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Abstract: In the context of video background–foreground separation, we propose a compressive
online Robust Principal Component Analysis (RPCA) with optical flow that separates recursively
a sequence of video frames into foreground (sparse) and background (low-rank) components.
This separation method operates on a small set of measurements taken per frame, in contrast to
conventional batch-based RPCA, which processes the full data. The proposed method also leverages
multiple prior information by incorporating previously separated background and foreground
frames in an n-`1 minimization problem. Moreover, optical flow is utilized to estimate motions
between the previous foreground frames and then compensate the motions to achieve higher
quality prior foregrounds for improving the separation. Our method is tested on several video
sequences in different scenarios for online background–foreground separation given compressive
measurements. The visual and quantitative results show that the proposed method outperforms
other existing methods.

Keywords: robust principal component analysis; video separation; compressive measurements;
prior information; optical flow; motion estimation; motion compensation

1. Introduction

Emerging applications in surveillance and autonomous driving are challenging the existing visual
systems to detect and understand objects from visual observations. Video background–foreground
separation is one of most important components for object detection, identification, and tracking.
In video separation, a video sequence can be separated into a slowly changing background (modeled
by L as a low-rank component) and the foreground (modeled by S, which is a sparse component).
RPCA [1,2] was shown to be a robust method for separating the low-rank and sparse components.
RPCA decomposes a data matrix M into the sum of unknown sparse S and low-rank L by solving the
Principal Component Pursuit (PCP) [1] problem:

min
L,S
‖L‖∗ + λ‖S‖1 subject to M = L + S, (1)

where ‖ · ‖∗ is the matrix nuclear norm (sum of singular values) and ‖ · ‖1 is the `1-norm (sum of
absolute values). Many applications of RPCA can be found in computer vision, web data analysis,
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and recommender systems. However, batch RPCA processes all data samples, e.g., all frames in a
video, which demands high computational and memory requirements.

Moreover, the video separation can be improved by taking into account the correlation between
consecutive frames. The correlations can be obtained in the form of motions, which manifest as change
in information from one frame to the other. Detecting motion is an integral part of the human visual
system. A popular and convenient method for estimating motion in computer vision is by using
optical flow [3–5] by variational methods. The optical flow estimates motion vectors of all pixels in
a given frame due to the relative motions between frames. In particular, the motion vectors at each
pixel can be estimated by minimizing a gradient-based matching of pixel gray value, combined with
a smoothness criteria [3]. Thereafter, the computed motion vectors in the horizontal and vertical
directions [4] are used to compensate and predict information in the next frame. For producing highly
accurate motions and accurate correspondences between frames, a large displacement optical flow [6],
that combines a coarse-to-fine optimization with descriptor matching can be used to estimate the
motions from previously separated frames and subsequently use them to support the separation of the
current frame.

In order to deal with the video separation in an online manner, we consider an online RPCA
algorithm that recursively processes a sequence of frames (a.k.a., the column-vectors in M) per
time instance. Additionally, we aim at recovering the foreground and background from a small
set of measurements rather than a full frame data, leveraging information from a set of previously
separated frames. In particular, at time instance t, we wish to separate Mt into St = [x1 x2 ... xt]

and Lt = [v1 v2 ... vt], where [·] denotes a matrix and xt, vt ∈ Rn are column-vectors in St and Lt,
respectively. We assume that St−1 = [x1 x2 ... xt−1] and Lt−1 = [v1 v2 ... vt−1] have been recovered
at time instance t− 1. In the next instance t, we have access to compressive measurements of the
full frame, a.k.a., vector xt + vt, that is, we observe yt = Φ(xt + vt), where Φ ∈ Rm×n(m < n) is
a random projection, xt is the sparse component (foreground) and vt is the low-rank component
(background) at time instance t. We proceed with the assumption that video can be seperated into
dynamic, sparse foreground components and a static or slowly changing, low-rank background
components. The recovery problem at time instance t is thus written [7] as

min
xt ,vt
‖[Lt−1 vt]‖∗+λ‖xt‖1 subject to yt=Φ(xt + vt), (2)

where Lt−1 and St−1 are given.

1.1. Related Work

Many methods [8–14] have been proposed to solve the separation problem by advancing RPCA [1].
Incremental PCP [8] processes each column-vector in M at a time, but it needs access to complete
data (e.g., full frames) rather than compressive data. A counterpart of batch RPCA that operates on
compressive measurements known as Compressive PCP can be found in [15]. The studies in [11–14,16]
aim at solving the problem of online estimation of low-dimensional subspaces from randomly
subsampled data for modeling the background. An algorithm to recover the sparse component
xt in (2) has been proposed in [17], however, the low-rank component vt in (2) is not recovered per
time instance from a small number of measurements.

The alternative method in [18,19] estimates the number of compressive measurements required to
recover foreground xt per time instance via assuming the background vt not-varying. This assumption
is invalid in realistic scenarios due to variations in illumination or dynamic backgrounds. The online
method in [16] works on compressive measurements without taking the prior information into account.

Separating a video sequence or a set of frames using prior information brings about significant
improvements in the context of online RPCA [17,20,21]. Some studies on recursive recovery from
low-dimensional measurements have been proposed to leverage prior information [17,18,20,22].
The study in [22] provided a comprehensive overview of the domain, reviewing a class of recursive
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algorithms. A review of all the recent problem formulations is made in [23] with a unified view with
Decomposition into Low-rank plus Additive Matrices (DLAM).

