 cm distance that was employed during the experiment, deviations
corresponding to three other (theoretical) viewing distances are calculated as well—50 cm, 55 cm, and
65 cm. The results can be found in Figure 6, with a distinction between the 30 Hz and 60 Hz recordings
for M1 at different resolutions.
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Figure 6. Deviations (visual angle) for the AP computed for all distances and all available resolutions
for M1, for both 30 Hz and 60 Hz set-ups.

Figure 7 focuses on the different monitors and their resolutions, listing the deviations (expressed
in visual angle) for the recordings at 30 Hz and 60 Hz at a viewing distance of 60 cm. The obtained
values range between 0.1◦ to 0.7◦ (with an average of 0.25◦), which is conform the accuracy values
provided by the vendor. No clear trend in the deviations is found when considering the different
sampling rates or monitors and their resolutions.
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Figure 7. Deviations (visual angle) computed on different monitors for both 30 Hz and 60 Hz set-ups.

4.2. Real Participants

In contrast with the AP, the RPs fixated multiple target points. Two different types of stimuli
(separate target points or a combined set of target points) were implemented to allow evaluating
their influence on the registered eye tracking data. Firstly, the 13 points were displayed separately
which means that only one point was visible for a fixed amount of time (of five seconds). Only the
data registered in a specific time interval was assigned to the corresponding target point. Figure 8
shows the registered raw data for the 13 target points that were displayed on after the other. Secondly,
the five points were displayed together in one image and the participant had to move from one point
to the next on his/her own initiative. This was included as an extension on the study, as this is a
more top-down processing-oriented task, which can have a severe impact on how participants focus
or get distracted (e.g., Reference [72]). For this part of the study, we had to assign the gaze data to its



J. Imaging 2018, 4, 96 12 of 22

corresponding target. This can be done easily based on the fixed order with which these targets were
fixated and a fixed distance around each target point. This approach is similar to the results obtained
when the 13 points were displayed separately.
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Figure 8. An overview of the registered raw data for the 13 target points.

Figure 9 shows the deviations (expressed in visual angle, at a viewing distance of 60 cm) for
each of the target points when processing the original gaze data (13 targets) in X (left) and Y (right).
The values are, on the one hand, compared to the real X and Y positions of the targets and, on the
other hand, to the mean value of the recorded X and Y positions (M(avgX) or M(avgY)). This way it
can be discovered if there is a systematic deviation between the recorded values and the real values,
which allows comparing precision versus accuracy. Furthermore, the raw versus avg data sets (both
unfiltered) are considered. The graphs clearly indicate that a smaller deviation is registered when
comparing to the real target position (related to precision) instead of the mean position values (related
accuracy). Furthermore, the deviations are larger in the X than in Y.
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Figure 9. Deviations between de recorded values, average values and real values for X (a) and Y (b) (in ◦).

Figure 10 focusses on the deviations for each of the target position, compared to their real position.
For the 13 targets, a large difference between the filtered and unfiltered data is apparent, which is not
the case for the data when there were five targets. This is also confirmed by the Univariate ANOVA
test presented in Table 4, which also shows the interaction effect between filtering and the type of
target. Although the overall values for the five-target stimuli are much lower, no significant difference
is found. The difference between the avg and raw values is also not found to be significant.

Besides the manual filtering, the application of EyeMMV’s fixation detection algorithm (which is
described in Section 3.4) also includes a noise reducing component. This procedure is—next to the
manual filtering—thus an alternative option to remove noise and at the same time aggregate the data.
Besides the seven spatial dispersion thresholds: 0.7◦, 0.8◦, 0.9◦, 1.0◦, 1.1◦, 1.2◦, and 1.3◦. The value for
the average noise was set to 0.25◦ (derived from the AP recordings, see before). In other words, for the
execution of the algorithm considering the spatial threshold dispersion 1.0◦, the values delineating the
average noise correspond to t1 = 1.25◦, and t2 = 1.0◦.
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Figure 10. Deviations of the registered data (13 points (a); 5 points (b)), comparing filtering and the
raw versus avg recordings (in ◦).

Table 4. Univariate ANOVA test on the recorded deviations.

