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Abstract: A critical component in the computer-aided medical diagnosis of digital chest X-rays is
the automatic detection of lung abnormalities, since the effective identification at an initial stage
constitutes a significant and crucial factor in patient’s treatment. The vigorous advances in computer
and digital technologies have ultimately led to the development of large repositories of labeled and
unlabeled images. Due to the effort and expense involved in labeling data, training datasets are of
a limited size, while in contrast, electronic medical record systems contain a significant number of
unlabeled images. Semi-supervised learning algorithms have become a hot topic of research as an
alternative to traditional classification methods, exploiting the explicit classification information of
labeled data with the knowledge hidden in the unlabeled data for building powerful and effective
classifiers. In the present work, we evaluate the performance of an ensemble semi-supervised
learning algorithm for the classification of chest X-rays of tuberculosis. The efficacy of the presented
algorithm is demonstrated by several experiments and confirmed by the statistical nonparametric
tests, illustrating that reliable and robust prediction models could be developed utilizing a few labeled
and many unlabeled data.

Keywords: semi-supervised learning; self-labeled methods; ensemble learning; classification; voting

1. Introduction

During the second half of the last century, the area of diagnostic medicine has massively changed;
from a rather qualitative science that was based on observations of whole organisms to a more
quantitative science, which is also based on knowledge extraction from databases. The widespread
adoption of electronic medical records contributes to the exponential generation of biomedical data
in size, dimension and complexity [1]. Furthermore, these biomedical datasets have non-linear
relationships between inputs and outcomes, hindering their analysis and modeling. Leveraging these
data leads to a significant potential to transform biomedical research and the delivery of healthcare.
Therefore, machine learning and data mining techniques can be considered a helpful tool, extracting
useful and valuable information for the development of intelligent computational systems.
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Despite the development of efficient treatments, as well as the advances in medicine, Tuberculosis
(TB) is considered to be one of the greatest lethal diseases worldwide. More specifically, only in 2013,
it is estimated that 1.5 million people died of TB and nine million new cases occurred. The rate of TB
mortality is slowly declining each year through early diagnosis and effectively targeted treatment.
Although several tests for TB diagnosis, either active (e.g., sputum culture or XpertMTB/RIF) or latent
(e.g., Mantoux test or interferon-gamma release assay) exist, their application is cumbersome and
expensive and/or the time required to process a sample is frequently long [2]. To this end, a typical
method for TB detection consists of a posterior-anterior Chest X-Ray (CXR) in order to search the lung
region for any abnormalities that could be present.

Due to its relatively low price and easy accessibility, CXR imaging is widely used for health
monitoring and diagnosis of TB. In the clinic, the medical image interpretation has been mostly
performed by human experts such as radiologists and physicians and is considered a long and
complicated process. Hence, the advances of digital technology and chest radiography, as well as the
rapid development of digital image retrieval and analysis have renewed the interest in developing
Computer-Aided Diagnosis (CAD) systems for the automatic recognition of abnormalities from CXRs
in order to assist radiologists in analyzing chest images. Along this line, a variety of methodologies
has been proposed, aiming at:

• classifying and/or detecting the presence of an abnormality (image classification);

• segmenting images into normal and abnormal (medical image segmentation).

These have proven to be powerful tools in diagnosing a patient and assisting medical staff [3,4].
Hogeweg et al. [5] combined a texture-based abnormality detection system with a clavicle

detection stage in order to suppress false positive responses. Based on their previous work,
Hogeweg et al. [6] utilized a combination of pixel classifiers and activated shape models for clavicle
segmentation. Notice that the clavicle region consists of a notoriously difficult region for the detection
of TB since the clavicles can obscure manifestations of TB in the apex of the lung. Another similar
work is presented by Jaeger et al. [7], which proposed an approach for detecting TB in conventional
posteroanterior chest radiographs. Initially, their proposed method extracted the lung region from
the CXRs utilizing a graph cut segmentation method, and a set of texture and shape features in the
lung region was computed in order to classify the patient as normal or abnormal. Based on their
numerical experiments on two real-world datasets, the authors concluded that the proposed CAD
system for TB screening achieved high performance, which approached that of human experts. In [8],
Candermir et al. presented a non-rigid registration-driven robust lung segmentation method using
image retrieval-based patient-specific adaptive lung models to develop an anatomical atlas that detects
lung boundaries. Their proposed method was evaluated utilizing 585 chest radiographs from patients
with normal lungs and various pulmonary diseases, indicating the robustness and effectiveness of the
proposed approach.