The studies in [17,20] used modified-CS [24] to leverage prior knowledge under the condition of
slowly varying support and signal values. However, this method as well as the methods in [11,12,14]
do not explore the correlations between the current frame and multiple previously separated frames.
The recent work in [7] leverages correlations across the previously separated foreground frames.
However, displacements between the previous foreground frames and the current frame are not
taken into account. These displacements can incur the degradation of the separation performance.
An interesting method proposed in [25] makes use of the low-rank and sparse components of a video
frame in addition to a dense noise component (G), i.e., M = L + S + G for exoplanet detection.

There are other alternative approaches such as, double-constrained RPCA, namely shape and
confidence map based RPCA (SCM-RPCA) in [26] that combines saliency map along with RPCA for
automated maritime surveillance. Recently a method that incorporates the spatial and temporal sparse
subspace clustering into the RPCA framework was developed in [27] and earlier in [28]. Recent studies
in [29] proposes a non-parametric approach for background subtraction.

Background subtraction is a widely used technique to separate foreground and background.
A detailed review of commonly used techniques in performing background subtraction has been
made in [30]. A survey of all the existing methods in background subtraction has been thoroughly
carried out in [31] and another survey [32] is focused on detecting stationary foreground objects.
Evaluation of 29 background subtraction methods using the BMC dataset [33] has been performed
in [34]. An interesting technique by making use of genetic programming can be found in [35]. This is a
powerful method that uses a repertoire of different background subtraction algorithms and chooses a
method or a combination of methods appropriately, based on the video sequence in order to obtain
better results. Semantics based approach is proposed in [36]. This method improves a background
separation algorithm by making use of semantics to identify objects as foregound or background.
It is worth noting that, in this method, semantics are used as prior information. In [37], a method
is proposed to analyze dynamic background region and reduce the false positives by checking the
false positives again. If foreground is detected in the dynamic background region, it is removed
by re-checking false positives from the dynamic background samples. Ref. [38] makes use of a
different approach to perform background subtraction. This method evaluates the importance of each
background sample in an online manner based on the recurrence among local all the local observations.
A persistence based word dictionary is used, which addresses both short term and long term adaptation
at pixel level and frame level. A good set of videos to test any background separation algorithm
are provided in [33,39]. Ref. [33] is called the BMC (Background Models Challenge) and presents a
benchmark dataset and evaluation process built from both synthetic and real videos. It is focused on
outdoor sequences and with varying weather conditions. Additionally, an evaluation criterion is also
provided with an associated software. CDnet dataset in [33,39] focuses on evaluation of change and
motion detection approaches. It contains challenging scenarios to test background subtraction and
motion detection.

Another closely related field is background generation. Having a background image free of any
foreground objects is important in most applications. Generating a stationary background image is
challenging when the background is not fully visible. And this method needs a finite data volume
but it is specific for each scene. A detailed survey focused on model initialization for background
is carried out in [40]. It provides a basis for easy comparison of existing and new methods using a
common set of ground truth sequences. Another survey and benchmarking of scene background
initialization methods has been extensively carried out in [41] using several evaluation metrics on a
large video dataset called SBMNet [42]. Background generation using motion detection is proposed
in [43]. It uses a temporal median filter and a patch selection mechanism based on motion detection
performed by a background subtraction algorithm. An enhanced version of this method is made in [44]
by using optical flow for motion detection. It leverages memoryless dense optical flow algorithms
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to compute velocity vector between two frames for each pixel. There are methods that make use of
neural networks. One such method is described in [45], which performs background estimation using
weightless neural networks. This algorithm could be used as a preliminary step in video foreground
detection, as detecting foreground or moving objects is not in the scope of this method.

1.2. Contributions

In this paper, we propose a compressive online robust PCA with optical flow (CORPCA-OF)
method (Our work has been reported in [46]), which is based on our previous work in [7]. We leverage
information from previously separated foreground frames via optical flow [6]. The novelty of
CORPCA-OF over CORPCA [7] is that we make use of optical flow to estimate and compensate
motions between the foreground frames, in order to generate new prior foreground frames. These new
prior frames have high correlation with the current frame and thus improve the separation. We also
exploit the slowly changing characteristics of backgrounds known as low-rank components via an
incremental SVD [47] method. The compressive separation problem in (2) is solved in an online manner
by minimizing not only an n-`1-norm cost function [48] for the sparse foreground but also the rank of
a matrix for the low-rank backgrounds. Thereafter, the new separated foreground and background
frames are used to update the prior knowledge for the next processing instance. This method makes
video separation better with higher accuracy and more efficient implementation. The algorithm has
been implemented in C++ using OpenCV and also tested on Matlab. Various functions/methods that
are needed in performing video separation or general compressed sensing have been developed in
C++ and can be used as stand-alone libraries.

The paper is organized as follows. We provide a brief introduction to the CORPCA algorithm [7],
on which our proposed CORPCA-OF is built upon. Based on this, we formulate the problem statement
in Section 2.1, followed by the proposed CORPCA-OF algorithm in Section 2.2.2. The visual and
quantitative results obtained by testing our method on real video sequences are presented and
discussed in Section 3.

