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Abstract: Today, museum visits are perceived as an opportunity for individuals to explore and make
up their own minds. The increasing technical capabilities of Augmented Reality (AR) technology
have raised audience expectations, advancing the use of mobile AR in cultural heritage (CH) settings.
Hence, there is the need to define a criteria, based on users’ preference, able to drive developers and
insiders toward a more conscious development of AR-based applications. Starting from previous
research (performed to define a protocol for understanding the visual behaviour of subjects looking
at paintings), this paper introduces a truly predictive model of the museum visitor’s visual behaviour,
measured by an eye tracker. A Hidden Markov Model (HMM) approach is presented, able to predict
users’ attention in front of a painting. Furthermore, this research compares users’ behaviour between
adults and children, expanding the results to different kind of users, thus providing a reliable
approach to eye trajectories. Tests have been conducted defining areas of interest (AOI) and observing
the most visited ones, attempting the prediction of subsequent transitions between AOIs. The results
demonstrate the effectiveness and suitability of our approach, with performance evaluation values
that exceed 90%.

Keywords: hidden markov models; eye-tracking; augmented reality applications; cultural heritage

1. Introduction

Museum visits are by now perceived as an opportunity for individuals to explore and make
up their own minds, and to test their own interpretations instead of the experts’; they have become
a tool of entertainment like theaters or cinemas. Throughout time, museums and art galleries have
preserved our important Cultural Heritage (CH) and served as important sources of education
and learning. Moreover, visitors are increasingly taking an active role within museums. The visitor
experience is not adequately described by understanding the content, the design of exhibitions, or even
by understanding visit frequency or the social arrangements in which people enter the museum. To get
a more complete answer to the questions of why people do or do not visit museums, what they do
there, and what learning/meaning they derive from the experience, researchers’ efforts have been
aimed at better describing and understanding the museum visitors’ experience.
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In addition, nowadays museums have a unique perspective on technology’s impact. A modern
approach to the fruition of art is actually based on a wide and targeted use of technologies [1,2]
and a growing number of museums are adopting digital tools as an integral part of the exhibition,
providing users new instruments to study art deeply [3,4]. Among others, the increasing technical
capabilities of Augmented Reality (AR) have raised audience expectations, advancing the use of mobile
AR in CH settings [5]. At the same time, the attention regarding the use of AR has shifted from purely
attracting and entertaining audiences, to finding proper ways of providing contextually relevant
information that can enhance visitors’ experiences. The visualization of digital contents through
a display is allowed with the same point of view of the user, by superimposing virtual objects on the
real scene. As well, AR permits the visualization of virtual objects (e.g., 3D models, audio, text, images)
avoiding the use of artifacts (i.e., QR code) to retrieve contents, besides permitting an automatic
and interactive visualization of Points of Interest (POIs) [6]. This might positively influence visitors’
experience in front of a painting, hence increasing museum appeal. However, a current practice for the
development of AR painting applications is to choose the contents with the advice of historians, without
taking into account the user’s preferences. Although the validation of the conveyed contents must be
entrusted on the validation of experts, it might be positive to introduce on the development pipeline the
user’s feedback, using a more objective data-driven approach. For this reason, in a previous work [7]
we have performed a preliminary study to evaluate if the definition of a protocol to understand the
visual behaviour of subjects looking at paintings might help to improve and optimize an existing AR
application. The study presented in [7] gives the basic logic for the visual behaviour and eye-tracking
and has been used as the motivation for the analysis conducted in this work, which will be better
explained later. Interested readers can find a detailed description of the application in [5,8]. In fact,
eye tracking is a methodology whereby the position of the eye is used to determine gaze direction of
a person at a given time and also the sequence in which they have been moved [9]. Eye-movement
data consist of eye fixations and saccades. The first are brief moments in which the eye is still and
information is extracted from the stimulus (about two to four times per second). The saccades, instead,
are rapid jumps of the eye between fixations to redirect the line of sight to a new location [10].

