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Abstract: The electrocardiogram (ECG) is commonly utilized for patient monitoring during
magnetic resonance imaging (MRI) despite known magnetohydrodynamic voltage (VMHD) overlays,
which often eclipse the true sinus rhythm and render the signal to be non-diagnostic. This can
complicate MRI gating and at-risk patient monitoring, causing alternative low-fidelity signals to
become preferred. We aimed to develop a method of isolating the true sinus rhythm from VMHD
in order to enable the use of high-fidelity ECGs during MRI procedures. Twelve-lead ECGs were
acquired in two healthy volunteers (n = 2) in a 3T MRI scanner, while a secondary single lead monitor
was positioned across the left common carotid artery to directly record VMHD while cancelling out
the true sinus rhythm. Carotid MHD was used to adaptively train a least mean squares filter to
update a 12-lead ECG VMHD template and produce: (1) clean 12-lead ECGs and (2) an accurate
stroke volume (SV) estimate. The adaptive filtering method was shown to reduce VMHD in 12-lead
ECGs. This was demonstrated by an average cross-correlation of 0.81 across all ECG leads calculated
between filtered ECG taken inside the MRI scanner and the ECG taken outside the MRI scanner.
Residual noise formed <5% of the R-wave amplitude. Additionally, the method required only a short
training phase. A method to extract real sinus rhythm beats from intra-MRI 12-lead ECGs was
presented and shown to provide accurate dynamic measurements of induced VMHD using flow in
the carotid artery as a source of dynamic feedback.

Keywords: electrocardiogram; magnetohydrodynamic; physiological monitoring; MRI

1. Introduction

The electrocardiogram (ECG), while considered to be a standard in the monitoring of patient heart
activity, is known to be of non-diagnostic quality in the isocenter of a magnetic resonance imaging
(MRI) scanner [1]. This causes a great level of difficulty in the synchronization of cardiac activity with
the MRI scanner during cardiac cine acquisition using QRS complex detection techniques, and in
patient monitoring during MRI procedures and guided interventions, especially in the case of high-risk
patients such as those with histories of ischemia or stroke [2–5].

Conventional ECG monitoring systems and advanced signal processing techniques have been
developed to acquire ECG traces in the presence of gradient artifacts that may occur during MRI
scanning procedures [5,6]. Despite the prevention of voltages related to MRI gradient ramp signal
induction, further ECG distortion is known to occur due to a magnetohydrodynamic (MHD) effect
generated by interactions between the static magnetic field of the MRI (B0) and blood plasma
electrolytes ejected into the aortic arch during early systole [1,3,5,7–11].
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In an effort to improve the success of cardiac cine acquisition, techniques for QRS complex
detection have been developed and validated with MHD voltages (VMHD) superimposed upon ECG
traces, such as the 3DQRS method and techniques based in the vectorcardiography (VCG) frame of
reference [2], whereas the 12-lead ECG is represented as a dipole moment in the heart [12].

These methods allow for more effective cardiac gating, but they do not allow for separation
of the true ECG (ECGreal) from VMHD. Several studies have been performed using independent
component analysis (ICA), which has demonstrated some success despite being limited through the
relatively small number of discrete noise sources considered in the model and the use of simulated
VMHD [13–15]. Preliminary studies have been performed to quantify all contributions to the net
recorded intra-MRI signal through dictionary learning for sparse approximations (Figure 1a) [16,17].
However, results from this approach have presented difficulties in filter training for ECGreal extraction.
The conventional method of ECGreal extraction involves the subtraction of ECGs recorded inside the
MRI from those recorded outside the MRI (Figure 1b) [18]. This method is flawed because it is based
on the assumption that ECGreal does not vary once the subject is placed inside the MRI, which is not
necessarily the case.
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only requires the acquisition of one dataset outside of the MRI bore (head-in), as opposed to prior 
studies which require two datasets (feet-in and head-in) [5,10], potentially halving the time required 
for training. This will allow for an increased level of accuracy in ECGreal extraction and estimation of 
MHD-derived metrics in real time [19].  