2. Compressive Online Robust PCA Using Multiple Prior Information and Optical Flow

In this section, we firstly review the CORPCA [7] algorithm for online compressive video
separation and state our problem. Thereafter, we propose our CORPCA-OF method, which is
summarized in the CORPCA-OF algorithm.

2.1. Compressive Online Robust PCA (CORPCA) for Video Separation

The CORPCA algorithm [7] for video separation is based on Reconstruction Algorithm
with Multiple Side Information using Adaptive weights (RAMSIA) [48], that solves an n-`1

minimization problem with adaptive weights to recover a sparse signal x from low-dimensional
random measurements y = Φx with the aid of multiple prior information or side information zj,
j ∈ {0, 1, . . . , J}, with z0 = 0.The objective function of RAMSIA [48] is given by

min
x

{
H(x)=

1
2
‖Φx− y‖2

2 + λ
J

∑
j=0

β j‖Wj(x− zj)‖1

}
, (3)

where λ > 0 is a regularization parameter and β j >0 are weights across the prior information, and
Wj is a diagonal matrix with weights for each element in the prior information signal zj; namely,
Wj=diag(wj1, wj2, ..., wjn) with wji>0 being the weight for the i-th element in the zj vector.

The CORPCA algorithm processes one data vector per time instance by leveraging prior information
for both its sparse and low-rank components. At time instance t, we observe yt = Φ(xt + vt) with
yt ∈ Rm. Let Zt−1 := {z1, ..., zJ}, a set of zj ∈ Rn, and Bt−1 ∈ Rn×d denote prior information for xt and
vt, respectively. The prior information Zt−1 and Bt−1 are formed by using the already reconstructed
set of vectors {x̂1, ..., x̂t−1} and {v̂1, ..., v̂t−1}.



J. Imaging 2018, 4, 90 5 of 23

The objective function of CORPCA is to solve Problem (2) and can be formulated by

min
xt ,vt

{
H(xt, vt|yt, Zt−1, Bt−1)=

1
2
‖Φ(xt + vt)− yt‖

2
2

+ λµ
J

∑
j=0

β j‖Wj(xt − zj)‖1 + µ
∥∥∥[Bt−1 vt]

∥∥∥
∗

}
, (4)

where µ > 0 is a relaxation parameter. It can be seen that if vt is static (not changing), Problem (4)
reduces to Problem (3). Furthermore, when xt and vt are batch variables and we do not take the
prior information, Zt−1 and Bt−1, and the projection matrix Φ into account, Problem (4) reduces to
Problem (1).

The CORPCA algorithm (The source code, the test sequences, and the corresponding outcomes
of CORPCA are available at [49]) solves Problem (4) given that Zt−1 and Bt−1 are known (they are
obtained from the time instance or recursion). Thereafter, we update Zt and Bt, which are used in the
subsequent time instance.

Let us denote f (vt, xt) = (1/2)‖Φ(xt + vt) − yt‖2
2, g(xt) = λ∑J

j=0β j‖Wj(xt − zj)‖1,
and h(vt) = ‖[Bt−1 vt]‖∗, where f (.) is a function of both background and foreground, g(.) is a
function of the foreground (sparse) component and h(.) is a function of the background (low rank)
component. The components x(k+1)

t and v(k+1)
t are solved iteratively at iteration k + 1 via the soft

thresholding operator [50] for xt and the single value thresholding operator [51] for vt:

v(k+1)
t = arg min

vt

{
µh(vt)+

∥∥∥vt−
(

v(k)
t −

1
2
∇vt f (v

(k)
t , x(k)t )

)∥∥∥2

2

}
, (5)

x(k+1)
t = arg min

xt

{
µg(xt)+

∥∥∥xt−
(

x(k)t −
1
2
∇xt f (v

(k)
t , x(k)t )

)∥∥∥2

2

}
. (6)

2.2. Video Foreground and Background Separation Using CORPCA-OF

Problem statement: Using the prior information in CORPCA [7] has provided significant
improvement of the current frame separation. However, there can be displacements between the
consecutive frames that can deteriorate the separation performance. Figure 1 illustrates an example
of three previous foreground frames, xt−3, xt−2, and xt−1. These frames can be used directly as prior
information to recover foreground xt and background vt due to temporal correlations between xt and
xt−3, xt−2, xt−1, as seen in CORPCA. In the last row of the prior foreground frames in Figure 1, it can
be seen that motions exist between frames. By estimating motion using optical flow [6], we can obtain
motions between the previous foreground frames as in Figure 1, which are visualized using color
codes based on the magnitude and direction of motion vectors [6]. These motions can be compensated
to generate better quality prior frames (compare compensated frames x′t−3, x′t−2 with xt−3, xt−2, xt−1),
and it is better correlated to xt. In this work, we discuss a new algorithm—CORPCA with Optical
Flow (CORPCA-OF), whose work flow is shown in Figure 1. Optical flow [6] is used to improve prior
foreground frames.

2.2.1. Compressive Separation Model with CORPCA-OF

A compressive separation model using the CORPCA-OF method is shown in Figure 2. At a time
instance t, the inputs consist of compressive measurements yt = Φ(xt + vt) and prior information
from time instance t− 1, Zt−1 (foreground) and Bt−1 (background). The model outputs foreground
and background information xt and vt by solving the CORPCA minimization problem in (4). Finally,
the outputs xt and vt are used to generate better prior foreground information via a prior generation
using optical flow and update Zt−1 and Bt−1 for the next instance via a prior update. The novel
block of CORPCA-OF compared with CORPCA [7] is the Prior Generation using Optical Flow,
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where prior foreground information is improved by exploiting the correlation between frames using
large displacement optical flow [6]. The method is further described in Algorithm 1.