Eye gaze data have been used in many fields such as psychology, neurology, ophthalmology
and related areas to study oculomotor characteristics and abnormalities, and their relation to mental
states and cognition, because of their relation with internal brain processes (thinking, cognition, etc.).
In many research fields, eye-tracking devices are used for analysing user behaviour [11], such as
in market research [12], human-computer interaction [9] and visualization research [13]. Due to the
wide fields of eye-tracking applications and the types of research questions, different approaches
have been developed to analyze eye-tracking data such as statistical algorithms (either descriptive or
inferential) [14,15], string editing algorithms [16], visualization-related techniques, and visual analytics
techniques [17], and finally also data-driven approaches [18,19]. Eye-tracking can be used to determine
which objects in a visual scene a person is interested in, and thus might like to have annotated in their
augmented reality view. The use of such technology can be definitively considered as a turnkey to
address users’ needs and expectations (even for different kinds of users), to assess the intrinsic value
of CH resources and to collect usage statistics by the users.

In line with the above-mentioned research issues, the main goal of this paper is to provide
a truly predictive model of the museum visitors’ visual behaviour; eye-tracking is used because it can
provide quantifiable learning outcomes and a rich contextual customized learning environment as
well as contents for each single individual. An Hidden Markov Model (HMM) approach is presented,
developed to predict users’ attention, in front of a painting, measured by an eye tracker. Therefore,
most visited areas of interest (AOI) are used to predict the next transitions between AOIs. Besides the
innovative nature of the model, the work even provides a user’s behaviour comparison between
adults and children, expanding the results to different kinds of users. Moreover, we design an HMM
for tackling two issues: (a) modeling and learning complex behaviours from human eye trajectories;
(b) recognizing the behaviors from new trajectories. To build robust and scalable behaviour recognition
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systems, it is crucial to model not only the natural hierarchical decomposition in the movement
trajectories, but also the inherent shared structure embedded in the hierarchy.

The application of this approach yields good results in terms of precision, recall and F1-score and
demonstrates its effectiveness.

Several contributions are made by this research, briefly outlined in the following. First of all,
the model is generic, so it can be applied to any sequential datasets or sensor types. Second, our model
deals with the problem of scalability. Finally, our approach is validated using real data gathered
from eye-tracking acquisitions which helps to make our results more accurate and our experiments
repeatable. The innovative aspects of this paper lie in proposing an adequate HMM structure and also
the use of eye trajectories to estimate the probability that a certain AOI transition will be performed.
This model could be a representation of the attention scheme that can be incorporated in the AR
applications to have a transition probability or to guide the user on a novel AR interaction scheme.
In fact, the tests are performed on two classes of users (adults and children), thus proving a reliable
approach to eye trajectories.

Figure 1 summarizes and compares our approach with a classical approach. After the definition
of AOI, the approaches could be: Expert Based or User Data-Driven. In the first one, there is a manual
AOI definition done by an expert, then the usability of AR applications is evaluated. In the User Data
driven Approach, which is the one proposed in this paper, an eye-tracking dataset is built and a HMMs
are designed with the aim of estimating the AOIs transition probability. The accuracy is estimated and
these models help the user step by step, with voice guidance, in the painting vision. The study paves
the way towards the development of AR applications based on a ”measure to design” policy, providing
a method for a more aware app optimization. In fact, the first version of the application has been
strongly updated thanks to the results of this research, and it has been expanded to other paintings.

AR
AOI DEFINITIONS Manual De finition

Done by
Expert

AR application
development

User Data Driven Approach

Eye-Tracking
Dataset HMMs %Accuracy

Application 
Upgrade

Adaptive
Step by Step

UI

Expert Based Approach

Measure to design policy

Improved
Usability

Figure 1. Workflow of our approach.

The remainder of the paper is organized as follows: Section 2 gives an overview of the latest
achievements about the analysis of users’ behaviour and predictive models, specifically for CH-related
applications; Section (Section 3) describes the collection of the data acquired; the following Section 4
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describes in detail the problem formulation for the design of the HMM structure and the model that is
the core of our work; the final sections present the experimental results (Section 5). The conclusion,
final remarks and future perspectives are reported in Section 6.