Univariate ANOVA F p

uf_f 9.769 0.003 *
avg_raw 0.000 0.984
13pt_5pt 2.570 0.114

uf_f * avg_raw 0.001 0.974
uf_f * 13pt_5pt 8.684 0.004 *

avg_raw * 13pt_5pt 0.000 0.996
uf_f * avg_raw * 13pt_5pt 0.001 0.975

The extraction of fixations (and their position) allows calculating deviations from the actual
location of the targets. For example, for the case of the average threshold of 1.0◦, the resulting values
for these deviations in the avg unfiltered data set are, for each participant, presented in Figure 11a for
the 13 target points—and in Figure 11b for the five target points.

EyeMMV’s algorithm allows defining spatial parameters in order to filter out the noise in the data.
The results for the parameters ranging from 0.7 to 1.3 are presented in Figure 12 and compared with
the original data before the application of the fixation detection algorithm (filtered or not). Overall,
it can be noticed that the deviations are somewhat higher for the 5 target points. The associated
statistical analysis (based on repeated measures, see Table 5) reveal the variation in the deviations is
significant for the 13 target points when applying the fixation detection algorithm on the unfiltered
data. The raw data for the 13 target points also shows a significant improvement when applying the
algorithm after filtering, which is not the case for the avg data set. Overall after applying the fixation
detection algorithm, the deviations are somewhat higher for the five-point targets compared to these
of the 13 targets.
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Figure 12. Deviations (visual angle) for the case of threshold 1.0◦ for 13 targets (a) and 5 targets (b) for
all participants (in ◦).

Table 5. Statistical (repeated measures) tests on the application of the EyeMMV’s algorithm (df = 7—org
values + 7 thresholds; df = 6—only thresholds).

?

13 pt 5 pt

avg raw avg raw

df = 7 df = 6 df = 7 df = 6 df = 7 df = 6 df = 7 df = 6

Unfiltered
p = 0.006 *

F = 3.246

p = 0.618

F = 0.742

p = 0.001 *

F = 4.252

p = 0.069

F = 2.096

p = 0.236

F = 1.482

p = 0.459

F = 0.990

p = 0.154

F = 1.778

p = 0.171

F = 1.717

Filtered
p = 0.330

F = 1.178

p = 0.396

F = 1.053

p = 0.041 *

F = 2.275

p = 0.256

F = 1.336

p = 0.118

F = 1.665

p = 0.114

F = 2.033

p = 0.112

F = 2.044

p = 0.107

F = 2.081

5. Discussion

The execution of visual experimentation based on low-cost and/or no-cost (e.g., ordinary
webcams) devices constitutes one of the most challenging topics in the field of eye tracking. Despite
the fact that these types of devices may be quite suitable for basic needs of HCI, such as software
interface manipulation through the eyes of the user, the question about the use of these devices in
scientific research still remains. The experimental set-up presented in the current study contributes to
the state of the art in the field, by delivering representative results of spatial noise measurements for the
case of the low-cost Eye Tribe eye tracker. This may serve as a guide for future studies. These results
can be used as input for the execution of EyeMMV’s algorithm, which uses a “two-step” spatial
dispersion threshold for fixations identification, considering the spatial noise of the eye tracker as
input to the algorithm.

The performance of the low-cost device is evaluated with both artificial and real participants,
taking into account different settings. With the AP different monitor settings (dimensions
and resolutions), eye tracker frequencies and (theoretical) viewing distances were implemented.
The recorded deviations (Figure 6) show lower (and thus better) results when recorded at a sampling
rate of 60 Hz. However, the difference with 30 Hz is in the order of 0.2◦ or less. Nevertheless,
a difference is found between the recordings from the left and right eye. Although this cannot be
confirmed, it could be explained by the orientation of the artificial head and eyes or the even the
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quality of the eyes itself. Furthermore, the effect of the different viewing distances is clearly present,
with a decreasing deviation in case of an increasing viewing distance. Moreover, the obtained values
produced from the use of different monitor set-ups (Figure 7) range between 0.1◦ to 0.7◦ (with an
average of 0.25◦) which is conform the accuracy values provided by the vendor. No clear trend in the
deviations is found when considering the different sampling rates or monitors and their resolutions.

The recordings for the RP were verified according to their precision (deviation from the real target
position) and accuracy (clustering of the recordings or deviation from the average location). The results
show a consistently better value regarding precision than accuracy. The deviations in accuracy where
especially higher in the X-direction compared to the Y-direction. This latter finding can (only partially)
be explained by the fact that the monitor’s dimensions are larger in X compared to Y.