However, despite all these efforts, there is still no widely-utilized method, since the medical
domain requires high accuracy; especially, it is imperative for the rate of false negatives to be very low.
This is due to the fact that the progress in the field has been hampered by the lack of available labeled
images for efficiently training a supervised classifier. Notice that the vigorous development of the
Internet, the emergence of vast image collections and the widespread adoption of electronic medical
records have led to the development of large repositories of labeled and mostly of unlabeled images.
Nevertheless, the process of correctly labeling new unlabeled CXRs frequently requires the efforts of
specialized personnel, which will incur high time and monetary costs.
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To address this problem, Semi-Supervised Learning (SSL) algorithms constitute the appropriate
machine learning methodology for extracting useful knowledge from both labeled and unlabeled
data in order to build efficient classifiers [9]. More analytically, these algorithms combine the explicit
classification information of labeled data with the information hidden in the unlabeled data in a most
efficient way. The main issue in semi-supervised learning is how to efficiently exploit the information
hidden in the unlabeled data. In the literature, several approaches have been proposed, each with a
different philosophy related to the link between the distribution of labeled and unlabeled data [9–13].
Self-labeled algorithms are probably considered the most popular class of SSL algorithms that address
the shortage of labeled data via a self-learning process based on supervised prediction models.
The main advantages of these algorithms consist of their simplicity, as well as their wrapper-based
philosophy; therefore, they have been successfully applied in a variety of real-world classification
problems (see [11,14–19] and the references therein).

In this work, we examine and evaluate the performance of a new semi-supervised algorithm,
called CST-Voting, for the classification of CXRs of tuberculosis, which is based on an ensemble
philosophy. The proposed algorithm combines the predictions of three of the most productive and
regularly-used self-labeled algorithms, using a voting methodology. Our preliminary numerical
experiments present the efficacy of the proposed algorithm and its classification accuracy, therefore
illustrating that reliable prediction models could be developed utilizing a few labeled and many
unlabeled data.

The remainder of this paper is organized as follows: Section 2 defines the semi-supervised
classification problem and presents an overview of the self-labeled methods and the proposed ensemble
semi-supervised classification algorithm. Section 3 presents a series of experiments in order to examine
and evaluate the accuracy of the proposed algorithm compared with the most popular SSL classification
algorithms. Finally, Section 4 sketches our concluding remarks and future work directions.

2. A Review of Semi-Supervised Self-Labeled Learning

In this section, we present a formal definition of the semi-supervised classification problem and
briefly describe the most relevant self-labeled approaches proposed in the literature.

Let (x, y) be an example, where x belongs to a class y and a D-dimensional space in which xi
is the i-th attribute of the instance. Suppose that the training set L ∪U consists of a labeled set L of
NL instances where y is known and of an unlabeled set U of NU instances where y is unknown with
NL � NU . Furthermore, there exists a test set T of NT unseen instances where y is unknown, which has
not been utilized in the training stage. Notice that the aim of the semi-supervised classification is to
obtain an accurate and robust learning hypothesis with the use of the training set.

Self-labeled techniques are considered a significant family of classification methods,
which progressively classify unlabeled data based on the most confident predictions. More to
the point, these techniques utilize the aforementioned predictions in order to modify the hypothesis
learned from labeled samples. Therefore, the methods of this class accept that their own predictions
tend to be correct, without making any specific assumptions about the input data.