Current frame

Background

Foreground

CORPCA

Prior foreground frames

x't-3 x't-2 x't-1

xt-3 xt-2 xt-1

xt

vt

Foreground xt and background vt
frames used as prior information

for the next frame

Motion estimation 
using optical flow

Motion compensated
prior foreground frames

Figure 1. CORPCA-OF work flow.

Φxt + vt 
yt CORPCA

Minimization

xt̂

vt̂

Prior Update

Zt-1  Bt-1 

Prior Generation 
using Optical Flow

CORPCA-OF

xt-1
,xt-2,

,xt-3,
,

Figure 2. Compressive separation model using CORPCA-OF .

2.2.2. Prior Generation using Optical Flow

The main idea of CORPCA-OF is to improve the foreground prior frames using the correlation
between frames, which is done by estimating motion between frames via optical flow. In Algorithm 1,
the prior frames are initialized with xt−1, xt−2 and xt−3. Optical flow is used to compute the motions
between frames xt−1 and xt−2 (also xt−1 and xt−3) to obtain flow vectors for these two frames. This can
be seen in Figure 1 from the color coded representation of optical flow fields [6]. The function fME(·)
in Lines 2 and 3 (see Algorithm 1) computes the motions between prior foreground frames. It involves
computing the optical flow vectors consisting of horizontal (x) and vertical (y) components, and is
denoted by v1x, v2x and v1y, v2y ∈ Rn, respectively. The estimated motions in the form of optical flow
vectors, (v1x, v1y) and (v2x, v2y), are then used to predict the following frames by compensating for
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the forward motions on xt−1. The prior frames, x′t−2 and x′t−3 are generated by performing motion
compensation. This is indicated by the function fMC(·) as shown by Lines 5 and 6 in Algorithm 1.

Algorithm 1: The proposed CORPCA-OF algorithm.
Input: yt, Zt−1, Bt−1;
Output: x̂t, v̂t, Zt, Bt;
// Initialize variables and parameters.

1 x(−1)
t =x(0)t =0; v(−1)

t =v(0)
t =0; ξ−1= ξ0=1; µ0=0; µ̄>0; λ > 0; 0<ε<1; k=0; g1(·)=‖ · ‖1;

// Motion estimation and compensation using Large Displacement Optical
Flow [6]

2 (v1x, v1y) = fME(xt−1, xt−2);
3 (v2x, v2y) = fME(xt−1, xt−3);
4 x′t−1 = xt−1;
5 x′t−2 = fMC(xt−1, v1x, v1y);
6 x′t−3 = fMC(xt−1, 1

2 v2x, 1
2 v2y);

7 zJ = x′t−1; zJ−1 = x′t−2; zJ−2 = x′t−3;
8 while not converged do

// Solve Problem (4).

9 ṽt
(k)= v(k)

t +
ξk−1−1

ξk
(v(k)

t −v(k−1)
t );

10 x̃t
(k)= x(k)t +

ξk−1−1
ξk

(x(k)t −x(k−1)
t );

11 ∇vt f (ṽt
(k), x̃t

(k)) = ∇xt f (ṽt
(k), x̃t

(k)) = ΦT
(

Φ(ṽt
(k) + x̃t

(k))− yt

)
;

12 (U t, Σt, V t) =incSVD
([

Bt−1

(
ṽt

(k)− 1
2∇vt f (ṽt

(k), x̃t
(k))
)])

;

13 Θt=U tΓ µk
2 g1

(Σt)V T
t ;

14 v(k+1)
t = Θt(:, end);

15 x(k+1)
t =Γ µk

2 g

(
x̃t

(k) − 1
2∇xt f (ṽt

(k), x̃t
(k))
)

; where Γ µk
2 g(·) is given as in RAMSIA [48];

// Compute the updated weights [48].

16 wji=
n(|x(k+1)

ti −zji|+ε)−1

n
∑

l=1
(|x(k+1)

tl −zjl |+ε)−1
;

17 β j=

(
||Wj(x(k+1)

t −zj)||1+ε
)−1

J
∑

l=0

(
||Wl(x(k+1)

t −zl)||1+ε
)−1

;

18 ξk+1 = (1 +
√

1 + 4ξ2
k)/2; µk+1 = max(εµk, µ̄);

19 k = k + 1;
20 end

// Update prior information.

21 Zt := {zj = x(k+1)
t−J+j}

J
j=1;

22 Bt = U t(:, 1 : d)Γ µk
2 g1

(Σt)(1 : d, 1 : d)V t(:, 1 : d)T;

23 return x̂t = x(k+1)
t , v̂t = v(k+1)

t , Zt, Bt;

Considering a point or a pixel i in the given frame, the horizontal and vertical components v1xi
and v1yi of corresponding horizontal and vertical flow vectors v1x and v1y are obtained, as mentioned
in [52], by solving:

I1x · v1xi + I1y · v1yi + I1t = 0, (7)
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where I1x = ∂I1/∂x and I1y = ∂I1/∂y are the intensity changes in the horizontal (x) and vertical (y)
directions, respectively, constituting the spatial gradients of the intensity level I1; I1t = ∂I1/∂t is the
time gradient, which is a measure of temporal change in the intensity level at point i. There are various
methods [3–6] to determine v1xi and v1yi. Our solution is based on large displacement optical flow [6],
that is a combination of global and local approaches to estimate all kinds of motion. It involves
optimization and minimization of error by using descriptor matching and continuation method,
which utilizes feature matching along with conventional optical flow estimation to obtain the flow field.
We combine the optical flow components of each point i in the image into two vectors (v1x, v1y), i.e., the
horizontal and the vertical components of the optical flow vector. Similarly, we obtain (v2x, v2y).