The manual filtering step, based on a few simple criteria, already significantly improved the
precision of the data to an average of less than 1◦ for the 13 point targets and around 1.5◦ for the 5 point
targets. However, in the latter case, the effect of the manual filtering step is limited as the unfiltered
data already showed smaller deviating values.

The application of the EyeMMV’s fixation detection algorithm also implies a noise filtering step.
Taking the results of deviations for the case of threshold 1.0◦ for 13 targets (Figure 9a) and five targets
(Figure 9b) as an example, it is clear that the obtained values are higher compared to those of the AP,
with an average value of respectively 0.88◦ and 1.24◦. However, no clear trend related to the position
of the target points can be distinguished.

The application of the EyeMMV’s fixation detection algorithm (different thresholds) show
a significant improvement in the recorded deviations for the 13 targets, when it is applied on the
unfiltered data set. However, the improvement when applying EyeMMV’s algorithm on the data set
which was already manually filtered is only significant in one case (13 point, raw data). A smaller
improvement after the application of the EyeMMV’s algorithm can be seen in the graph showing
data for five targets, but this is not found to be significant. Nevertheless, no significant difference is
found with the application of the different spatial thresholds integrated in the EyeMMV’s algorithm.
The range of these thresholds (0.7–1.3) was already based on the modelled noise from the AP, which
can explain the limited variation within them.

Additionally, the results which correspond to the average difference values of all tested thresholds
indicate that the final coordinates of the original recordings or fixation events may be comparable
with corresponded values produced in expensive devices, respectively after manual filtering or
the performance of EyeMMV’s algorithm. What is more, the 13 point stimuli’s correspond to
a standard calibration procedure (with possibly less target points), which could be employed as
such in future studies to verify the precision and accuracy of the recordings during an experiment.
However, the results highlight slightly higher deviations for the case of five targets (multi-task-oriented
observation). This can be explained by the fact that this task corresponds more to top-down processing
comparted to bottom-up processing (in the case of the separate 13 targets) [72].

EyeMMV’s algorithm could also be evaluated using as second spatial threshold a value connected
with the std (to be more precise the statistical threshold of 3 s). This was not implemented in the
research because it was indicated in by Krassanakis et al., 2014 [52] that the performance was better
when using a constant value. However, it could be useful to investigate how the values differ based on
these different filtering techniques.

The results of the present study are in correspondence with the conclusion produced by a previous
study presented by Ooms et al. (2015) [26], and indicate that the low-cost devices can be used for the
performance of scientific research after the optimal selection of the experimental set-up. Except from
that the present study reports critical values of spatial noise produced in several set-ups, it indicates
the way to effectively use these values as an input in EyeMMV’s fixation identification algorithm.
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6. Conclusions & Future Work

An integrated methodological framework is presented through the current study towards the
measurement of the spatial noise produced in eye tracking devices. Initially the noise is modelled
using the artificial participant, which gazes continuously on a single point in space. Deviations from
this location are caused by noise, which is measured in the experiment. Next experiments are executed
with ‘real’ test persons who have to focus on different target points on the screen. Two alternative
approaches are proposed to reduce the noise in the data: The application of a manual filtering step and
the application of a fixation detection algorithm (from EyeMMV) in which noise reduction parameters
are implemented. A significant improvement is found for both approaches when different targets are
fixated separately. Consequently, if the aim is to further analyze the aggregated data (which requires
the need for the application of a fixation detection algorithm), the EyeMMV’s algorithm can be applied
directly as it can filter out the noise while aggregating the data. If the original gaze data is required,
a simple manual filtering step already suffices to significantly improve the quality of the recorded data.
The outcomes show that the use of low-cost devices is feasible and may produce valuable results for
further analysis (metrics computations, eye tracking visualizations, etc.). Furthermore, other filtering
techniques (simple and more complex) could be evaluated as well to process the obtained data.

Despite the fact that the presented research study is based on a low-cost device, this framework
(including a low-cost set-up with artificial eyes) can be implemented in any eye tracker. A challenging
process is to measure the corresponded values of spatial noise and to use the same algorithm in
order to compute fixations from gazes produced from ordinary webcam and/or work with simple
software (such as a web browser). What is more, this study was conducted in a controlled laboratory
set-up. It would be also be useful to get insights in the performance of these low-cost eye trackers
in less optimal conditions (e.g., variation in the light source, more dynamic stimuli, changing tasks).
Other algorithms have already been developed to deal with adaptation issues in these changing
conditions [73–75].
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