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Abstract: This paper presents an overview of coding methods used to encode a set of covariance
matrices. Starting from a Gaussian mixture model (GMM) adapted to the Log-Euclidean (LE) or
affine invariant Riemannian metric, we propose a Fisher Vector (FV) descriptor adapted to each of
these metrics: the Log-Euclidean Fisher Vectors (LE FV) and the Riemannian Fisher Vectors (RFV).
Some experiments on texture and head pose image classification are conducted to compare these
two metrics and to illustrate the potential of these FV-based descriptors compared to state-of-the-art
BoW and VLAD-based descriptors. A focus is also applied to illustrate the advantage of using the
Fisher information matrix during the derivation of the FV. In addition, finally, some experiments are
conducted in order to provide fairer comparison between the different coding strategies. This includes
some comparisons between anisotropic and isotropic models, and a estimation performance analysis
of the GMM dispersion parameter for covariance matrices of large dimension.

Keywords: bag of words; vector of locally aggregated descriptors; Fisher vector; log-Euclidean
metric; affine invariant Riemannian metric; covariance matrix

1. Introduction

In supervised classification, the goal is to tag an image with one class name based on its content.
In the beginning of the 2000s, the leading approaches were based on feature coding. Among the
most employed coding-based methods, there are the bag of words model (BoW) [1], the vector of
locally aggregated descriptors (VLAD) [2,3], the Fisher score (FS) [4] and the Fisher vectors (FV) [5-7].
The success of these methods is based on their main advantages. First, the information obtained by
feature coding can be used in a wide variety of applications, including image classification [5,8,9], text
retrieval [10], action and face recognition [11], etc. Second, combined with powerful local handcrafted
features, such as SIFT, they are robust to transformations like scaling, translation, or occlusion [11].

Nevertheless, in 2012, the ImageNet Large Scale Visual Recognition Challenge has shown that
Convolutional Neural Networks [12,13] (CNNs) can outperform FV descriptors. Since then, in order
to take advantage of both worlds, some hybrid classification architectures have been proposed to
combine FV and CNN [14]. For example, Perronnin et al. have proposed to train a network of fully
connected layers on the FV descriptors [15]. Another hybrid architecture is the deep Fisher network
composed by stacking several FV layers [16]. Some authors have proposed to extract convolutional
features from different layers of the network, and then to use VLAD or FV encoding to encode features
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into a single vector for each image [17-19]. These latter features can also be combined with features
issued from the fully connected layers in order to improve the classification accuracy [20].

At the same time, many authors have proposed to extend the formalism of encoding to features
lying in a non-Euclidean space. This is the case of covariance matrices that have already demonstrated
their importance as descriptors related to array processing [21], radar detection [22-25], image
segmentation [26,27], face detection [28], vehicle detection [29], or classification [11,30-32], etc.
As mentioned in [33], the use of covariance matrices has several advantages. First, they are able
to merge the information provided by different features. Second, they are low dimensional descriptors,
independent of the dataset size. Third, in the context of image and video processing, efficient methods
for fast computation are available [34].

Nevertheless, since covariance matrices are positive definite matrices, conventional tools
developed in the Euclidean space are not well adapted to model the underlying scatter of the data
points which are covariance matrices. The characteristics of the Riemannian geometry of the space
P of m x m symmetric and positive definite (SPD) matrices should be considered in order to obtain
appropriate algorithms. The aim of this paper is to introduce a unified framework for Bow, VLAD, FS
and FV approaches, for features being covariance matrices. In the recent literature, some authors have
proposed to extend the BoW and VLAD descriptors to the LE and affine invariant Riemannian metrics.
This yields to the so-called Log-Euclidean bag of words (LE BoW) [33,35], bag of Riemannian words
(BoRW) [36], Log-Euclidean vector of locally aggregated descriptors (LE VLAD) [11], extrinsic vector
of locally aggregated descriptors (E-VLAD) [37] and intrinsic Riemannian vector of locally aggregated
descriptors (RVLAD) [11]. All these approaches have been proposed by a direct analogy between the
Euclidean and the Riemannian case. For that, the codebook used to encode the covariance matrix set is
the standard k-means algorithm adapted to the LE and affine invariant Riemannian metrics.

Contrary to the BoW and VLAD-based coding methods, a soft codebook issued from a Gaussian
mixture model (GMM) should be learned for FS or FV encoding. This paper aims to present how FS
and FV can be used to encode a set of covariance matrices [38]. Since these elements do not lie on an
Euclidean space but on a Riemannian manifold, a Riemannian metric should be considered. Here,
two Riemannian metrics are used: the LE and the affine invariant Riemannian metrics. To summarize,
we provide four main contributions:

e  First, based on the conventional multivariate GMM, we introduce the log-Euclidean Fisher score
(LE FS). This descriptor can be interpreted as the FS computed on the log-Euclidean vector
representation of the covariance matrices set.

e  Second, we have recently introduced a Gaussian distribution on the space P;;: the Riemannian
Gaussian distribution [39]. This latter allows the definition of a GMM on the space of covariance
matrices and an Expectation Maximization (EM) algorithm can hence be considered to learn the
codebook [32]. Starting from this observation, we define the Riemannian Fisher score (RFS) [40]
which can be interpreted as an extension of the RVLAD descriptor proposed in [11].

e  The third main contribution is to highlight the impact of the Fisher information matrix (FIM) in
the derivation of the FV. For that, the Log-Euclidean Fisher Vectors (LE FV) and the Riemannian
Fisher Vectors (RFV) are introduced as an extension of the LE FS and the RFS.

o Fourth, all these coding methods will be compared on two image processing applications
consisting of texture and head pose image classification. Some experiments will also be conducted
in order to provide fairer comparison between the different coding strategies. It includes some
comparisons between anisotropic and isotropic models. An estimation performance analysis of
the dispersion parameter for covariance matrices of large dimension will also be studied.

As previously mentioned, hybrid architectures can be employed to combine FV with CNN.
The adaptation of the proposed FV descriptors to these architecture is outside the scope of this paper
but will remain one of the perspective of this work.
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The paper is structured as follows. Section 2 introduces the workflow presenting the general idea
of feature coding-based classification methods. Section 3 presents the codebook generation on the
manifold of SPD covariance matrices. Section 4 introduces a theoretical study of the feature encoding
methods (BoW, VLAD, FS and FV) based on the LE and affine invariant Riemannian metrics. Section 5
shows two applications of these descriptors to texture and head pose image classification. In addition,
finally, Section 6 synthesizes the main conclusions and perspectives of this work.

2. General Framework

The general workflow is presented in Figure 1 and it consists of the following steps:
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Figure 1. Workflow presenting the general idea of feature coding-based classification methods.

1.  Patch extraction is the starting step of the classification algorithm. At the beginning, the images
are divided in patches, either in a dense way, by means of fixed grids, or in a non-dense way,
based on representative points such as SIFT for example.

2. Alow level feature extraction step is then applied in order to extract some characteristics (such as
spatial gradient components). These low-level handcrafted features capture the information
contained in each patch.

3. The covariance matrix of these features are then computed. As a result, each image is represented
as a set of covariance matrices which compose the signature of an image.

4. The codebook generation starts from the previously extracted covariance matrices. The purpose of
this step is to identify the features containing the significant information. Usually, this procedure
is performed by means of clustering algorithms, such as the k-means or expectation-maximization
(EM) algorithm. Knowing that the features are covariance matrices, one of the following
approaches can be chosen. The first one considers the LE metric. It consists of projecting
the covariance matrices in the LE space [33,35] and then standard clustering algorithms for
multivariate Gaussian distributions are used. The second approach considers the affine invariant
Riemannian metric to measure the similarity between two covariance matrices. In this context,
the conventional k-means or EM algorithm should be readapted to this metric [11,36,40]. For both
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approaches, the dataset is partitioned into a predefined number of clusters, each of them being
described by parameters, such as the cluster’s centroid, the dispersion and the associated weight.
The obtained features are called codewords and they are grouped in a codebook, also called
a dictionary.