The estimated motions in the form of optical flow vectors are used along with the frame xt−1 to
produce new prior frames that form the updated prior information. Linear interpolation is used to
generate new frames via column interpolation and row interpolation. This is represented as fMC(·) in
Lines 5 and 6 in the Algorithm 1. The obtained frame is the result of using the flow fields (v1x, v1y) and
( 1

2 v2x, 1
2 v2y) to predict motions in the next frame and compensate them on the frame xt−1 to obtain x′t−2

and x′t−3 respectively. It should be noted that x′t−3 is obtained by compensating for half the motions,
i.e., ( 1

2 v2x, 1
2 v2y), between xt−1 and xt−3. These improved frames x′t−2, x′t−3 are more correlated to the

current frame xt than xt−2, xt−3, i.e., without motion estimation and compensation. We also keep the
most recent frame x′t−1 = xt−1 (in Line 4) as one of the prior frames.

Thereafter, v(k+1)
t and x(k+1)

t are iteratively computed as in Lines 14 and 15 in Algorithm 1. It can
be noted that the proximal operator Γτg1(·) in Line 13 of Algorithm 1 is defined [7] as:

Γτg1(X) = arg min
V

{
τg1(V) +

1
2
||V − X||22

}
, (8)

where g1(·) = ‖ · ‖1 (`1-norm). The weights Wj and β j are updated per iteration of the algorithm
(see Lines 16 and 17). As suggested in [2], the convergence of Algorithm 1 in Line 8 is determined
by evaluating the criterion ‖∂H(xt, vt)|x(k+1)

t ,v(k+1)
t
‖2

2 < 2× 10−7‖(x(k+1)
t , v(k+1)

t )‖2
2. In the next step,

we perform an update of the priors Zt and Bt.

2.2.3. Prior Update

The update of Zt and Bt [7] is carried out after each time instance (see Lines 21 and 22, Algorithm 1).
Due to the correlation between subsequent frames, we update the prior information Zt by using the
J latest recovered sparse components, which is given by, Zt := {zj = xt−J+j}J

j=1. For Bt ∈ Rn×d,
we consider an adaptive update, which operates on a fixed or constant number d of the columns of
Bt. To this end, the incremental singular value decomposition [47] method (incSVD(·) in Line 12,
Algorithm 1) is used. It is worth noting that the update Bt = U tΓ µk

2 g1
(Σt)VT

t , causes the dimension

of Bt to increase as Bt ∈ Rn×(d+1) after each instance. However, in order to maintain a reasonable
number of d, we take Bt = U t(:, 1 : d)Γ µk

2 g1
(Σt)(1 : d, 1 : d)V t(:, 1 : d)T. The computational cost of

incSVD(·) is lower than conventional SVD [8,47] since we only compute the full SVD of the middle
matrix with size (d + 1)× (d + 1), where d� n, instead of n× (d + 1). The computation of incSVD(·)
is presented as follows: The goal is to compute incSVD[Bt−1 vt], i.e., [Bt−1 vt] = U tΣtVT

t . By taking
the SVD of Bt−1 ∈ Rn×d to obtain Bt−1 = U t−1Σt−1VT

t−1. Therefore, we can derive (U t, Σt, V t) via
(U t−1, Σt−1, V t−1) and vt. We write the matrix [Bt−1 vt] as

[Bt−1 vt]=
[
U t−1

δt

‖δt‖2

]
·
[

Σt−1 et

0T ‖δt‖2

]
·
[

VT
t−1 0
0T 1

]
, (9)
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where et = UT
t−1vt and δt = vt − U t−1et. By computing the SVD of the central term of (9),

we obtain

[
Σt−1 et

0T ‖δt‖2

]
= ŨΣ̃Ṽ

T
. Eventually, we obtain U t =

[
U t−1

δt

‖δt‖2

]
· Ũ, Σt= Σ̃, and also,

V t =

[
VT

t−1 0
0T 1

]
· Ṽ .

3. Experimental Results

In this section we present and discuss the experimental results obtained by applying our method
CORPCA-OF on real video data. We also evaluate the performance of our algorithm and compare the
results with other existing methods.

Experimental setup: The experiments were carried out on two computers. The Matlab
implementation was carried out and tested on a desktop PC (Linux) with Intel i5 3.5 GHz CPU (4 cores)
and 12GB RAM. The C++ implementation was carried out and tested on a computer (Windows) with
i7-4510U 2.0 GHz CPU (2 cores) and 8 GB memory. By doing that, the cross platform functionality can
also be verified with these two machines.

For the experimental evaluation with the various existing methods, mainly two sequences [53],
Bootstrap (80 × 60) and Curtain (80 × 64) were used. The Bootstrap sequence consists of
3055 frames and has a static background and a complex foreground. The Curtain sequence contains
2964 frames with a dynamic background and simple foreground motion. For separating each of these
sequences, 100 frames are randomly selected and used for initialization of prior information. The prior
information is later updated by selecting three most recent frames as seen in Section 2.2.3.