2. Related Work

Eye-tracking has become a method to analyse user behaviour in human-computer interaction,
neuroscience, marketing, and visualization research. Eye-trackers have been used to select objects
on the screen or in a virtual environment, to provide users’ attentional information [20]. In recent
years, this technology has been applied for the art content evaluation. In [21], the authors describe
statistical regularities in artwork that appear related to low-level processing strategies in human vision,
especially for the processing of natural scenes and the variations in these statistics. Quiroga et al.
in [22] have found that people look at art depending on the subject’s interest and their own artistic
appreciation. This is done by describing the pattern of fixations of subjects looking at figurative and
abstract paintings from different artists and at modified versions and several aspects of these art pieces
were changed with digital manipulations. The aim of investigating the influence of bottom-up and
top-down processes on the visual behaviour of subjects, while they observe representational paintings
is pursued in [23]. Another example of bottom-up and top-down processes was explored in [24],
where the eye tracking behaviour of adults and children was studied while they looked at five Van
Gogh paintings. Bottom-up processes were quantified by determining a salience map for each painting,
while for the top-down processing, the participants were allowed to firstly view the painting freely
with the background information provided and then they were allowed a second view. Bottom-up
factors were indicated as a strong role in children, while in adults the observed patterns were similar
in both phases. In [25] eye movement was analysed by the simple model, a spatio-temporal point
process model, to compare the eye movements of experienced and inexperienced art viewers. However,
the model developed in this paper is not good enough for studying the complete dynamics of the
fixation process, since it does not capture how the fixation process is changing in time.

Due to the wide application fields of eye-tracking, several approaches have been developed
to analyse eye-tracking data such as statistical algorithms (either inferential or descriptive) [14],
string editing algorithms [15,16], visualization related techniques, and visual analytics techniques [17].

The application of learning methods for content-based curation and dissemination of CH
data offers unique advantages for physical sites that are at risk of damage. Innovative techniques
from computing, computer vision, image and natural language processing to analyse images and
enable semantic are used in this context. Outputs can be multimedia and automated reports of
the state of repair of cultural artifacts as well as real-time, elucidating comments for site visitors.
Pattern Recognition approaches that include machine learning and statistical classification are applied
with the aim of assisting preservation endeavours. They incorporate multimodal data analysis,
and content-based augmented data retrieval. The suitability of machine learning and semantic
technologies for the documentation of CH is demonstrated in [26].

The artistic content of historical manuscripts is challenging in terms of automatic text extraction,
picture segmentation and retrieval by similarity. Grana et al. have addressed the problem of automatic
extraction of meaningful pictures, distinguishing them from handwritten text and floral and abstract
decorations [27]. They have proposed a solution that first employed a circular statistics description
of a directional histogram in order to extract text. Then visual descriptors were computed over the
pictorial regions of the page: the semantic content was distinguished from the decorative parts
using color histograms and a texture feature called Gradient Spatial Dependency Matrix. The feature
vectors were processed using an embedding procedure which allows increased performance in later
SVM classification.

In [28], the authors have addressed the problem of identifying artistic styles in paintings, and have
suggested a compact binary representation of the paintings. They have tried to recognize the style of
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paintings using features extracted from a deep network. The features suggested in the paper have
shown excellent classification results on a large scale collection of paintings.

In recent years, the HMMs became popular from visual processing psychology that differentiated
between the overt and covert attention [29]. HMMs have been successfully applied also for
speech recognition, handwritten character recognition and gesture recognition for interpreting sign
language [30,31]. HMMs provide a probabilistic framework for modelling a time series of multivariate
observations. These models give a stochastic solution that can be used to make decisions on
localization, navigation and path-planning [32]. This Pattern Recognition approach is applied for
CH content evaluation.