2. Materials and Methods 
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The study was conducted using data acquired from two healthy volunteers during exercise 
stress testing (n = 2) in a Siemens Skyra 3T MRI (Siemens AG, Berlin, Germany). Informed consent 
was obtained from each subject as per Institutional Review Board standards. 

Figure 1. Conventional methods of ECGreal extraction during intra-MRI ECG acquisition.
(a) Sparse-encoded dictionary learning method for separation of contributions to the net
magnetohydrodynamic (MHD) effect (blue line) by dictionary elements (D1–D5) in a single ECG
lead (lead I): contributions are attributed to flow along the aortic arch and in peripheral vasculature.
(b) Performance of MHD subtraction technique using a constant ECGreal template for MHD-ECG
separation during 12-lead ECG data acquisition inside the MRI bore, which does not account for
variations in ECGreal.

This study proposes a new methodology for extraction of ECGreal from recordings obtained
inside the MRI, improving upon a method of adaptive filtering using a least means square (LMS)
implementation. The proposed method utilizes a dynamic source of pure MHD to train adaptive
filters and update a 12-lead ECG MHD template to perform ECGreal extraction rather than relying
entirely on initial training coefficients without additional feedback. In addition, the training sequence
only requires the acquisition of one dataset outside of the MRI bore (head-in), as opposed to prior
studies which require two datasets (feet-in and head-in) [5,10], potentially halving the time required
for training. This will allow for an increased level of accuracy in ECGreal extraction and estimation of
MHD-derived metrics in real time [19].
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2. Materials and Methods

2.1. Study Population

The study was conducted using data acquired from two healthy volunteers during exercise stress
testing (n = 2) in a Siemens Skyra 3T MRI (Siemens AG, Berlin, Germany). Informed consent was
obtained from each subject as per Institutional Review Board standards.

2.2. Data Acquisition

Data was recorded to establish a baseline with each subject supine on the scanner table outside
of the MRI bore. Each subject was then inserted head-first into the MRI bore until the heart was at
the isocenter of the scanner. Twelve-lead ECG traces were acquired during 20-second breath-holds
using an ECG recorder modified to be MRI-compatible [5], and a secondary monitor was used to
acquire single lead bipolar VMHD signals with approximately 4-inch lead spacing from the subject
in the left common carotid artery. Phase contrast MRI (PCMR) cines were similarly acquired in each
subject during exercise stress testing in the ascending aorta and in the common carotid artery at rest
and during exercise stress to evaluate the relationship between induced VMHD and blood flow in
both the ascending aorta and the left common carotid artery. All PCMR cines were obtained with the
following parameters: VENC: 150 cm/s; TR/TE/flip: 37.00 ms/4.00 ms/15◦; field-of-view: 300 mm by
243 mm; slick thickness: 3 mm.

2.2.1. Correlation between Aortic and Carotidal MHD

In order to select the proper source of dynamic feedback for the system, the correlation was
quantified between induced aortic VMHD extracted from 12-lead ECGs and four MHD sources using
a single bipolar lead at the surface of the human body: (1) left common carotid artery (Left-Right and
Superior-Inferior lead placement); (2) left femoral artery; (3) across the chest; and the (4) axillary artery.
All ECG recordings were acquired inside a 3T MRI. Correlation between extracted MHD from 12-lead
ECGs recorded inside the MRI and each source was computed and used to determine the optimal
source of intra-MRI dynamic feedback. Furthermore, average flow was quantified in the ascending
aorta and the carotid artery using conventional PCMR during exercise stress testing to predict induced
VMHD based on superimposing an MHD term on 12-lead ECG traces acquired outside of the MRI
bore, whereas MRI derived flow (q) and a unique proportionality constant (αi) for each lead (i = 1:12)
were used to predict induced VMHD which occurs in 12-lead ECG (Equation (1)) [18].

VMHD = αiB0q, for leads i = 1 : 12. (1)

Predicted VMHD values based on MRI-derived blood flow and actual VMHD measured from
body surface electrodes were analyzed statistically to justify usage of carotidal MHD as the dynamic
feedback term.