5. Feature encoding is based on the created codebook and it consists in projecting the extracted
covariance matrices onto the codebook space. For this purpose, approaches like BoW, VLAD and
FV can be employed, for both the LE and affine invariant Riemannian metrics. According to [41],
these are global coding strategies, that describe the entire set of features, and not the individual
ones. Essentially, this is accomplished using probability density distributions to model the
feature space. More precisely, they can be viewed either as voting-based methods depending on
histograms, or as Fisher coding-based methods by using Gaussian mixture models adapted to
the considered metric [39,42].

6.  Post-processing is often applied after the feature encoding step, in order to minimize the influence
of background information on the image signature [6] and to correct the independence assumption
made on the patches [7]. Therefore, two types of normalization are used, namely the power [7]
and /¢, [6] normalizations.

7. Classification is the final step, achieved by associating the test images to the class of the most
similar training observations. In practice, algorithms such as k-nearest neighbors, support vector
machine or random forest can be used.

As shown in Figure 1, the codebook generation along with the feature encoding are the two central
steps in this framework. The next two sections present a detailed analysis of how these steps are
adapted to covariance matrix features.

3. Codebook Generation in P,,

This section focuses on the codebook generation. At this point, the set of extracted low-level
features, i.e., the set of covariance matrices, is used in order to identify the ones embedding the set’s
significant characteristics. In this paper, two metrics are considered to compute the codebook which
are respectively the LE and the affine invariant Riemannian metric. The next two subsections describe
these two strategies.

3.1. Log-Euclidean Codebook

Let M = {M, },—1.N, with M,, € Py, be a sample of N training SPD matrices of size m x m.
The LE codebook is obtained by considering the LE metric as similarity measure between two
covariance matrices. For such a purpose, each training covariance matrix M, is first mapped on
the LE space by applying the matrix logarithm MLE = logM,, [33,43,44]. Next, a vectorization

operator is applied to obtain the LE vector representation. To sum up, for a given SPD matrix M, its LE
. m(m+1) | . . . .
vector representation, m € R~z , is defined as m = Vec(log(M)) where Vec is the vectorization

operator defined as:

VeC(X) = |:X11/ \/§X12/ crcy \/EthI XZZI \/§X23I R Xmm} 7 (1)

with X;; the elements of X.

Once the SPD matrices are mapped on the LE metric space, all the conventional algorithms
developed on the Euclidean space can be considered. In particular, the LE vector representation of M,
i.e., {my},—1.N, can be assumed to be independent and identically distributed (i.i.d.) samples from a
mixture of K multivariate Gaussian distributions, whose probability density function is
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K
p(m,|0) = Y @p(m,|my, Ty) 2)
=1

where 0 = { (@, My, k)1 <k<k } is the parameter vector. For each cluster k, @y represent the mixture
weight, m; the mean vector and My the covariance matrices. It yields:

p(m6;) = %exp{ - %(m_mk)ngl(m_mk)}, ©)
(27m) 2 2|2
. . . m(m+1)
where (-)T is the transpose operator, | - | is the determinant, m; € R~ 2, %; € Pu(m+1)/2 and @k € R.
m(m+1)

In addition, the covariance matrix is assumed to be diagonal, i.e., (7,% = diag(Xx) € R~z is the
variance vector. For such a model, the classical k-means or EM algorithm can be applied to estimate the
mixture parameters. The estimated parameters of each mixture component (my, (T]% and @y) represent
the codewords and the set composed by the K codewords gives the LE codebook.

3.2. New Riemannian Codebook

In this section, we present the construction of the Riemannian codebook which is based on the
affine invariant Riemannian metric. We recall some properties of the manifold of SPD matrices and
introduce the Riemannian Gaussian mixture model.

3.2.1. Riemannian Geometry of the Space of SPD Matrices

The space Py, of m x m real SPD matrices M satisfies the following conditions:
M-M! =0 4)
and
x'Mx > 0, (@)

¥x € R™ and x # 0.

In this space, the Rao-Fisher metric defines a distance, called the Rao’s geodesic distance [45,46],
given by the length of the shortest curve connecting two points in P;,,. Mathematically, this definition
can be stated as follows [32]. Let M1, M; be two points in P, and ¢ : [0,1] — P, a differentiable
curve, with ¢(0) = Mj and ¢(1) = My. Thus, the length of curve ¢, denoted by L(c) is defined as:

o= [}

The geodesic distance d : Py, X Py — Ry between M and M3 is the infimum of L(c) with
respect to all differentiable curves c. Based on the properties of Rao-Fisher metric, it has been shown
that the unique curve v fulfilling this condition is [45,46]:

1 _1 _INt 1
(8 = M; (M, *MoM, 7 ) M, )

called the geodesic connecting M; and M;. Moreover, the distance between two points in Py, can be
expressed as [47]:

d*(My, M) = tr ([mg (MléMleé)r) = i(lnm)z, ®)

with A;, i = 1,...,m being the eigenvalues of M;le.
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The affine invariant Riemannian (Rao-Fisher) metric can be also used to define the Riemannian
volume element [45]:

do(M) = [M|~"F' []dm,. )
i<j

For each point on the manifold M; € Py, the tangent space at M;, denoted by Ty, can be
defined. This space contains the vectors Vr that are tangent to all possible curves passing through M.
The correspondence between a point on the manifold and its tangent space can be achieved by using
two operators: the Riemannian exponential mapping and the Riemannian logarithm mapping [48,49].
More precisely, the Riemannian exponential mapping for a point M; € P, and the tangent vector

Vr is given by [48,49]:

1

1 _1 _1 1
M, = Expy;, (V1) = M exp (Ml VM, 2>M12, (10)

where exp(-) is the matrix exponential. By this transformation, the tangent vector Vy can be mapped
on the manifold.

Further on, the inverse of the Riemannian exponential mapping is the Riemannian logarithm
mapping. For two points M, M, € Py, this operator is given by [48,49]:

1 _1 _1 1
Vr = Logy, (Ma) = M; log (M *MyM, ? )M, (11)

where log(-) is the matrix logarithm. In practice, this operation gives the tangent vector Vr,
by transforming the geodesic <y in a straight line in the tangent space. In addition, the geodesic’s length
between M; and M; is equal to the norm of the tangent vector V.

3.2.2. Mixture of Riemannian Gaussian Distribution

Riemannian Gaussian model

To model the space Py, of SPD covariance matrices, a generative model has been introduced
in [39,42]: the Riemannian Gaussian distribution (RGD). For this model, the probability density
function with respect to the Riemannian volume element given in (9) is defined as follow [39,42]:

2 _
d (M;,,,M) }, (12)

_ 1
p(M,|M,0) = mexp{ - 27

where M and ¢ are the distribution parameters, representing respectively the central value (centroid)
and the dispersion. d(-) is the Riemannian distance given in (8) and Z(¢) is a normalization factor
independent of M [39,50].

-1
m(m—1) nmz/Z

i . i—7jl
Z(o) = Sm!ﬁ-mw f]Rm e 2?2 Hi<]‘ sinh (lr zr] ) ity dri (13)

with I, the multivariate Gamma function [51]. In practice, for m = 2, the normalization factor admits
a closed-form expression [32], while for m > 2 the normalization factor can be computed numerically
as the expectation of the product of sinh functions with respect to the multivariate normal distribution
N(0,021,,) [39]. Afterwards, a cubic spline interpolation can be used to smooth this function [52].