In the literature, a variety of self-labeled methods has been proposed each with a different
philosophy and methodology on exploiting the information hidden in the unlabeled data. In this work,
we focus our attention on self-training, co-training and tri-training, which constitute the most useful
and commonly-used self-labeled methods [12,16,20,21]. Notice that the crucial difference between
them is the mechanism used to label unlabeled data. Self-training and tri-training are single-view
methods, while co-training is considered as a multi-view method.
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2.1. Self-training

Self-training is a wrapper-based semi-supervised approach, which is comprised of an iterative
procedure of self-labeling unlabeled data. It is generally considered to be a non-complex important SSL
algorithm. According to Ng and Cardie [22], “Self-training is a single-view weakly supervised algorithm”,
which is based on its own predictions on unlabeled data with the aim of teaching itself.

It has been established as a very popular algorithm due to its simplicity, and it is often found to
be more accurate than other semi-supervised algorithms [16,20,23]. In the self-training framework, an
arbitrary classifier is initially trained with a small amount of labeled data, which comprise its training
set, aiming to classify unlabeled points. Subsequently, it iteratively enlarges its labeled training set with
its own most confident predictions and retrained. More specifically, at each iteration, the classifier’s
training set is gradually augmented with classified unlabeled instances; these instances have achieved
a probability value over a defined threshold c and are considered sufficiently reliable to be added to
the training set. A high-level description of the self-training algorithm is presented in Algorithm 1.

Algorithm 1: Self-training

Input: L − Set of labeled instances.
U − Set of unlabeled instances.

Parameters: ConLev − Confidence level.
C − Base learner.

Output: Trained classifier.

1: repeat
2: Train C on L.
3: Apply C on U.
4: Select instances with a predicted probability more than ConLev per iteration (xMCP).
5: Remove xMCP from U, and add to L.
6: until some stopping criterion is met or U is empty.

Clearly, this model does not make any specific assumptions about the input data, but it accepts
that its own predictions tend to be correct. Therefore, since the success of the self-training algorithm
is heavily dependent on the newly-labeled data based on its own predictions, its weakness is that
erroneous initial predictions will probably lead the classifier to generate incorrectly labeled data [9].

2.2. Co-training

Co-training [11] is a semi-supervised algorithm, which is based on the strong hypothesis that the
feature space can be split into two different conditionally independent views, each of which is able to
predict the classes in a perfect way [24,25]. Under these assumptions, this algorithm opts to predict the
unlabeled instances by dividing the features of data into two separable categories, bearing in mind
that this act is more productive.

In this framework, two learning algorithms were separately trained for each view utilizing the
initial labeled dataset. In the following, the most confident predictions of each algorithm on unlabeled
data are used in order to augment the training set of the other algorithm through an iterative learning
process. In essence, co-training is a “two-view weakly supervised algorithm”, since it uses the self-training
approach on each view [22].
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Clearly, the classification efficacy and the effectiveness of co-training is closely related to the
appropriate selection of the two learning algorithms, as well as the existence of two conditionally
independent views. Nevertheless, the requirement of two sufficient and redundant views is a luxury
hardly met in most scenarios and real-world tasks; therefore, several extensions of this algorithm have
already been developed, such as Tri-training, etc. Algorithm 2 presents a high-level description of the
co-training algorithm.

Algorithm 2: Co-training

Input: L − Set of labeled instances.
U − Set of unlabeled instances.
Ci − Base learner (i = 1, 2).

Output: Trained classifier.

1: Create a pool U′ of u examples by randomly choosing from U.
2: repeat
3: Train C1 on L(V1).
4: Train C2 on L(V2).
5: for each classifier Ci do (i = 1, 2)
6: Ci chooses p samples (P) that it most confidently labels as positive and n

sentences (N) that it most confidently labels as negative from U.
7: Remove P and N from U′.
8: Add P and N to L.
9: end for
10: Refill U′ with examples from U to keep U′ at a constant size of u examples.
11: until some stopping criterion is met or U is empty.

Remark: V1 and V2 are two feature conditionally independent views of instances.