In [33], the authors have used telemetry data from Oztoc, an open-ended exploratory tabletop
exhibit in which visitors embody the roles of engineers who are tasked with attracting and cataloging
newly-discovered aquatic creatures by building working electronic circuits. This data was used to
build HMMs to devise an automated scheme of identifying when a visitor is behaving productively or
unproductively. Evaluation of HMM was shown to effectively discern when visitors were productively
and unproductively engaging with the exhibit. Using a Markov model, they have identified common
patterns of visitor movement from unproductive to productive states to shed light on how visitors
struggle and the moves they made to overcome these struggles. These findings offer considerable
promise for understanding how learners productively and unproductively persevere in open-ended
exploratory environments and the potential for developing real-time supports to help facilitators know
how and when to best engage with visitors.

In [34], Li et al. have addressed the learning-based characterization of fine art painting styles.
They have compared the painting styles of artists. To profile the style of an artist, a mixture of stochastic
models is estimated using training images. The two-dimensional (2D) multi-resolution hidden Markov
model (MHMM) was used in the experiment. These models formed an artist’s distinct digital signature.
The 2D MHMM analyzed relatively large regions in an image, which in turn makes it more likely to
capture properties of the painting strokes. The mixtures of 2D MHMMs established for artists can be
further used to classify paintings and compare paintings or artists. They have implemented and tested
the system using high-resolution digital photographs of some of China’s most renowned artists.

Ever since the seminal work of Yarbus [35], several recent studies are using computational
methods to infer observers’ characteristics from their eye movements. In [36], the authors used HMM
to infer the visual-task of a viewer given measured eye movement trajectories. They have noted
that it frequently happens that Centre of Gaze (COG) does not match the Focus of Attention (FOA).
The approach begins by first using the K-means clustering technique to generate a set of regions likely
to be task-relevant in an image, and then using the HMM-based method to decode the eye trajectories.
With this approach they were able to achieve a prediction accuracy of 59.64%. In [18], the authors have
presented a turnkey method for scanpath modeling and classification. This method relies on variational
hidden Markov models (HMMs) and discriminant analysis (DA). They have shown the versatility of
their approach with two very different public datasets: the first one with natural scene images and
the second with conversational videos. This approach led to an average correct classification rate of
55.9%. However, this approach suffers from several limitations such as that HMMs are dependent
on the structure of the visual stimuli, which must contain regions of interest (ROIs) in order for the
model to be stable. Another example of an HMM based approach applied for analyzing eye movement
data in face recognition was proposed in [19]. Compared to other methods, the HMM method they
proposed demonstrated several advantages: firstly, the method can learn at the same time ROIs for
each person and the transitions from one ROI to another, and secondly, using the clustering algorithm
VHEM, the HMMs can be grouped into clusters based on their similarities. The findings from this
clustering showed the two main strategies that participants demonstrated: holistic (mainly looking at
the center of a face) or analytic (dominantly looking at the eyes and mouth of a face).

To infer and describe the user’s next fixation in front of the painting, HMM applied to eye-tracking
data is proposed. This provides new answers to predict the next visited area in a painting.
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3. Setup and Acquisition

The eye-tracking data are recorded by using a Tobii Eye-Tracker X2-60 (Figure 2) and the
Imotions R© Attention Tool software (vers. 5.7), as described in [7]. The eye-tracking dataset stores eye
tracking data collected from 80 participants to the tests. In particular, the 40 adults taken in exam in
this work are Italian students and employees at Universitá Politecnica delle Marche. The 40 children
are students of primary school. In both cases, all the acquisitions are collected in a quiet room and
under standard illumination conditions. Each participant was seated 60 cm from the eye-tracker and
monitor (Figure 3).

Figure 2. Eye-tracking device.

Figure 3. Eye-tracking device and subject’s position in front of the screen for eye-tracking acquisitions.