Mixture model for RGDs

As for the LE codebook, a generative model is considered for the construction of the Riemannian
codebook. For the former, a mixture of multivariate Gaussian distribution was considered since the
SPD matrices were projected on the LE space. For the construction of the Riemannian codebook,
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we follow a similar approach by considering that M = {M,, },,_1.N, are i.i.d. samples from a mixture
of K RGDs. In this case, the likelihood of M is given by:

N N K
p(M|0) =[] p(M,|0) = ]‘[ Y @p (M| My, 0%), (14)
n=1 n=1k=1

where p(M;;|My, 0y) is the RGD defined in (12) and 6 = { (@), My, 0% )1<k<k } is the parameter vector
containing the mixture weight @, the central value My and the dispersion parameter oy.

Once estimated, the parameters of each mixture component represent the codewords, and the set
of all K codewords gives the Riemannian codebook. Regarding the estimation, the conventional
intrinsic k-means clustering algorithm can be considered [36,53]. Nevertheless, it implies the
homoscedasticity assumption, for which the clusters have the same dispersion. To relax this
assumption, we consider in the following the maximum likelihood estimation with the expectation
maximization algorithm defined in [32].

Maximum likelihood estimation

First, let us consider the following two quantities that are defined for each mixture component k,
k=1,...,K: B
@ X p(Mn|Mk/(7k)

(M, 0) =
8 TR @) x p(Mu[Mj, 0

(15)

and

N
ne(0) = ) 7 (My, 0). (16)

n=1

Then, the estimated parameters § = {(&, ﬁk, 0k )1<k<k } are iteratively updated based on the
current value of :

e  The estimated mixture weight &y is given by:

. i (0
& = K"# (17)
Y1 1(9)
e  The estimated central value l@[k is computed as:
o~ N A
M, = argmin ) | 7¢(My, 0)d* (M, M,.); (18)
M n=1
In practice, (18) is solved by means of a gradient descent algorithm [54].
o  The estimated dispersion 8y is obtained as:
N
0 = Z (M,1, §)d*(M, M) |, (19)

where @ is the inverse function of o — ¢ x % log Z(o).

Practically, the estimation procedure is repeated for a fixed number of iterations, or until
convergence, that is until the estimated parameters remain almost stable for successive iterations.
Moreover, as the estimation with the EM algorithm depends on the initial parameter setting, the EM
algorithm is run several times (10 in practice) and the best result is kept (i.e., the one maximizing the
log-likelihood criterion).

Based on the extracted (LE or Riemannian) codebook, the next section presents various strategies
to encode a set of SPD matrices. These approaches are based whether on the LE metric or on the
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affine invariant Riemannian metric. In the next section, three kinds of coding approaches are reviewed,
namely the bag of words (BoW) model, the vector of locally agregated descriptors (VLAD) [2,3] and
the Fisher vectors (FV) [5-7]. Here, the main contribution is the proposition of coding approaches
based on the FV model: the Log-Euclidean Fisher vectors (LE FV) and the Riemannian Fisher vectors
(RFV) [40].

4. Feature Encoding Methods

Given the extracted codebook, the purpose of this part is to project the feature set of SPD matrices
onto the codebook elements. In other words, the initial feature set is expressed using the codewords
contained in the codebook. Figure 2 draws an overview of the relation between the different approaches
based on the BoW, VLAD and FV models. The LE-based metric approaches appear in red while the
affine invariant ones are displayed in blue. The E-VLAD descriptor is displayed in purple since it
considers the Riemannian codebook combined with LE representation of the features.

Training set

My, ..., M,

Codebook
i generation step Vec(log( M; ))
« Log-Euclidean »
training set
my, ..., m,

Clustering algorithm
(GMM model)

Log-Euclidean Riemannian
codebook codebook

My, Zy, 0y My, oy, Wy

! Coding step :

o ’—> —§> LEBoW
E « Log-Euclidean » BoW H

K VEC(IOg( " )) r _29 port

i —> ——> LE VLAD
i —>  VIAD =~ - <> E-VLA

> ——> RVLAD

—> > LEFV
> ——> RFV

Figure 2. Workflow explaining (a) the codebook creation step and (b) the coding step. The LE-based
approaches appear in red while the Riemannian based ones are displayed in blue. The E-VLAD
descriptor is displayed in purple since it considers simultaneously a Riemannian codebook and LE
vector representation of the covariance matrices.

4.1. Bag of Words Descriptor

One of the most common encoding methods is represented by the BoW model. With this model,
a set of features is encoded in an histogram descriptor obtained by counting the number of features
which are closest to each codeword of the codebook. In the beginning, this descriptor has been
employed for text retrieval and categorization [10,55], by modeling a text with an histogram containing
the number of occurrences of each word. Later on, the BoW model has been extended to visual
categorization [56], where images are described by a set of descriptors, such as SIFT features. In such
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case, the “words” of the codebook are obtained by considering a clustering algorithm with the standard
Euclidean metric. Recently, the BoW model has been extended to features lying in a non-Euclidean
space, such as SPD matrices. In this context, two approaches have been proposed based respectively
on the LE and affine invariant Riemannian metrics:

e thelog-Euclidean bag of words (LE BoW) [33,35].
e the bag of Riemannian words (BoRW) [36].

These two descriptors have been employed successfully for different applications, including
texture and human epithelial type 2 cells classification [36], action recognition [33,35].

4.1.1. Log-Euclidean Bag of Words (LE BoW)

The LE BoW model has been considered in [33,35]. First, the space of covariance matrices is
embedded into a vector space by considering the LE vector representation m given in (1). With this
embedding, the LE BoW model can be interpreted as the BoW model in the LE space. This means that
codewords are elements of the log-Euclidean codebook detailed in Section 3.1. Next, each observed
SPD matrix M, is assigned to cluster k of closest codeword my to compute the histogram descriptor.
The vicinity is evaluated here as the Euclidean distance between the LE vector representation m, and
the codeword my.

The LE BoW descriptor can also be interpreted by considering the Gaussian mixture model
recalled in (2). In such case, each feature m, is assigned to the cluster k, for k = 1, ..., K according to:

arg max @y p(my|my, Xy), (20)
k
where p(my,|my, Xy ) is the multivariate Gaussian distribution given in (3). In addition, two constraints
are assumed Vk =1,...,K:

e the homoscedasticity assumption:
=X (21)

e the same weight is given to all mixture components:

(22)

~|

Wy =

4.1.2. Bag of Riemannian Words (BoRW)

This descriptor has been introduced in [36]. Contrary to the LE BoW model, the BORW model
exploits the affine invariant Riemannian metric. For that, it considers the Riemannian codebook
detailed in Section 3.2. Then, the histogram descriptor is computed by assigning each SPD matrix to
the cluster k of the closest codebook element My, the proximity being measured with the geodesic
distance recalled in (8).

As for the LE BoW descriptor, the definition of the BORW descriptor can be obtained by the
Gaussian mixture model, except that the RGD model defined in (12) is considered instead of the
multivariate Gaussian distribution. Each feature M, is assigned to the cluster k, for k = 1,...,K
according to:

arg max @k p(M,|My, o). (23)
k

In addition, the two previously cited assumptions are made, that are the same dispersion and
weight are given to all mixture components.

It has been shown in the literature that the performance of BoW descriptors depends on
the codebook size, best results being generally obtained for large dictionaries [5]. Moreover,
BoW descriptors are based only on the number of occurrences of each codeword from the dataset.
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In order to increase the classification performances, second order statistics can be considered. This is
the case of VLAD and FV that are presented next.