2.3. Tri-training

The tri-training [18] algorithm extends the co-training methodology without any constraint on
which supervised learning algorithm is chosen as the base learner; also, it does not assume that a
feature split exists. This SSL algorithm utilizes three base learners that iteratively assign labels to
unlabeled instances. At each iteration, if two classifiers agree on the labeling of an unlabeled instance
while the third one disagrees, then these two classifiers will label this instance for the third classifier.

The tri-training algorithm is based on the strategy “the majority teaches the minority”, which
serves as an implicit confidence measurement in order to avoid the use of complicated and
time-consuming approaches. These approaches explicitly measure the predictive confidence, and
hence, the training process is more efficient. A high-level description of tri-training is presented in
Algorithm 3.

Nevertheless, there are times when the performance of tri-training degrades; thus, three other
issues must be taken into consideration [14]:

(1) Excessively-confined restrictions introduce further classification noise.

(2) Estimation of the classification error is unsuitable.

(3) Differentiation between the initial labeled example and the label of a previously unlabeled
example is deficient.
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Algorithm 3: Tri-training

Input: L-Set of labeled instances.
U-Set of unlabeled instances.

Parameters Ci-Base learner (i = 1, 2, 3).

Output: Trained classifier.

1: for i = 1, 2, 3 do
2: Si = BootstrapSample(L).
3: Train Ci on Si.
4: end for
5: repeat
6: for i = 1, 2, 3 do
7: Li = ∅.
8: for u ∈ U do
9: if Cj(u) = Ck(u) then (j, k 6= i)
10: Li = Li ∪ (u, Cj(u)).
11: end if
12: end for
13: end for
14: for i = 1, 2, 3 do
15: Train Ci on Si.
16: end for
17: until some stopping criterion is met or U is empty.

2.4. CST-Voting Algorithm

In this section, we present a detailed description of the proposed SSL algorithm for the
classification of chest X-rays for tuberculosis, which is based on an ensemble philosophy, entitled
CST-Voting [26].

The corresponding algorithm is based on the idea of generating classifiers by applying different
SSL algorithms (with heterogeneous model representations) to a single dataset. On this basis,
the learning algorithms, which constitute the proposed ensemble, are: co-training, self-training,
as well as tri-training. We recall that these methods are self-labeled ones, which are operating in
different ways in order to take full advantage of the hidden information in unlabeled data.

The main and crucial difference between these three learning algorithms is the mechanism used
to label unlabeled data. More to the point, self-training and tri-training are single-view methods,
while co-training is a multi-view method. Furthermore, it is worth mentioning that co-training and
tri-training are indeed ensemble methods, since they both make use of multiple classifiers. An overview
of CST-Voting is depicted in Figure 1.

Initially, the classical semi-supervised algorithms, which constitute the ensemble, i.e., self-training,
co-training and tri-training, are trained utilizing the same labeled L and unlabeled dataset U.
Subsequently, the final hypothesis on an unlabeled example of the test set combines the individual
predictions of the SSL algorithms, thus utilizing a simple majority voting methodology. Therefore,
the ensemble output is the one made by more than half of them. A high-level description of the
proposed CST-Voting is presented in Algorithm 4.
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Algorithm 4: CST-Voting

Input: L-Set of labeled instances.
U-Set of unlabeled instances.
C-Base learner.

Output: The labels of instances in the testing set.

/* Training phase */
1: Self-training(L, U)
2: Co-training(L, U)
3: Tri-training(L, U)

/* Voting phase */
4: for each x ∈ T do
5: Apply self-training, co-training and tri-training on x.
6: Use majority vote to predict the label y∗ of x.
7: end for

Self-training

Labeled
data

Unlabeled
data

Co-training

Labeled
data

Unlabeled
data

Tri-training

Labeled
data

Unlabeled
data

Majority Voting

Figure 1. CST-Voting.