The digital versions of the painting were shown on a 23 inch monitor, at a resolution of
1920× 1080 pixels, preserving the original aspect ratio. The eye-movement indicators, on which the
analysis is based, are fixations and saccades. Fixations are eye pauses over a particular area of interest
averaging about 300 ms. Saccades are rapid eye-movements between fixations. Participants were
informed that their eye-movements were recorded. Each trial started with a 9-point calibration
pattern, then the study started. In this work, we focus on the eye trajectories collected for the
painting “The Ideal City”. The subjects analysed have to observe a faithful reproduction of the
picture “The Ideal City” as if they were at the museum. For this test, we used the Eye-Glasses
mobile eye-tracker. The average time of observation registered was 64 s. We perform a pre-test,
useful for comparing the outcomes between using the digital image and using the real-size artwork.
The six-framed details, shown in Figure 4 were defined according to the existing AR application for
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“The Ideal City”. They include some architectural details that experts considered relevant in this
painting: the doves, the vanishing point; the capitals; the landscape in the background; the floor and
the geometry that characterize the whole painting.

Figure 4. Areas of Interest of “The Ideal City”.

Data collected were extracted using the IMotions R©Attention Tool software and they are analysed
using STATA vers.13. IMotions R©provides different metrics for each AOI such as the TTFF-F, the Time
spent-F, x and y (the coordinates of fixation). The TTFF-F represents the time to first fixation or in other
words, it identifies which AOI the participants saw at first sight. The Time spent-F provides the time
spent in a specific AOI. In general, a low time value of TTFF-F indicates that the participant’s fixation
for that particular AOI started immediately as the image appeared on the screen. Instead, a high time
value of TTFF-F shows that the fixation has started late or not started. The TTFF-F value is equal
to the entire exposure time of the image when the fixation not started. Figure 5 represents the heat
map, for the 40 adults participants, when they were asked to observe the painting as they were at the
museum. Figure 5 represents the heat map, for the 40 child participants, when they were asked to
observe the painting as they were at the museum. The heat map is a graphical representation of data
that uses a system of color-coding to represent different values. In particular, in our case the red colour
represents the most attracting area.

Figure 5. Adults Heatmap of “The Ideal City”.

4. Design of HMM Structure

Let:
X = {x1, x2, . . . , xn}

be a discrete finite AOI attraction space and

O = {o1, o2, . . . , om}
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the observation space of a HMM [37]. Let T be the transition matrix of this HMM, with Tx,y representing
the probability of transitioning from attraction in AOI x ∈ X to attraction in AOI y ∈ X, and px(o) be
the emission probability of observation o ∈ O in attraction in AOI x ∈ X.

We denote the probability that the HMM trajectory follows the attraction sequence s given the
sequence of n observations, as:

P(X1:n ∈ seqn(s)|o1:n)

where seqn(s) is a set of all length n trajectories whose duration free sequence equals to s.
Finding the most probable attraction sequence can be seen as a search problem that requires

evaluation of probabilities of attraction sequences. The Viterbi algorithm [38], based on dynamic
programming, can be used to efficiently find the most probable trajectory. In fact, it makes use of
the Markov property of an HMM (that the next state transition and symbol emission depend only
upon the current state) to determine, in linear time with respect to the length of the emission sequence,
the most likely path through the states of a model which might have generated a given sequence.
A Viterbi-type training algorithm based on the maximum likelihood criterion is also derived.

After training the model, we consider a trajectory

s = {(x0, y0), (x1, y1), . . . , (xn, yn)}

and calculate its probability λ for the observation sequence P(s|λ). Then we classify the trajectory
as the one which has the largest posterior probability. To each observation, we have associated the
ground truth (state) that is the AOI from which the user was attracted. The observations are the grid
cells in which we divided the painting. The number of vertical layers is 10 and this is the same as the
horizontal layers used in the quantization step for each HMM. 10× 10 is a compromise between the
observations’ space and the accuracy. In fact, this choice is done after the establishment of a range
between the three dimensions x, y and z. The purpose is to limit the matrix of dimensions’ space.
Although, the observations’ space would have lost its significance. The standard algorithm for HMM
training is the forward-backward, or Baum-Welch algorithm [39]. Baum-Welch is an iterative algorithm
that uses an iterative expectation/maximization process to find an HMM which is a local maximum in
its likelihood to have generated a set of training observation sequences. This step is required because
the state paths are hidden, and the equations cannot be solved analytically.

In this work, the Baum-Welch algorithm has been employed to estimate a transition probability
matrix and an observation emission matrix so that the model best fits the training dataset.