We evaluate the performance of the proposed CORPCA-OF in Algorithm 1 and compare it
against the existing methods, Robust Principal Component Analysis (RPCA) [1], Grassmannian
Robust Adaptive Subspace Tracking Algorithm(GRASTA) [11], and Recursive Projected Compressive
Sensing(ReProCS) [17,22]. RPCA [1] is a batch-based method assuming full access to the data,
while GRASTA [11] and ReProCS [17] are online methods that can recover either the (low-rank)
background component (GRASTA) or the (sparse) foreground component (ReProCS) from compressive
measurements.

3.1. Prior Information Evaluation

We evaluate the prior information of CORPCA-OF compared with that of CORPCA [7] using
the previously separated foreground frames directly. For CORPCA-OF, we generate the prior
information by estimating and compensating motions among the previous foreground frames. Figure 3
shows a few examples of the prior information generated for the sequences Bootstrap and Curtain.
In Figure 3a, it can be observed that frames #2210’, #2211’ and #2212’ (of CORPCA-OF) are better
than corresponding #2210, #2211 and #2212 (of CORPCA) for the current frame #2213, similarly in
Figure 3b–d, . Especially in Figure 3c, the generated frames #448’ and #449’ have significantly improved
due to dense motion compensations. In Figure 3d, it is clear that the movements of the person is
well compensated in #2771’ and #2772’ by CORPCA-OF compared to #2771 and #2772 respectively,
of CORPCA, leading to better correlations with the foreground of current frame #2774. Replace one of
the curtain and bootstrap sequences by an elevator and a fountain sequence.

3.2. Compressive Video Foreground and Background Separation

We assess our CORPCA-OF method in the application of compressive video separation and
compare it against the existing methods, CORPCA [7], RPCA [1], GRASTA [11], and ReProCS [17].
We run all methods on the test video sequences. In this experiment, we use d = 100 frames
as training vectors for the proposed CORPCA-OF, CORPCA [7] as well as for GRASTA [11] and
ReProCS [17]. Three latest previous foregrounds are used as the foreground prior for CORPCA.
Meanwhile, CORPCA-OF refines them using optical flow [6].
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CORPCA-OF

#2213

Prior information - foreground

#2212

#2212'

#2211#2210

#2210' #2211' Original frame

CORPCA [8]

(a)

#2866

Original frame

Prior information - foreground

#2865

#2865'

#2864#2863

#2863' #2864'

CORPCA-OF

CORPCA [8]

(b)

CORPCA-OF

#451

Prior information - foreground

#450

#450'

#449#448

#448' #449' Original frame

CORPCA [8]

(c)

#2774

Original frame

Prior information - foreground

#2773

#2773'

#2772#2771

#2771' #2772'

CORPCA-OF

CORPCA [8]

(d)

Figure 3. Prior information generation in CORPCA-OF using optical flow [6]. (a) Bootstrap #2213;
(b) Curtain #2866; (c) Bootstrap #451; (d) Curtain #2774.

3.2.1. Visual Evaluation

We first consider background and foreground separation with full access to the video data; the
visual results of the various methods are illustrated in Figure 4. It is evident that, for both the video
sequences, CORPCA-OF delivers superior visual results than the other methods, which suffer from
less-details in the foreground and noisy background images. We can also observe improvements
over CORPCA.

CORPCA [8]CORPCA-OF RPCA [1] GRASTA [12] ReProCS [18]

(a)

(b)Original

CORPCA-OF    CORPCA [8] RPCA [1] GRASTA [12] ReProCS [18]

(b)

Figure 4. Foreground and background separation for the different separation methods with full data
access Bootstrap #2213 and Curtain #2866. (a) Bootstrap; (b) Curtain.
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Additionally, we also compare the visual results of CORPCA-OF, CORPCA and ReProCS for
the frames Bootstrap #2213 (in Figure 5) and for Curtain #2866 (in Figure 6) with compressed
rates. They present the results under various rates on the number of measurements m over the
dimension n of the data (the size of the vectorized frame) with rates: m/n = {0.8; 0.6; 0.4; 0.2}.
Comparing CORPCA-OF with CORPCA, we can observe in Figures 5 and 6 that CORPCA-OF gives
the foregrounds that are less noisy and the background frames of higher visual quality. On comparison
with ReProCS, our algorithm outperforms it significantly. At low rates, for instance with m/n = 0.6
(in Figure 5a) or m/n = 0.4 (in Figure 6a), the extracted foreground frames of CORPCA-OF are better
than those of CORPCA and ReProCS. Even at a high rate of m/n = 0.8 the sparse components or
the foreground frames using ReProCS are noisy and of poor visual quality. The Bootstrap sequence
requires more measurements than Curtain due to the more complex foreground information. It is
evident from Figures 5 and 6 that the visual results obtained with CORPCA-OF are of superior quality
compared to ReProCS and have significant improvements over CORPCA.

m/n = 0.6 m/n = 0.4 m/n = 0.2m/n = 0.8
(a)

m/n = 0.8 m/n = 0.6 m/n = 0.4 m/n = 0.2
(b)

m/n = 0.8 m/n = 0.6 m/n = 0.4 m/n = 0.2
(c)