3. Experimental Results

We conducted a series of experiments in order to evaluate the performance of CST-Voting
algorithm compared to the most popular and frequently-used SSL algorithms, which are self-training,
co-training and tri-training. All SSL algorithms were evaluated using the following Shenzhen lung
mask dataset.
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3.1. Dataset Description

The dataset utilized in our work was constructed by manually-segmented lung masks for the
Shenzhen Hospital X-ray set as presented in [27]. These segmented lung masks were original
utilized for the description of the lung segmentation technique in combination with lossless and
lossy data augmentation.

The segmentation masks for the Shenzhen Hospital X-ray set were manually prepared by
students and teachers of the Computer Engineering Department, Faculty of Informatics and Computer
Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” [27].
The set contained 279 normal CXRs and 287 abnormal ones with tuberculosis.

The original Shenzhen Hospital X-ray set contained images from Shenzhen Hospital, which is
one of the largest hospitals in China for infectious diseases, with a focus both on their prevention, as
well as treatment [7,8]. The X-rays were collected within a one-month period, mostly in September
2012, as a part of the daily routine at Shenzhen Hospital, using a Philips DR Digital Diagnost system.

3.2. Performance Evaluation of SSL Algorithms

All SSL algorithms were evaluated by deploying as base learners the Naive Bayes (NB) [28],
Multilayer Perceptron (MLP) [29], Sequential Minimum Optimization (SMO) [30], the 3NN
algorithm [31] RIPPER(JRip) [32] as a rule-learning algorithm and the C4.5 decision tree algorithm [33].
These algorithms are some of the most popular machine learning algorithms for classification
problems [34].

The implementation code was written in Java, using the WEKA Machine Learning Toolkit [35],
and the classification accuracy was evaluated using the stratified 10-fold cross-validation. In this
validation, the data were separated into folds so that each fold had the same distribution of grades
as the entire dataset. Similar to Blum and Mitchell [11], a limit to the number of iterations of all SSL
algorithms was established. The proposed implementation strategy had also been adopted by many
researchers as stated in [12,15–17,21,36]. In order to study the influence of the amount of labeled data,
three different ratios (R) of the training data were used, i.e., 10%, 20% and 30%.

The configuration parameters for all SSL algorithms, utilized in our experiments, are presented in
Table 1. Furthermore, in order to minimize the effect of any expert bias, instead of attempting to tune
any of the algorithms to the specific datasets, all base learners were used with their default parameter
settings included in the Weka library [37].

Table 1. Parameter specification for all the SSL methods employed in our experiments.

SSL Algorithm Parameters

Self-training MaxIter = 40.
ConLev = 95%.

Co-training MaxIter = 40.
Initial unlabeled pool = 75.

Tri-training No parameters specified.

To evaluate the performance of the SSL classification algorithms, the following three performance
metrics are considered, namely Sensitivity (Sen), Specificity (Spe) and Accuracy (Acc):

Sen =
TP

TP + FN

Spe =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN
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where TP stands for the number of normal patients who are identified as normal, TN for the number of
abnormal patients who are identified as abnormal, FP (type I error) for the number of normal patients
who are identified as abnormal and FN (type II error) for the number of abnormal patients who are
identified as normal.

The sensitivity of classification was the proportion of actual positives that were predicted as
positive; in the following, specificity represents the proportion of actual negatives that were predicted
as negative, while accuracy was the ratio of correct predictions of a classification model. Additionally,
since it is crucial for a prediction model to accurately identify abnormal patients, the following
performance metric was considered:

F1.5 =
(1 + 1.52)TP

(1 + 1.52)TP + 1.52FN + FP

which constitutes a harmonic mean of precision. In particular, this metric takes into account the
accuracy for both normal and abnormal patients and poses additional weight for abnormal patients
instead of for normal ones [38]. Obviously, from a medical perspective, it is better to misidentify an
“abnormal” patient than a “normal” one.

Tables 2–4 present the accuracy of each SSL algorithm based on the performance metrics Sen, Spe
and F1.5, respectively. Notice that the highest classification accuracy is underlined. Firstly, it is worth
mentioning that CST-Voting performed better in five out of six cases for a 30% labeled ratio for each
performance metric and improved its classification accuracy as the labeled ratio increased.