4.2. Vectors of Locally Aggregated Descriptors

VLAD descriptors have been introduced in [2] and represent a method of encoding the difference
between the codewords and the features. For features lying in a Euclidean space, the codebook is
composed by cluster centroids {(Xx)1<x<k } obtained by clustering algorithm on the training set. Next,
to encode a feature set {(x;)1<n<N}, Vectors v, containing the sum of differences between codeword
and feature samples assigned to it are computed for each cluster:

Vi = Z Xy — Xg. (24)

Xp €Ck

The final VLAD descriptor is obtained as the concatenation of all vectors vj:
VLAD = [v],...,vk]. (25)

To generalize this formalism to features lying in a Riemannian manifold, two theoretical aspects
should be addressed carefully, which are the definition of a metric to describe how features are assigned
to the codewords, and the definition of subtraction operator for these kind of features. By addressing
these aspects, three approaches have been proposed in the literature:

e thelog-Euclidean vector of locally aggregated descriptors (LE VLAD) [11].
e the extrinsic vector of locally aggregated descriptors (E-VLAD) [37].
e the intrinsic Riemannian vector of locally aggregated descriptors (RVLAD) [11].

4.2.1. Log-Euclidean Vector of Locally Aggregated Descriptors (LE VLAD)

this descriptor has been introduced in [11] to encode a set of SPD matrices with VLAD descriptors.
In this approach, VLAD descriptors are computed in the LE space. For this purpose, (24) is rewritten as:

Vi = Z m, — my, (26)

my €Cy

where the LE representation m; of M, belongs to the cluster ¢y if it is closer to my than any other
element of the LE codebook. The proximity is measured here according to the Euclidean distance
between the LE vectors.

4.2.2. Extrinsic Vector of Locally Aggregated Descriptors (E-VLAD)

The E-VLAD descriptor is based on the LE vector representation of SPD matrices. However,
contrary to the LE VLAD model, this descriptor uses the Riemannian codebook to define the Voronoi
regions. It yields that:

Vi = Z m, — my, (27)

M, ecy
where M,, belongs to the cluster ¢ if it is closer to My according to the affine invariant Riemannian
metric. Note also that here My is the LE vector representation of the Riemannian codebook element M.

To speed-up the processing time, Faraki et al. have proposed in [37] to replace the affine invariant
Riemannian metric by the Stein metric [57]. For this latter, computational cost to estimate the centroid
of a set of covariance matrices is less demanding than with the affine invariant Riemannian metric

since a recursive computation of the Stein center from a set of covariance matrices has been proposed
in [58].



J. Imaging 2018, 4, 85 11 of 28

Since this approach exploits two metrics, one for the codebook creation (with the affine invariant
Riemannian or Stein metric) and another for the coding step (with the LE metric), we referred it as
an extrinsic method.

4.2.3. Riemannian Vector of Locally Aggregated Descriptors (RVLAD)

this descriptor has been introduced in [11] to propose a solution for the affine invariant
Riemannian metric. More precisely, the geodesic distance [47] recalled in (8) is considered to measure
similarity between SPD matrices. The affine invariant Riemannian metric is used to define the Voronoi
regions) and the Riemannian logarithm mapping [48] is used to perform the subtraction on the
manifold. It yields that for the RVLAD model, the vectors vy are obtained as:

vi = Vec ( ) Long(Mn)) , (28)

Mneck

where Logyy (-) is the Riemannian logarithm mapping defined in (11). Please note that the vectorization
operator Vec(-) is used to represent vy as a vector.

As explained in [2], the VLAD descriptor can be interpreted as a simplified non probabilistic
version of the FV. In the next section, we give an explicit relationship between these two descriptors
which is one of the main contribution of the paper.

4.3. Fisher Vector Descriptor

Fisher vectors (FV) are descriptors based on Fisher kernels [59]. FV measures how samples are
correctly fitted by a given generative model p(X|6). Let X = {X,},,—1.n, be a sample of N observations.
The FV descriptor associated to & is the gradient of the sample log-likelihood with respect to the
parameters 6 of the generative model distribution, scaled by the inverse square root of the Fisher
information matrix (FIM).

First, the gradient of the log-likelihood with respect to the model parameter vector 6, also known
as the Fisher score (FS) Uy [59], should be computed:

N
Ux = Vglogp(X1|0) = Vy Z log p(Xy|0). (29)

n=1

As mentioned in [5], the gradient describes the direction in which parameters should be modified
to best fit the data. In other words, the gradient of the log-likelihood with respect to a parameter
describes the contribution of that parameter to the generation of a particular feature [59]. A large value
of this derivative is equivalent to a large deviation from the model, suggesting that the model does not
correctly fit the data.

Second, the gradient of the log-likelihood can be normalized by using the FIM I [59]:

Ip = Ex[UxU%], (30)

where E x[-] denotes the expectation over p(X|0). It yields that the FV representation of X is given by
the normalized gradient vector [5]:

9% = 1;1/2Vylog p(X|9). (31)

As reported in previous works, exploiting the FIM Iy in the derivation of FV yields to excellent
results with linear classifiers [6,7,9]. However, the computation of the FIM might be quite difficult.
It does not admit a close-form expression for many generative models. In such case, it can be
approximated empirically by carrying out a Monte Carlo integration, but this latter can be costly
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especially for high dimensional data. To solve this issue, some analytical approximations can be
considered [5,9].

The next part explains how the FV model can be used to encode a set of SPD matrices.
Once again, two approaches are considered by using respectively the LE and the affine invariant
Riemannian metrics:

o the Log-Euclidean Fisher vectors (LE FV).
e the Riemannian Fisher vectors (RFV) [40].

4.3.1. Log-Euclidean Fisher Vectors (LE FV)

The LE FV model consists in an approach where the FV descriptors are computed in the LE space.
In such case, the multivariate Gaussian mixture model recalled in (2) is considered.

Let Myr = {m; },—1.N be the LE representation of the set M. To compute the LE FV descriptor
of M, the derivatives of the log-likelihood function with respect to 6 should first be computed.
Let v (m;) be the soft assignment of m,, to the kth Gaussian component

_ @k p(my|6) . 32
'Yk(mn) E]K:l (D] p(mn|9]) ( )

It yields that, the elements of the LE Fisher score (LE FS) are obtained as:

o ‘Eﬂ“"‘”)( (ef)” ) -
2
d =d
dlog p(Myeld) _ (M_l) o
wf B\ T ) "
dlog p(Mrelf) _ &
P B ),

where mg (resp. (7,‘?) is the dth element of vector my (resp. o). Please note that to ensure the constraints

of positivity and sum-to-one for the weights @, the derivative of the log-likelihood with respect to

this parameter is computed by taking into consideration the soft-max parametrization as proposed
in [9,60]:

exp (ax)
o — —SPE) 6o
T, exp(a)
Under the assumption of nearly hard assignment, that is the soft assignment distribution 7y (m;,)

is sharply peaked on a single value of k for any observation m,, the FIM Iy is diagonal and admits a
close-form expression [9]. It yields that the LE FV of M is obtained as:

d =d
M 1 ¥ mj, — mf
gMie _ S S I 37
m @ n;1 Yie(my) < 0']? ) (37)
2
d =d
1 N {mn — mk}
gMie — ye(my) | —— — 1), (38)
v I\ gy
Mg 1 &
G = L (nlm) —ay). (39)
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4.3.2. Riemannian Fisher Vectors (RFV)

Ilea et al. have proposed in [40] an approach to encode a set of SPD matrices with FS based on the
affine invariant Riemannian metric: the Riemannian Fisher score (RFS). In this method, the generative
model is a mixture of RGDs [39] as presented in Section 3.2.2. By following the same procedure as
before, the RFS is obtained by computing the derivatives of the log-likelihood function with respect to
the distribution parameters 6 = {(@y, My, 0% )1<k<k }- It yields that [40]:

dlog p(M[6) ZN Logy, (M)

= (M) 0@ w
dlogp(M|0) I d>(My, My)  Z'(0%)

al ) &

%gikj‘ﬂ) = L M)~ @), (42)

where Logy, (+) is the Riemannian logarithm mapping in (11) and Z'(cy) is the derivative of Z(cy)
with respect to 0y. The function Z’(¢) can be computed numerically by a Monte Carlo integration, in a
similar way to the one for the normalization factor Z(c) (see Section 3.2.2).