Figure 5. Compressive foreground and background separation of CORPCA-OF, CORPCA [7],
and ReProCS [17] with different measurement rates m/n of frame Bootstrap #2213. (a) CORPCA-OF;
(b) CORPCA [7]; (c) ReProCS [17].
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m/n = 0.8 m/n = 0.6 m/n = 0.4 m/n = 0.2
(a)

m/n = 0.8 m/n = 0.6 m/n = 0.4 m/n = 0.2
(b)

   m/n = 0.8 m/n = 0.6 m/n = 0.4   m/n = 0.2
(c)

Figure 6. Compressive foreground and background separation of CORPCA-OF, CORPCA [7], and
ReProCS [17] with different measurement rates m/n of frame Curtain #2866. (a) CORPCA-OF;
(b) CORPCA [7]; (c) ReProCS [17].

3.2.2. Quantitative Results

We evaluate quantitatively the separation performance via the receiver operating curve (ROC)
metric [54]. The metrics True positives and False positives are defined in [54] as:

True positives =
| {Foreground} ∩ {Groundtruth Foreground} |

| {Groundtruth Foreground} | (10)

False positives =
| {Foreground} ∩ {Groundtruth Background} |

| {Groundtruth Background} | (11)

For plotting the ROC curve, a set of foreground frames corresponding to the ground truth frames
are selected. Then we threshold the foreground frames at various levels and compute true positives
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and false positives by comparing with the ground truth frames for each threshold level. We then plot
true positives against false positives.

Figure 7 illustrates the ROC results when assuming full data access, i.e., m/n = 1, of CORPCA-OF,
CORPCA, RPCA, GRASTA, and ReProCS. The results show that CORPCA-OF delivers higher
performance than the other methods.
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Figure 7. ROC for the different separation methods with full data. (a) Bootstrap; (b) Curtain.

Furthermore, we compare the foreground recovery performance of CORPCA-OF against CORPCA
and ReProCS for different compressive measurement rates: m/n = {0.8; 0.6; 0.4; 0.2}. The ROC
results in Figures 8 and 9 show that CORPCA-OF can achieve higher performance in comparison
to ReProCS and CORPCA. In particular, with a small number of measurements, CORPCA-OF
produces better curves than those of CORPCA. This is evident for Bootstrap at m/n = {0.2; 0.4; 0.6}
(see Figure 8a). For the Curtain sequence, which has a dynamic background and less complex
foreground, the measurements at m/n = {0.2; 0.4} (see Figure 9a) are clearly better. The ROC results
for ReProCS are quickly degraded even with a high compressive measurement rate m/n = 0.8
(see Figure 9c).
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Figure 8. ROC for CORPCA-OF, CORPCA [7], and ReProCS [17] with compressive measurement rates
m/n for Bootstrap sequence. (a) CORPCA-OF; (b) CORPCA [7]; (c) ReProCS [17].

3.3. Additional Results

3.3.1. Escalator and Fountain sequences

The CORPCA-OF method was also compared with CORPCA against Escalator and Fountain
sequences for compressive measurements. From Figure 10a,b, it is clear that CORPCA-OF performs
slightly better than CORPCA. In Figure 11a,b we can see that for the Fountain sequence, which is
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similar to the Curtain sequence in terms of complexity of foreground motions, the results are better
for CORPCA-OF compared to CORPCA at rate m/n = {0.2} and almost the same for higher rates.
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Figure 9. ROC for CORPCA-OF, CORPCA [7], and ReProCS [17] with compressive measurement rates
m/n for Curtain sequence. (a) CORPCA-OF; (b) CORPCA [7]; (c) ReProCS [17].
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Figure 10. ROC of CORPCA-OF and CORPCA [7] methods with different rates for Escalator sequence.
(a) CORPCA-OF; (b) CORPCA [7].
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Figure 11. ROC of CORPCA-OF and CORPCA [7] methods with different rates for Fountain sequence.
(a) CORPCA-OF; (b) CORPCA [7].
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3.3.2. Visual Comparison of CORPCA-OF and CORPCA for Full Resolution

The visual comparison of CORPCA and CORPCA-OF for frame #2213 in full resolution (160× 120)
of the Bootstrap sequence can be seen in Figure12. In Figure13, we compare the full resolution
(160× 128) frame #2866 of the Curtain sequence. It can be seen that the background and foreground
frames of CORPCA-OF for both Bootstrap and Curtain are much smoother and the contents have
better structure compared to that of CORPCA. The improvements in foreground can be observed
significantly at rates m/n = {0.6; 0.4; 0.2} for the Bootstrap sequence for CORPCA-OF in Figure 12a
over CORPCA in Figure 12b. But in case of Curtain sequence, at low rates m/n = {0.4; 0.2}, there is
significant improvement of foreground in Figure 13a for CORPCA-OF over CORPCA in Figure 13b.

m/n = 1.0 m/n = 0.8 m/n = 0.6 m/n = 0.4 m/n = 0.2

(a)

m/n = 1.0 m/n = 0.8 m/n = 0.6 m/n = 0.4 m/n = 0.2

(b)

Figure 12. Comparison of CORPCA-OF and CORPCA [7] at full resolution with different rates m/n
for Bootstrap #2213. (a) CORPCA-OF; (b) CORPCA [7].