Moreover, relative to the performance metrics Sen and Spe, the proposed algorithm exhibited
the best or the second best accuracy, independent of the classifier utilized as the base learner and
the value of the labeled ratio. Regarding the F1.5 metric, CST-Voting exhibited the highest accuracy
reporting the top performance in 4, 2 and 5 cases for a 10%, 20% and 30% labeled ratio, respectively,
while self-training achieved the worst performance. Finally, a more representative visualization of
the accuracy of the compared SSL is presented in Figures 2–4. Each box-plot presents the accuracy
measure for each tested SSL algorithm according to the supervised base learner and labeled ratio.

Table 2. Accuracy of the SSL algorithms based on the Sen performance metric for each labeled ratio.

R = 10% R = 20% R = 30%

Self Co Tri CST Self Co Tri CST Self Co Tri CST

NB 65.9% 64.2% 67.0% 66.7% 68.1% 67.4% 66.7% 67.4% 68.8% 69.5% 69.5% 69.5%

MLP 68.5% 68.5% 70.3% 69.9% 69.2% 68.5% 65.9% 69.9% 71.7% 69.9% 69.9% 72.4%

SMO 66.7% 66.3% 68.5% 69.9% 67.7% 66.3% 69.9% 73.8% 67.4% 67.0% 68.8% 70.3%

3NN 68.8% 58.1% 65.2% 65.9% 67.7% 65.2% 64.9% 66.3% 66.3% 68.8% 65.9% 68.5%

JRip 67.0% 66.3% 70.6% 69.5% 70.6% 65.6% 69.9% 70.3% 70.6% 69.5% 70.3% 70.6%

C4.5 63.1% 71.0% 64.2% 66.3% 67.7% 70.6% 67.4% 69.5% 62.0% 69.9% 64.5% 67.0%
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(c)

Figure 2. Box plot for performance metric Sen for each labeled ratio. (a) Ratio = 10%; (b) ratio = 20%;
(c) ratio = 30%.

Table 3. Accuracy of the SSL algorithms based on the Spe performance metric for each labeled ratio.

R = 10% R = 20% R = 30%

Self Co Tri CST Self Co Tri CST Self Co Tri CST

NB 65.5% 65.9% 65.2% 66.2% 65.2% 65.9% 66.9% 65.9% 66.6% 65.9% 66.6% 67.2%

MLP 66.6% 67.2% 65.5% 64.8% 66.2% 66.6% 71.1% 69.3% 66.2% 68.3% 66.9% 69.3%

SMO 64.5% 69.3% 69.3% 69.0% 64.8% 70.0% 62.4% 66.6% 65.2% 70.0% 69.0% 69.0%

3NN 62.4% 67.9% 66.2% 66.9% 63.8% 67.6% 63.1% 67.6% 68.6% 65.2% 66.6% 68.6%

JRip 66.2% 61.7% 67.9% 68.6% 66.2% 64.8% 66.9% 69.0% 68.6% 65.9% 68.6% 69.0%

C4.5 69.7% 54.0% 70.0% 68.3% 67.2% 58.5% 66.6% 66.6% 68.6% 65.9% 69.3% 69.3%
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Figure 3. Box plot for the performance metric Spe for each labeled ratio. (a) Ratio = 10%; (b) ratio = 20%;
(c) ratio = 30%.

Table 4. Accuracy of the SSL algorithms based on the F1.5 performance metric for each labeled ratio.