Since the discrete observation density is adopted in HMMs implementation, a Vector Quantization
and clustering step is required to map the continuous observation in order to convert continuous data
to discrete data. Vector Quantization is a process of mapping vectors of a large vector space to a finite
number of regions in that space. The results were obtained using the cross-validation technique.

To evaluate the performance of the algorithms, the following metrics are used [40]:

• Precision: is a function of true positives and examples misclassified as positives (false positives).
• Recall: is a function of correctly classified examples (true positives) and misclassified examples

(false negatives).
• F1-score: is the usual measure that combines precision and recalls through the harmonic mean as

a single measure of a test’s accuracy.

The information about actual and predicted classifications done by the system is depicted by
confusion matrix [41] reported for every test case using both transition matrix and a normalized
confusion matrix. The use of a confusion matrix can also be insightful for analyzing the results of
the model. Confusion matrix is a specific table layout that allows visualization of the performance of
an algorithm, where each column of the matrix represents the instances in a predicted class, and each
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row represents the instances in an actual class. Furthermore, an HMM is defined as HMM = (S, P)
and consists of states, i, in a finite set S of size n, and an n− by− n transition matrix:

P = {pij|i, j ∈ S}

The transition matrix P is row stochastic, i.e., for all states, i, ∑j pij = 1, and we assume that P is
irreducible and aperiodic, i.e., that exists m such that Pm > 0.

5. Experimental Results

In this section, we present the experimental results obtained using our approach. An architecture
to implement HMMs eye-tracking trajectories is proposed. The architecture uses the eye-tracking data
to classify different AOIs.

Below, the results are given for each AOI in which the examined painting is divided. The main
goal is to gradually estimate the AOIs transition probability. We applied a k-fold cross-validation
approach (with k = 5) to test our HMM.

Table 1. Adults Classification Results Cross Validation HMM for each AOI in which the examined
painting is divided.

AOIs Precision Recall F1-Score

AOI_1 0.97 0.88 0.92
AOI_2 1.00 0.94 0.97
AOI_3 0.53 0.82 0.64
AOI_4 0.83 0.89 0.86
AOI_5 0.74 0.95 0.83
AOI_6 0.18 0.99 0.31

avg/total 0.92 0.90 0.90

Table 2. Children Classification Results Cross Validation HMM for each AOI in which the examined
painting is divided.

AOIs Precision Recall F1-Score

AOI_1 0.97 0.76 0.84
AOI_2 0.75 0.91 0.83
AOI_3 0.53 1.00 0.69
AOI_4 1.00 0.75 0.85
AOI_5 0.58 0.70 0.64
AOI_6 0.78 0.31 0.44

avg / total 0.83 0.77 0.77

Tables 1 and 2 reports the results for the adults’ and children’s eye-tracking respectively.
The results demonstrate the effectiveness and suitability of our approach with high values of Precision,
Recall and F1-score.

From the adults’ classification results, it is possible to infer that the AOIs 1, 2, 4 reach high values
of precision, recall and F1-score because they are the AOIs in which the attention is most focused,
as shown by the heatmap (Figures 5 and 6).

From the children’s classification results, it is possible to infer that the AOIs 1, 4 reach high values
of precision, recall and F1-score because are the AOIs in which the attention is most focused, as shown
by the corresponding heatmap (Figure 6).

The resulting confusion matrix for adults is shown in Figure 7. As we can see in the confusion
matrix, the AOIs eye transitions are detected with high accuracy.
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Figure 6. Children Heatmap of “The Ideal City”.
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Figure 7. Confusion Matrices. (a) is the confusion matrix for the adults’ dataset evaluation;
(b) represents the confusion matrix for the children’s dataset classification.