3.3.3. Separation Results with Various Datasets

CDnet dataset: We tested our algorithm with some sequences from the CDnet dataset [39].
tramCrossroad1 is a sequence captured at low frame rate. The foreground and backgrouns separation
result for frame #655 is shown in Figure 14a. A thermal imaging sequence corridor was seperated
using CORPCA-OF and the result for frame #686 is shown in Figure 14b. The separation results for a
sequence with camera jitter, badminton is shown in Figure 14c. canoe is a challenging sequence with
background motion or in other words, with dynamic background. The results for this sequence is
shown in Figure 14d for frame #145. We can observe some artifacts of the canoe from foreground in
the background image. This is because of the complex motion of water. The sequences badminton and
canoe are also part of the SBMNet dataset.

SBMNet dataset: The results for sequences from SBMNet dataset [42] are shown in Figure 15.
MPEG4_40 is an animated sequence of cars at a traffic signal. It can be seen from Figure 15a that our
algorithm works for synthetic images as well. A cluttered sequence IndianTraffic3 was tested and
the result for frame #622 can be seen from Figure 15b. We also tested our algorithm on an underwater
sequence Hybrid and the result is shown in Figure 15c.
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m/n = 1.0 m/n = 0.8 m/n = 0.6 m/n = 0.4 m/n = 0.2

(a)

m/n = 1.0 m/n = 0.8 m/n = 0.6 m/n = 0.4 m/n = 0.2

(b)

Figure 13. Comparison of CORPCA-OF and CORPCA [7] at full resolution with different rates m/n
for Curtain #2866. (a) CORPCA-OF; (b) CORPCA [7].

(a)

(b)

(c)

(d)

Figure 14. Foreground and background separation results of sequences from CDnet dataset [39].
(a) tramCrossroad1_fps #655; (b) corridor #686; (c) badminton #471; (d) canoe #145.
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(a)

(b)

(c)

Figure 15. Foreground and background separation results of sequences from SBMNet dataset [42].
(a) MPEG4_40 #193; (b) IndianTraffic3 #622; (c) Hybrid #4.

These results demonstrate the versatility of our algorithm.
HighwayI: This sequence is from the ATON dataset [55]. It is a sequence with fast motion of cars

along a highway, with strong shadows and small camera jitter. The clear foreground and background
separation for frames #285 to #293 can be seen from Figure 16.

Laboratory: This sequence is from the ATON dataset [55]. It contains an indoor sequence with
two persons appearing for certain intervals. Original frames #142 to #158 are shown in Figure17 along
with the separated background and foreground frames.
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#285

#287

#289

#291

#293

Original Foreground Background

Figure 16. Foreground and background separation for HighwayI sequence.
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#142

#146

#150

#154

#158

Original Foreground Background

Figure 17. Foreground and background separation for Laboratory sequence.

4. Conclusions

We have considered online video foreground–background separation using RPCA approach
from compressive measurements. A compressive online robust PCA algorithm with optical flow
(CORPCA-OF) that can process one frame per time instance from compressive measurements was
proposed. CORPCA-OF efficiently incorporates multiple prior frames based on the n-`1 minimization
problem. Furthermore, the proposed method can exploit motion estimation and compensation using
optical flow to refine the prior information and obtain better quality separation. The proposed
CORPCA-OF was tested on compressive online video separation application using numerous video
sequences. The visual and quantitative results have shown the improvements on the prior generation
and the superior performance offered by CORPCA-OF compared to the existing methods including
the CORPCA baseline.

It is worth mentioning that CORPCA-OF can work in a general manner, with any number of prior
frames. In this work, for the video separation, three prior frames are used as a compromise between
performance and computational load. The C++ implementation (see Appendix A) of CORPCA-OF
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(The code for the CORPCA-OF algorithm is available at [56]) has been carried out, where the methods
can be used as libraries for video separation. For separating a frame of resolution 80× 60 and full data
(m/n = 1), on an average, the Matlab implementation takes about 8 s per frame, out of which about 0.4
s is for the computation of optical flow. The same algorithm on C++ takes about 28 s per frame, with
about 0.15 s for the optical flow computation. Building on this, the next step would be to make the
algorithm more robust, adaptive, dynamic, and real-time by using Graphics Processing Units (GPUs)
so that the algorithm can handle larger images.
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Abbreviations

The following abbreviations are used in this paper:

CDnet ChangeDetection.NET
CORPCA Compressive Online Robust Principal Component Analysis
CORPCA-OF Compressive Online Robust Principal Component Analysis with Optical Flow
GPU Graphics Processing Unit
GRASTA Grassmannian Robust Adaptive Subspace Tracking Algorithm
OF Optical Flow
PCA Principal Component Analysis
PCP Principal Component Pursuit
RAMSIA Reconstruction Algorithm with Multiple Side Information using Adaptive weights
ReProCS Recursive Projected Compressive Sensing
ROC Receiver Operating Curve
RPCA Robust Principal Component Analysis
SBMnet SceneBackgroundModeling.NET
SVD Singular Value Decomposition

Appendix A. Overview of CORPCA-OF Implementaion in C++

An overview of the various C++ classes, functions implemented, and a sample code snippet to
demonstrate the usage of CORPCA-OF is as shown below.

Figure A1. Overview of CORPCA-OF implementation.



J. Imaging 2018, 4, 90 21 of 23

Figure A2. A sample of CORPCA-OF code usage.
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