R = 10% R = 20% R = 30%

Self Co Tri CST Self Co Tri CST Self Co Tri CST

NB 65.8% 65.7% 65.7% 66.5% 65.9% 66.4% 67.0% 66.4% 67.2% 66.8% 67.3% 67.9%

MLP 67.1% 67.7% 66.6% 66.0% 67.0% 67.1% 70.2% 69.6% 67.5% 68.8% 67.7% 70.2%

SMO 65.1% 68.9% 69.3% 69.4% 65.6% 69.4% 64.0% 68.2% 65.8% 69.6% 69.1% 69.4%

3NN 63.8% 66.2% 66.2% 66.9% 64.7% 67.3% 63.6% 67.5% 68.3% 66.1% 66.6% 68.8%

JRip 66.6% 62.7% 68.7% 69.0% 67.3% 65.2% 67.7% 69.4% 69.2% 66.8% 69.2% 69.5%

C4.5 68.5% 57.1% 69.0% 68.1% 67.5% 61.0% 66.9% 67.3% 67.5% 66.9% 68.5% 69.0%
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Figure 4. Box plot for the performance metric F1.5 for each labeled ratio. (a) Ratio = 10%; (b) ratio = 20%;
(c) ratio = 30%.

Table 5 presents the classification accuracy of all SSL algorithms based on the performance metric
Acc, regarding each labeled ratio. As mentioned above, the accuracy measure of the best-performing
SSL algorithm is underlined for each base learner. The aggregated results showed that CST-Voting was
by far the most efficient and robust method independent of the utilized ratio of labeled instances in
the training set. In more detail, CST-Voting performed better in four out of six cases for a 10% labeled
ratio and in all cases for a 20% and 30% labeled ratio. Furthermore, a more representative visualization
of the classification accuracy of all compared SSL algorithms is presented in Figure 5. Finally, it is
worth mentioning that CST-Voting achieved a much better classification performance as the labeled
ratio increased.
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Table 5. Performance evaluation of the SSL algorithm relative to the performance metric Acc for each
labeled ratio.

R = 10% R = 20% R = 30%

Self Co Tri CST Self Co Tri CST Self Co Tri CST

NB 65.7% 65.0% 66.1% 66.4% 66.6% 66.6% 66.8% 66.6% 67.6% 67.8% 68.0% 68.4%

MLP 67.5% 67.5% 67.8% 67.3% 67.6% 67.8% 68.5% 69.6% 68.9% 69.1% 68.4% 70.8%

SMO 65.5% 67.8% 68.9% 69.4% 66.2% 68.2% 68.0% 68.2% 66.2% 68.6% 68.9% 69.6%
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Figure 5. Box plot for the performance metric Acc for each labeled ratio. (a) Ratio = 10%; (b) ratio = 20%;
(c) ratio = 30%.
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3.3. Statistical and Post-Hoc Analysis

In machine learning, the statistical comparison of multiple algorithms over multiple datasets is
fundamental, and it is usually carried out by means of a statistical test [16]. Since our motivation stems
from the fact that we are interested in evaluating the rejection of the hypothesis that all the algorithms
perform equally well for a given level based on their classification accuracy and highlighting the
existence of significant differences between our proposed algorithm and the classical SSL algorithms,
we utilized the non-parametric Friedman Aligned Ranking (FAR) [39] test.

Let rj
i be the rank of the j-th of k learning algorithms on the i-th of N problems. Under the

null-hypothesis H0, which states that all the algorithms are equivalent, the Friedman aligned ranks
test statistic is defined by:

FAR =

(k− 1)

[
k

∑
j=1

R̂2
j − (kN2/4)(kN + 1)2

]
kN(kN + 1)(2kN + 1)

6
− 1

k

N

∑
i=1

R̂2
i

where R̂i is equal to the rank total of the i-th dataset and R̂j is the rank total of the j-th algorithm.
The test statistic FAR is compared with the χ2 distribution with (k− 1) degrees of freedom. Notice
that, since the test is non-parametric, it does not require the commensurability of the measures across
different datasets. In addition, this test does not assume the normality of the sample means, and thus,
it is robust to outliers.