In these expressions, v, (M,,) represents the probability that the feature M,, is generated by the
kth mixture component, computed as:

@ p(My|My, 0y)

N(My) = k) (43)
HM-) L @ p(Ma|M;, 0))

By comparing (33)—(35) with (40)—(42), one can directly notice the similarity between the LE FS
and the RFS. In these equations, vector difference in the LE FS is replaced by log map function in the
RFS. Similarly, Euclidean distance in the LE FS is replaced by geodesic distance in the RFS.

In [40], Ilea et al. have not exploited the FIM. In this paper, we propose to add this term in order
to define the Riemannian Fisher vectors (RFV). To derive the FIM, the same assumption as the one
given in Section 4.3.1 should be made, i.e., the assumption of nearly hard assignment, that is the
soft assignment distribution (M) is sharply peaked on a single value of k for any observation M,,.
In that case, the FIM is block diagonal and admits a close-form expression detailed in [61]. In this
paper, Zanini et al. have used the FIM to propose an online algorithm for estimating the parameters of
a Riemannian Gaussian mixture model. Here, we propose to add this matrix in another context which
is the derivation of a descriptor: the Riemannian FV.

First, let’s recall some elements regarding the derivation of the FIM. This block diagonal matrix is
composed of three terms, one for the weight, one for the centroid and one for the dispersion.

o  For the weight term, the same procedure as the one used in the conventional Euclidean framework
can employed [9]. In [61], they proposed another way to derive this term by using the notation
s = [\/@1, ...,1/@k] and observing that s belongs to a Riemannian manifold (more precisely the
(K — 1)-sphere SX~1). These two approaches yield exactly to the same final result.

e  For the centroid term, it should be noted that each centroid My is a covariance matrix which
lives in the manifold P,, of m x m symmetric positive definite matrices. To derive the FIM
associated to this term, the space P;;, should be decomposed as the product of two irreducible
manifolds, i.e., Py, = R X SP,; where SPy;, is the manifold of symmetric positive definite matrices
with unitary determinant. Hence, each observed covariance matrix M can be decomposed as
¢M) = {(M);, (M), } where

- (M), = logdetM is a scalar element lying in R.
™)
- (M), = e~ M is a covariance matrix of unit determinant.
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e  For the dispersion parameter, the notation y = —2}7 is considered to ease the mathematical
derivation. Since this parameter is real, the conventional Euclidean framework is employed to

derive the FIM. The only difference is that the Euclidean distance is replaced by the geodesic one.

For more information on the derivation of the FIM for the Riemannian Gaussian mixture model,
the interested reader is referred to [61]. To summarize, the elements of the block-diagonal FIM for the
Riemannian Gaussian mixture model are defined by:

I, = 4lg, (44)
Wx
Iy, = X (45)
D P (1)
Iy = Im m s 46
(M), 0,;{1 (m(rr;—i—l) . 1) mm+1) 2+1>71 (46)
Iy = @ ¢ (1), 47)

where Iy is the K x K identity matrix, () = log (Z(c')) and ¢'(-) (resp. 9" (-)) are the first (resp.
the second) order derivatives of the 1(-) function with respect to 7. IPIZ(U) =9 () + ﬁ

Now that the FIM and the FS score are obtained for the Riemannian Gaussian mixture model,
we can define the RFV by combining (40) to (42) and (44) to (47) in (31). It yields that:

M o_ 1 ¢ (My); — (My),
g(Mkh oy nZ::1 Ye(Mn) (%)' (48)
M 1 N m(”;‘i'l) -1
g V = A n / V/ n 7
i, = vy o M) S Log gy, ((M): ) (49)
N 2 — . !
Yo' :% )3 'Vk(Mn)<d (M”’Mfi) y (’7’{)>, (50)
n=1 ¥ (k)
== L (M) - ay). 61
n=1

Unsurprisingly, this definition of the RFV can be interpreted as a direct extension of the FV
computed in the Euclidean case to the Riemannian case. In particular (37)—(39) are retrieved when the
normalization factor Z(c) is set to /277 in (48), (50) and (51).

In the end, the RFVs are obtained by concatenating some, or all of the derivatives in (48)—(51).
Note also that since (49) is a matrix, the vectorization operator Vec(+) is used to represent it as a vector.

4.3.3. Relation with VLAD

As stated before, the VLAD descriptor can be retrieved from the FV model. In this case, only
the derivatives with respect to the central element (rh,‘f or My) are considered. Two assumptions are
also made:

e the hard assignment scheme, that is:

(M) = {1, if M € ¢, 52

0, otherwise,

where M € ¢, are the elements assigned to cluster cyand k =1,...,K,
e  the homoscedasticity assumption, thatisoy =0 ,Vk =1,...,K.
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By taking into account these hypotheses, it can be noticed that (33) reduces to (26), confirming
that LE FV are a generalization of LE VLAD descriptors. The same remark can be done for the
approach exploiting the affine invariant Riemannian metric where the RFV model can be viewed as an
extension of the RVLAD model. The proposed RFV gives a mathematical explanation of the RVLAD
descriptor which has been introduced in [11] by an analogy between the Euclidean space (for the
VLAD descriptor) and the Riemannian manifold (for the RVLAD descriptor).

4.4. Post-Processing

Once the set of SPD matrices is encoded by one of the previously exposed coding methods (BoW,
VLAD, FS or FV), a post-processing step is classically employed. In the framework of feature coding,
the post-processing step consists in two possible normalization steps: the power and ¢, normalization.
These operations are detailed next.

4.4.1. Power Normalization

The purpose of this normalization method is to correct the independence assumption that is
usually made on the image patches [7]. For the same vector v, its power-normalized version vyoyper is
obtained as:

Vpower = sign(v)|v|?, (53)

where 0 < p < 1, and sign(-) is the signum function and | - | is the absolute value. In practice, p is set
to %, as suggested in [9].
4.4.2. ¢, Normalization

This normalization method has been proposed in [6] to minimize the influence of the background
information on the image signature. For a vector v, its normalized version v, is computed as:

<

Vi, = 7 (54)
where || - ||2 is the L, norm.

Depending on the considered coding method, one or both normalization steps are applied.
For instance, for VLAD, FS and FV-based methods, both normalizations are used [36,40], while for
BoW based methods only the ¢, normalization is considered [33].

4.5. Synthesis

Table 1 draws an overview of the different coding methods. As seen before, two metrics can be
considered, namely the LE and the affine invariant Riemannian metrics. This yields to two Gaussian
mixture models: a mixture of multivariate Gaussian distributions and a mixture of Riemannian
Gaussian distributions. These mixture models are the central point in the computation of the codebook
which are further used to encode the features. In this table and in the following ones, the proposed
coding methods are displayed in gray.
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Table 1. Overview of the coding descriptors.