In Figure 8a, that represents the modelling of the transition matrix of the total recorded period,
we can see the matrix representation of the probability of transition from one state to another,
whose values range from zero to one. The fact that the probability values along the matrix diagonal
are very high means that the probability that in the next instant (K + 1) eyes remains in the same AOI
of the previous instant is very high. In other words, it is very likely that once eyes observe certain
AOIs, they continue observing those same AOIs also in the next instant. Furthermore, we can see other
elements, not along the diagonal, with significant probability values such as the elements (1, 5), (1,6),
(5,3) because the user has a high probability to focus his/her attention passing from the center of the
painting to the AOI in the corners.

Figure 8b depicts the modelling of the transition matrix of the total recorded period for the
children. Even in this case, the fact that the probability values along the matrix diagonal are very
high means that the probability that in the next instant (K + 1) eyes remains in the same AOI of the
previous instant is very high. It is entirely possible that when children’s eyes observe certain AOIs,
they continue observing those same AOIs also in the next instant. Moreover, we can see other elements,
not along the diagonal, with significant probability values such as the elements (1,5), (2,1), (4,3) because
the user has a high probability of focusing his/her attention passing from the center of the painting to
the AOI in the corners.

Experimental results demonstrate that our eye-tracking system provides useful input information
to design a personalised user experience in AR applications. In fact, this kind of model will be
used as a seed to automatically complete all the information needed to build the AR application.



J. Imaging 2018, 4, 101 11 of 14

Another interesting piece of information is that there is not a significant difference when a child
observes a painting and when an adult observes that same painting. This is an important point for
distinguishing the users’ classes.
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Figure 8. Transition matrices. (a) is the transition matrix for the adults eye-tracking evaluation;
(b) depicts the modelling of the transition matrix of the total recorded period for the children.

6. Conclusions

In this paper, we aim for a better understanding of users’ behaviour in front of a painting. For this
purpose, eye-tracking technology is adopted. This choice is due to its potential measure of analysing
people’s attitudes during visual processing, offering a deeper understanding of possible common
patterns of fixations. Eye-tracking could provide quantifiable learning outcomes and rich contextual
customized learning environment as well as contents for each single individual. In the painting taken
in the exam “The Ideal City”, we can observe that the attention is focused on the central area, because
subjects generally are attracted to the area in the painting with the most relevant particular. Results
show the affordability of the predictive model of the museum visitor behaviour, based on an HMM
to predict the user’s attention. By using the areas of interest (AOI) most visited, we attempted to
predict the next transitions between AOIs. The application of this approach yields good results in
terms of precision, recall and F1-score and demonstrates its effectiveness. The approach is able to learn
a high-level representation of eye trajectories and achieve high precision and recall. The experiments
yield high accuracy and demonstrate the effectiveness and suitability of our approach. Some interesting
insight can be inferred from this study. Firstly, there is not a significant difference when a child observes
painting and an adult observes the same painting. This is an important point for distinguishing the
users’ classes, and it deserves further investigation in order to understand if, in other cases, the visual
behaviour changes between different categories of users. Moreover, the study proves that conducting
eye tracking tests on a diversified sample of users allows to understand users’ preferences, enhancing
the development of the AR application for paintings. Finally, the study helped to improve the
previously developed application, enhancing its usability and conveying contents in a more efficient
way, based on users expectations (https://itunes.apple.com/it/app/ducale/id1128703560?mt=8).

This work paves the way for further investigations. The aim will be to improve our approach
by employing a larger dataset in order to compare different types of behaviour of users. In fact,
this research has two goals. One is to illustrate how HMMs can be built using eye-tracking data
collected from subjects in front of a painting. The other is the design method to construct a personalised
AR application.

https://itunes.apple.com/it/app/ducale/id1128703560?mt=8
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Moreover, an important goal is to improve users’ attitude toward mobile advertising. By sensing
the user awareness to the system, for instance allowing the application to know what area the user
is interested in at the moment with the aid of gaze tracking devices, contents will be provided in
a more reliable and proper way. In fact, our model learns from real experiences and updates the
probabilities automatically when the function is applied in practice. It is possible to improve our HMM
with different sub-user training and test process and a methodology refinement for user-centred HMM
training. Similarly, AR users can use their devices to identify which application best fits their profile.
The application will search for the most suitable experience by matching the user personal profile with
the user’s content plus context information.
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