In statistical hypothesis testing, the p-value is the probability of obtaining a result at least as
extreme as the one that was actually observed, assuming that the null hypothesis is true. In other
words, the p-value provides information about whether a statistical hypothesis test is significant or not,
indicating “how significant” the result is while it does this without committing to a particular level of
significance. When a p-value is considered in a multiple comparison, it reflects the probability error of
a certain comparison; however, it does not take into account the remaining comparisons belonging to
the family. One way to address this problem is to report adjusted p-values, which take into account
that multiple tests are conducted and can be compared directly with any significance level [40].

To this end, the Finner post-hoc test [41] with a significance level α = 0.05 was applied to detect
the specific differences among the algorithms. More to the point, the Finner test is easy to comprehend,
and it usually offers better results than other post-hoc tests, such as the Holm [42] or Hochberg test [43],
especially when the number of compared algorithms is low [40].

The Finner procedure adjusts the value of α in a step-down manner. Let p1, p2, . . . , pk−1 be the
ordered p-values with p1 ≤ p2 ≤ · · · ≤ pk−1 and H1, H2, . . . , Hk−1 be the corresponding hypothesis.
The Finner procedure rejects H1–Hi−1 if i is the smallest integer such that pi > 1− (1− α)(k−1)/i, while
the adjusted Finner p-value is defined by:

pF = min
{

1, max
{

1− (1− pj)
(k−1)/j)

}}
,

where pj is the p-value obtained for the j-th hypothesis and 1 ≤ j ≤ i. It is worth mentioning that the
test rejects the hypothesis of equality when the pF is less than α.

Tables 6–8 present the information of the statistical analysis performed by nonparametric multiple
comparison procedures over 10%, 20% and 30% of labeled data, respectively. The best (e.g., lowest)
ranking obtained in each FAR test determined the control algorithm for the post-hoc test. Moreover, the
adjusted p-value with Finner’s test (pF) was presented based on the control algorithm, at the α = 0.05
level of significance. Clearly, CST-Voting achieved the best performance due to better probability-based
ranking and higher classification accuracy.
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Table 6. Friedman Aligned Ranking (FAR) test and Finner post-hoc test (labeled ratio 10%).

SSL Algorithm
Friedman Aligned Finner Post-Hoc Test

Ranking pF -value Null Hypothesis

CST-Voting 6.8333 - -
Tri-training 8.0000 0.775051 accepted
Self-training 15.3333 0.037336 rejected
Co-training 19.8333 0.001451 rejected

Table 7. FAR test and Finner post-hoc test (labeled ratio 20%).

SSL Algorithm
Friedman Aligned Finner Post-Hoc Test

Ranking pF -value Null Hypothesis

CST-Voting 5.75 - -
Tri-training 13.50 0.047649 rejected
Self-training 15.00 0.023465 rejected
Co-training 15.75 0.014306 rejected

Table 8. FAR test and Finner post-hoc test (labeled ratio 30%).

SSL Algorithm
Friedman Aligned Finner Post-Hoc Test

Ranking pF -value Null Hypothesis

CST-Voting 4.1667 - -
Tri-training 14.1667 0.014306 rejected
Co-training 14.5000 0.011369 rejected
Self-training 17.1667 0.001451 rejected

4. Conclusions

In this work, we evaluated the performance of an ensemble SSL algorithm for the classification
of CXRs of tuberculosis, entitled CST-Voting. CST-Voting combines the individual predictions of
three popular SSL algorithms, i.e., co-training, self-training and tri-training, utilizing a simple voting
methodology. A plethora of experiments were carried out illustrating the effectiveness of the proposed
algorithm, as statistically confirmed by the Friedman aligned ranks nonparametric test, as well as the
Finner post-hoc test. The dataset utilized was constituted by manually-segmented lung masks for
X-ray sets, which were originally utilized for the description of a novel lung segmentation technique.

Our future work is concentrated on expanding our experiments and on further applying the
proposed algorithm to several biomedical datasets for image classification. Furthermore, another
interesting aspect is the development of a parallel implementation of our proposed algorithm.
Notice that the implementation of each component-based learner in parallel machines constitutes a
significant aspect to be studied, since a huge amount of data can be processed in significantly less
computational time.
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