Log-Euclidean Affine Invariant
Metric Riemannian Metric

Mixture model

Gaussian Mixture of multivariate Gaussian distributions Mixture of Riemannian Gaussian distributions [39,42]
mixture (mn|9)( sz 1 @gp(my |y, i) N p(Ma|0) = iy @p (MM, o)
mm- m 1Yl+ _
model with m; € R : ‘7k = diag(Zy) e R™ 2z g with My € Py, 0p € R
and @y € R. and @y € R.
Coding method
Log-Euclidean BoW (LE BoW) [33,35] Bag of Riemannian Words (BoRW) [36]
Bag of Words Hi based on the decision rul Hi based on the decision rul.
(BoW) istogram based on the decision rule istogram based on the decision rule
arg max;, @y p(my|my, ) arg max;, @ p(My|My, )
Log-Euclidean VLAD (LE VLAD) [11] Riemannian VLAD (RVLAD) [11]
Vector of Vi = Zm,,eck m; — my vi = Vec (ZM,,Eck LOng (M”)>
Locally
Aggregated Extrinsic VLAD (E-VLAD) [37]
Descriptors
(VLAD)

Vi = ZM,,E:,; m; — my

Log-Euclidean Fisher Score (LE FS) Riemannian Fisher Score (RFS) [40]
9log p( MLE\G N m mé—m{ dlogp(M[0) _ - M Logyy, (My)
Fisher Score oy = Lo () ( (o) M =1 7%(Ma) o
(FS) dlog p(Mc|6 mi —mf]* dlog p(M8 2MM) 7
Rospuelt) — 7y o) ( S - M) 7 (M) { ) Zic) )
a1 Me|o a1 M0 '
Ropp(piel®) — v (ye(ma) — o ) NoBPMIO) — 7 [ (M) — ]
Log-Euclidean Fisher Vectors (LE FV) Riemannian Fisher Vectors (RFV)
gM — M ( ) 7(M’1)1
Fisher Vector o B \/7 Y1 %(Mn) < Tk
(FV) g = \ﬁ =1 vk(my) T;k ™ EETET
(fM = \/*Zn —17k(Ma) 7%(%) Log yy, )2((Mn) )
Mg _ 1 yw [mi-mi]* M _ £ (M, M) ¢ (1)
%(7 t o, —n=1 Tk (m") ( (‘7;(1)2 1 (fak r En =17k (Mn) \//,7

%MLE—fzn “1 (rma) - @) 9t = Ty (M) — o)

As observed, a direct parallel can be drawn between the different coding methods (BoW, VLAD,
FS and FV). More precisely, it is interesting to note how the conventional coding methods used for

. L (m+1) . . .
descriptors lying in R™7 are adapted to covariance matrix descriptors.

5. Application to Image Classification

This section introduces some applications to image classification. Two experiments are conducted,
one for texture image classification and one for head pose image classification. The aim of these
experiments is three-fold. The first objective is to compare two Riemannian metrics: the log-Euclidean
and the affine invariant Riemmannian metrics. The second objective is to analyze the potential of the
proposed FV-based methods compared to the recently proposed BoW and VLAD-based models. In
addition, finally, the third objective is to evaluate the advantage of including the FIM in the derivation
of the FVs, i.e., comparing the performance between FS and FV.
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5.1. Texture Image Classification

5.1.1. Image Databases

To answer these questions, a first experiment is conducted on four conventional texture databases,
namely the VisTex [62], Brodatz [63], Outex-TC-00013 [64] and USPtex [65] databases. Some examples
of texture images issued from these four texture databases are displayed in Figure 3.

The VisTex database is composed of 40 texture images of size 512 x 512 pixels. In the following,
each texture image is divided into 64 non-overlapping images of size 64 x 64 pixels, yielding to
a database of 2560 images. The grayscale Brodatz database contains 112 textures images of size
640 x 640 pixels which represent a large variety of natural textures. Each one is divided into
25 non-overlapping images of size 128 x 128 pixels, thus creating 2800 images in total (i.e., 112 classes
with 25 images/class). The Outex database consists of a dataset of 68 texture classes (canvas, stone,
wood, ...) with 20 image samples per class of size 128 x 128 pixels. In addition, finally, The USPtex
database is composed of 191 texture classes with 12 image samples of size 128 x 128 pixels. Table 2
summarizes the main characteristics of each of these four databases.

a pm g :
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\
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Figure 3. Examples of texture images used in the experimental study issued from the (a) VisTex,
(b) Brodatz, (c) Outex and (d) USPtex texture databases.

Table 2. Description of the texture databases used in this experiment.

Database Number of Classes Number of Images per Class  Total Number of Images Dimension
VisTex 40 64 2560 64 x 64 pixels
Brodatz 112 25 2800 128 x 128 pixels

Outex 68 20 1380 128 x 128 pixels

USPtex 191 12 2292 128 x 128 pixels
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5.1.2. Context

As shown in Figure 1, the first stage is the feature extraction step which consists in representing
each texture image by a set of covariance matrices. Since the experiment purpose is not to find the best
classification accuracies on these databases, but rather to compare the different strategies (choice of the
metric, influence of the coding model) on the same features, we have adopted the simple but effective
region covariance descriptors (RcovD) used in [34]. The extracted RCovD are the estimated covariance
matrices of vectors v(x,y) computed on sliding patches of size 15 x 15 pixels where:

%1(x,y)
0x2

dl(xy)
dx

oI(xy)
y

azé(yﬁg}/) H T_ (55)

v(x,y) = [1(xy), : : ,

In this experiment, the patches are overlapped by 50%. The fast covariance matrix computation
algorithm based on integral images presented in [34] is adopted to speed-up the computation time of
this feature extraction step. It yields that each texture class is composed by a set {Mj, ..., My} of N
covariance matrices, that are elements in Ps.

For each class, codewords are represented by the estimated parameters of the mixture of K
Gaussian distributions. For this experiment, the number of modes K is set to 3. In the end, the
codebook is obtained by concatenating the previously extracted codewords (for each texture class).
Please note that the same number of modes K has been considered for each class and has been
set experimentally to 3 which represents a good trade-off between the model complexity and the
within-class diversity. This parameter has been fixed for all these experiments since the aim is to fairly
compare the different coding strategies for the same codebook.

Once the codebook is created, the covariance matrices of each image are encoded by one of the
previously described method (namely BoW, VLAD, FS or FV) adapted to the LE or affine invariant
Riemannian metric. Then after some post-processing (power and/or ¢, normalization), the obtained
feature vectors are classified. Here, the SVM classifier with Gaussian kernel is used. The parameter of
the Gaussian kernel is optimized by using a cross validation procedure on the training set.

The whole procedure is repeated 10 times for different training and testing sets. Each time, half of
the database is used for training while the remaining half is used for testing. Tables 3—-6 show the
classification performance in term of overall accuracy (mean =+ standard deviation) on the VisTex,
Brodatz, Outex and USPtex databases. In these tables, the best classification results are displayed.

As the FS and FV descriptors are obtained by deriving the log-likelihood function with respect
to the weight, dispersion and centroid parameters, the contribution of each term to the classification
accuracy can be analyzed. Therefore, different versions of the FS and FV descriptors can be considered
to analyze separately the contribution of each term or by combining these different terms. For example,
the row “LE FS/RFS:M” indicates the classification results when only the derivatives with respect to the
centroid are considered to derive the FS (see (33) and (40)). In the following, only the results employing
the mean are presented since the state-of-the-art have already proved that the mean provides the most
significant information [6,7].

Please note that the use of the FIM in the derivation of the FV allows to improve the classification
accuracy. As observed for the four considered databases, a gain of about 1% to 3% is obtained when
comparing “LE FV/RFV:M” with “LE FS/RFS:M”.

For these four experiments on texture image classification, the proposed FV descriptors
outperform the state-of-the-art BoW and VLAD-based descriptors. Classifying with the best FV
descriptor yields to a gain of about 1% to 4% compared to the best BoOW and VLAD-based descriptors.
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Table 3. Classification results on the VisTex database (40 classes).

Log-Euclidean Affine Invariant

Coding Method Metric Riemannian Metric
LE BoW [35]/BoRW [36] 86.4 4+ 0.01 85.9 4+ 0.01
LE VLAD [11]/RVLAD [11] 91.3 +0.01 82.8 +0.02

E-VLAD [37] 91.6 + 0.01

LE FS/RFS [40]:M 95.3 + 0.01 88.9 + 0.01
LE FS/RFS [40]:M, @ 95.1 £+ 0.01 90.0 + 0.01
LE FS/RFS [40]:M, o 95.2 £+ 0.01 91.2 £ 0.01
LE FS/RFS [40]:M, 0, @ 95.1 + 0.01 91.2 £0.01
LE FV/RFV:M 95.5 £ 0.01 91.3 + 0.01
LE FV/RFV:M, @ 95.7 £ 0.01 92.6 + 0.01
LE FV/RFV:M, o 95.6 £+ 0.01 92.7 £+ 0.01
LE FV/RFVM, 0, ® 95.4 £ 0.01 93.2 £+ 0.01

Table 4. Classification results on the Brodatz database (112 classes).

. Log-Euclidean Affine Invariant
Coding Method Metric Riemannian Metric

LE BoW [35]/BoRW [36] 92.0 £0.01 92.1 £0.01

LE VLAD [11]/RVLAD [11] 92.5 +0.01 88.3 £ 0.01
E-VLAD [37] 92.4 £ 0.01

LE FS/RFS [40]:M 92.5+0.01 90.1 +0.01

LE FS/RFS [40]:M, @ 92.7 £ 0.01 91.1+0.01

LE FS/RFS [40]:M, ¢ 90.3 £ 0.01 91.7 £0.01

LE FS/RFS [40]:M, ¢, @ 90.8 £ 0.03 91.6 £ 0.01

LE FV/RFV:M 93.5 £ 0.01 92.9 £+ 0.01

LE FV/RFV:M, @ 93.7 + 0.01 93.2+0.01

LE FV/RFV:M, ¢ 93.1 £ 0.01 93.1 £ 0.01

LE FV/RFV:M, 0, ® 92.9 £ 0.01 93.2 £ 0.01

Table 5. Classification results on the Outex database (68 classes).

Log-Euclidean Affine Invariant

Coding Method Metric Riemannian Metric
LE BoW [35]/BoRW [36] 83.5 £+ 0.01 83.7 +0.01
LE VLAD [11]/RVLAD [11] 85.9 4+ 0.01 82.0 +0.01

E-VLAD [37] 85.1 +0.01

LE FS/RFS [40]:M 87.2 4+ 0.01 83.8 - 0.01
LE FS/RFS [40]:M, @ 88.0 =+ 0.01 84.2 +0.01
LE FS/RFS [40]:M, ¢ 86.7 £+ 0.01 84.9 £+ 0.01
LE FS/RFS [40]:M, 0, @ 87.6 & 0.01 85.2 +0.01
LE FV/RFV:M 87.3 £ 0.01 85.4 + 0.01
LE FV/RFV:M, @ 87.9 & 0.01 86.0 £+ 0.01
LE FV/RFV:M, ¢ 87.1 £+ 0.01 86.0 & 0.01

LE FV/RFV:M, 0, @ 87.2 £0.01 86.3 £ 0.01
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Table 6. Classification results on the USPtex database (191 classes).

Log-Euclidean Affine Invariant

Coding Method Metric Riemannian Metric

LE BoW [35]/BoRW [36] 79.9 4+ 0.01 80.2 + 0.01

LE VLAD [11]/RVLAD [11] 86.5 4+ 0.01 78.9 4+ 0.01
E-VLAD [37] 86.7 £+ 0.01

LE FS/RFS [40]:M 84.8 +0.03 84.7 +0.01

LE FS/RFS [40]:M, @ 85.1 £+ 0.02 85.2 + 0.01

LE FS/RFS [40]:M, o 76.8 £+ 0.03 84.0 £ 0.01

LE FS/RFS [40]:M, 0, @ 77.9 £ 0.03 84.0 £ 0.01

LE FV/RFV:M 88.3 £ 0.01 87.0 & 0.01

LE FV/RFV:M, @ 88.0 &= 0.01 87.0 & 0.01

LE FV/RFV:M, o 87.7 £+ 0.01 87.3 £+ 0.01

LE FV/RFVM, 0, ® 88.4 + 0.01 87.2 £ 0.01

5.1.3. Comparison between Anisotropic and Isotropic Models

As observed in Tables 36, the performance for the LE metric are generally better than that with
the affine invariant Riemannian metric. However, both approaches are not directly comparable since
an anisotropic model is considered for the LE metric while an isotropic model is used for the affine
invariant Riemannian metric. Indeed, for the former the dispersion for the Gaussian mixture model is
a diagonal matrix Xy while for the latter the dispersion oy is a scalar. To provide a fairer comparison
between these two approaches, an experiment is conducted to illustrate if the observed gain with the
LE metric comes from the metric or from the fact that the Gaussian model is anisotropic.

For the LE metric, an isotropic model can be built by considering that 2; = 0’]% Lyuus1) - For the

affine invariant Riemannian metric, the Riemannian Gaussian distribution recalled in Szection 3.2.2
is isotropic. Pennec has introduced in [66] an anisotropic Gaussian model, but for this latter the
normalization factor depends on both the centroid My and the concentration matrix. It yields that the
computation of the FS score and the derivation of the FIM for this model are still an open problem.
This model will not be considered in the following.

Table 7 shows the classification results obtained on the four considered texture databases. Here,
the performances are displayed for the FV descriptor computed by using the derivative with respect to
the centroid (i.e., LE FV/RFV:M). It can be noticed that for the LE metric, an anisotropic model yields to
a significant gain of about 4% to 7% compared to an isotropic model. More interestingly, for an istropic
model, descriptors based on the affine invariant Riemannian metric yield to better performances than
that obtained with the LE metric. A gain of about 2% to 6% is observed. These experiments clearly
illustrate that the gain observed in Tables 3—6 for the LE metric comes better from the anistropicty of
the Gaussian mixture model than from the metric definition. According to these observations, it is
expected that classifying with FV issued from anistropic Riemannian Gaussian mixture model will
improve the performance. This point will be subject of future research works including the derivation
of normalization factor of the anistropic Riemannian Gaussian model and the computation of the FIM.

Table 7. Comparison between anisotropic and isotropic models, classification results based on FV:M.

Anisotropic Model, Isotropic Model,
Database Log-Euclidean Log-Euclidean Affine Invariant
Metric Metric Riemannian Metric
VisTex 95.5 £ 0.01 88.7 £0.01 91.3 £ 0.01
Brodatz 93.5 £ 0.01 87.1 £0.01 92.9 £ 0.01
Outex 87.3 +0.01 83.2+0.01 85.4 + 0.01

USPtex 88.3 £0.01 81.5 £ 0.01 87.0 £0.01
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5.2. Head Pose Classification

5.2.1. Context

The aim of this second experiment is to illustrate how the proposed framework can be used
for classifying a set of covariance matrices of larger dimension. Here, the head pose classification
problem is investigated on the HOCoffee dataset [67]. This dataset contains 18,117 head images
of size 50 x 50 pixels with six head pose classes (front left, front, front right, left, rear and right).
Some examples of images of each class (one class per row) are displayed in Figure 4. It has a predefined
experiment protocol where 9522 images are used for training and the remaining 8595 images are used
for testing. We follow the same experiment protocol as in [11]. The extracted RCovD are the estimated
covariance matrices of vectors v(x,y) computed on sliding patches of size 15 x 15 pixels where:

T
V) = [ 1090 190, 15,90 B )+ ) ctan (G545 ) G, .o G| 59
with I.(x,y), ¢ € {L,a,b} are the CIELab color information for the pixel at coordinate (x,y), I(x,y)
and I,(x,y) are the first order luminance derivatives, and G;(x,y) denotes the response of the i-th
Difference Of Offset Gaussian (DOOG) filter-bank centered at position (x,y) of I;. An overlap of 50%
is considered to compute the covariance matrices. Hence, each image in the database is represented by
a set of 25 covariance matrices of size 13 x 13. As for the previous experiment, 3 atoms per class are
considered to compute the codebook.

~
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Figure 4. Examples of images from the HOCoffee dataset. It contains six head pose classes, from the
first row to the last one (front left, front, front right, left, rear and right).

Table 8 shows the classification accuracy on the HOCoffee dataset. Similar conclusions can
be drawn with the previous experiment on texture image classification. The use of the FIM in the
derivation of the FV still allows to improve the classification accuracy. The best performances are
obtained for the LE metric compared to the affine invariant Riemannian metric. Nevertheless, for this
latter, the performance are quite low, especially for the FV obtained by deriving with respect to the
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dispersion parameter. Please note that for this experiment the RVLAD descriptor allows to obtain
better classification accuracy than the best RFV (70.6% vs. 67.9%).

Table 8. Classification results on the HOCoffee database (6 classes).

. Log-Euclidean Affine Invariant

Coding Method Metric Riemannian Metric
LE BoW [35]/BoRW [36] 53.5 56.2
LE VLAD [11]/RVLAD [11] 79.1 70.6

E-VLAD [37] 79.3

LE FS/RFS [40]:M 79.8 64.6
LE FS/RFS [40]:M, @ 79.8 65.0
LE FS/RFS [40]:M, ¢ 79.5 64.9
LE FS/RFS [40]:M, ¢, @ 79.7 64.6
LE FV/RFV:M 80.0 67.7
LE FV/RFV:M, @ 79.9 67.5
LE FV/RFV:M, ¢ 79.7 67.9
LE FV/RFV:M, 0, @ 79.8 67.8

To understand why the performance with RFV are relatively low for the HOCoffee dataset, an
experiment is conducted to see if the dispersion parameter can be considered with confidence.

5.2.2. Estimation Performance

This section presents simulation results to evaluate the performance of the estimator of the
dispersion parameter for Gaussian models based on the LE and affine invariant Riemannian metrics.
For all these experiments,

Mij = pli_j‘ fori,j e [0, m —1]. &7

p is set to 0.7 in the following. For the LE metric, N ii.d. vector samples (xi,...,Xy) are
generated according to a multivariate Gaussian distribution N (m, %), with ¥ = o2 I,(ui1). For the

affine invariant Riemannian metric, N i.i.d. covariance matrix samples are generated ac2cording the
Riemannian Gaussian distribution defined in Section 3.2.2. In the following, 1000 Monte Carlo runs
have been used to evaluate the performance of the estimation algorithm.

Figure 5 draws the evolution of the root mean square error (RMSE) of the dispersion parameter
o for Gaussian models based on the LE and affine invariant Riemannian metrics as a function of ¢.
The red curve corresponds to an experiment with covariance matrices of dimension 5 x 5, while the
blue one is for 13 x 13 covariance matrices. In this figure, 1000 (resp. 10,000) covariance matrices
samples issued from the Gaussian model are generated to plot the solid (resp. the dashed) curve.
This yields that the texture classification experiment of Section 5 is mimicked with the solid red curve
while the head pose classification experiment is mimicked with the dashed blue one. As observed
in Figure 5a for the LE m etric, the RMSE of the dispersion parameter is mainly influenced by the
number of generated samples N. For this LE metric, the dimension of the covariance matrices has
less importance, since the red and blue curves are superposed. Nevertheless, for the affine invariant
Riemannian metric in Figure 5b, the RMSE of the dispersion parameter is greatly influenced by the
dimension of the covariance matrices, especially for large values of 0.
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Figure 5. Root mean square error of the dispersion parameter for Gaussian models based on (a) the LE
and (b) affine invariant Riemannian metrics.

For the five databases, Figure 6 shows the boxplots of the dispersion parameter for the LE
(Figure 6a) and Riemannian (Figure 6b) codebooks. Please note that since two different metrics are
considered, the amplitude value of the dispersion parameter are not directly comparable between
Figure 6a,b. However, for a given metric, it is possible to analyze the variability of the dispersion
parameter for the five experiments. As observed in Figure 6b, the estimated dispersion parameter
0y for the Riemannian codebook takes larger values for the HOCoffee dataset than that for the four
texture datasets. For the former, the estimated dispersion parameters of the Riemannian codebook
are larger than 0.4 which corresponds to the area in Figure 5b where the RMSE of ¢ increases greatly.
This explains why the performance with the RFV (especially when the dispersion is considered) are
relatively low compared to the LE FV. Indeed, as observed in Figure 5a for the LE codebook, the
dispersion parameters are much more comparable for the five datasets and the dimension m of the
observed covariance matrix has less impact on the RMSE of ¢ for the LE metric.

Boxplot of the dispersion parameter Boxplot of the dispersion parameter
log Euclidean metric affine invariant Riemannian metric
1r N * 0.8+ + +
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Figure 6. Boxplots of the dispersion parameter for the codebook computed with (a) the LE and (b) the
affine invariant Riemannian metrics.

5.3. Computation Time
The computation time can be separated in two parts:

o  The first one concerns the time used in learning stage to generate the codebook.
e  The second one concerns the time used to encode an image.

Obviously the codebook generation step requires much more time than the coding step.
However, this codebook generation step can be done offline. This is similar to a deep learning
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approach where the estimation of the model takes much more time than the classification itself. Table 9
summarizes these computation times for the experiment on the VisTex database. For the coding
method, the LE FV and RFV descriptors with only the derivative with respect to the centroid m or M
are considered. All the implementations are carried out using MATLAB 2017 on a PC machine Core
i7-4790 3.6GHz, 16GB RAM.

Table 9. Computation time in seconds on the VisTex database.

Descriptor Codebook Creation Coding Time (per Image)

LEFV 9s 0.077 s
RFV 270s 0.476 s

As expected, the LE metric allows to faster the computation time compared to the affine invariant
Riemannian metric. A gain of a factor of 6 is observed for the coding time with the log-Euclidean
metric for 5 x 5 covariance matrices.

6. Conclusions

Starting from the Gaussian mixture model (for the LE metric) and the Riemannian Gaussian
mixture model (for the affine invariant Riemannian metric), we have proposed a unified view of
coding methods. The proposed LE FV and RFV can be interpreted as a generalization of the BoW
and VLAD-based approaches. The experimental results have shown that: (i) the use of the FIM in the
derivation of the FV allows to improve the classification accuracy, (ii) the proposed FV descriptors
outperform the state-of-the-art BOW and VLAD-based descriptors, and (iii) the descriptors based on the
LE metric lead to better classification results than those based on the affine invariant Riemannian metric.
For this latter observation, the gain observed with the LE metric comes better from the anistropicty
of the Gaussian mixture model than on the metric itself. For isotropic models, FV described issued
from the affine invariant Riemannian metric leads to better results than those obtained with the LE
metric. It is hence expected that the definition of a FV issued from an anistropic Riemannian Gaussian
mixture model will improve the performance. This point represents one of the main perspective of this
research work.

For larger covariance matrices, the last experiment on head pose classification has illustrated the
limits of the RFV issued from the Riemannian Gaussian mixture model. It has been shown that the
root mean square error of the dispersion parameter o can be large for high value of ¢ (¢ > 0.4). In that
case, the LE FV are a good alternative to the RFV.

Future works will include the use of the proposed FV coding for covariance matrices
descriptors in a hybrid classification architecture which will combine them with convolutional neural
networks [17-19].
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