2.2.2. Adaptive Filter Training

In order to properly utilize the dynamic feedback provided from the carotidal MHD, twelve
adaptive LMS filters were trained (length, step size) to update the morphology of the carotidal MHD to
match the morphology of VMHD obtained from 12-lead ECGs (aortic MHD). An aortic MHD template
was obtained from the subtraction of 12-lead ECGs obtained inside and outside of the MRI bore.
The aortic MHD template obtained at the baseline heart rate was used to update the morphology of
carotidal MHD (Figure 2a (top)). Carotidal MHD was phase compensated to match VMHD obtained
from the 12-lead ECG (Figure 2b), and input into an LMS adaptive filter to train the LMS adaptive
filter coefficients to minimize the least mean squares error between the two signals. The dynamic
feedback generated from the carotidal MHD allows for the updated 12-lead aortic MHD to respond
more quickly to changes in cardiac activity and reduce error associated with variations in heartbeats.
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Following the initial training of the LMS filter coefficients, the aortic MHD template can be updated
in real time (Figure 2c,d) and then used to extract ECGreal from the 12-lead ECG recordings obtained
in real time inside the MRI bore, and to obtain a more accurate estimate of MHD-derived metrics as
previously demonstrated for stroke volume (SV) estimation (Figure 2a (bottom)) [11,19].

To evaluate the proposed method, a twelve-lead ECG was acquired inside the MRI bore and
ECGreal extraction was performed. Then a twelve-lead ECG was acquired outside the MRI bore to set
the “gold standard.” The correlation was determined between the filtered ECG obtained inside the
MRI bore and the unfiltered ECG obtained outside the MRI bore.J. Imaging 2018, 4, x FOR PEER REVIEW  4 of 10 
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Figure 2. Development of a dynamic feedback method for higher accuracy real-time 12-lead ECG
monitoring and estimation of MHD-derived SV inside the MRI bore. (a) (Top) Adaptive filtering
method to morph the carotid artery MHD trace into the aortic MHD trace. (Bottom) ECGreal and SV
estimation derived from aortic MHD developed from carotidal MHD. (b) Single bipolar carotidal lead
and 12-lead ECG placement. (c) 12-lead ECG acquired inside the 3T MRI. Each lead contains ECGreal

and induced MHD voltage (VMHD) components. (d) Updating the morphology of carotidal MHD to
match aortic MHD using trained adaptive least means square (LMS) filters as acquired in 12-lead ECGs
at 3T.

2.2.3. Evaluation during Exercise Stress Testing

In order to evaluate the efficacy of the proposed methodology of dynamic physiological feedback,
a series of exercise stress tests were performed in each subject. Following the training stage, subjects
were positioned head-first into the bore of the MRI, and baseline scans of the aortic arch and the carotid
artery were performed. Three datasets were acquired at varying levels of cardiac activity: (1) baseline;
(2) elevated; and (3) return to baseline. An MRI-compatible exercise band was used to elevate each
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subject’s heart rate by 50%, at which point data collection was performed. A period of 30 min after
the induced stress was allowed for the subject to return to baseline heart rate. Extraction of ECGreal
was performed on the dataset during the period of exercise stress testing, and a Pearson’s ranked
correlation coefficient was calculated to determine efficacy of ECGreal extraction.

3. Results

3.1. Correlation between Aortic and Carotidal MHD

Figure 3a shows the VMHD obtained from single lead MHD sources acquired from carotidal
(Left-Right and Superior-Inferior lead placements), femoral, chest, and axillary arterial vasculature.
The correlations between the VMHD from each single lead MHD source and the VMHD from the
12-lead ECG are plotted in Figure 3b. The conventional PCMR scans of the ascending aorta and the
common carotid artery obtained during exercise stress testing are displayed in Figure 3c.
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Figure 3. Demonstration of correlation between induced MHD in the aortic arch and the common
carotid artery in the selection of a source of dynamic system feedback. (a) Induced MHD voltages
obtained from peripheral vasculature. (b) Cross-correlation index obtained between each peripheral
vasculature MHD source and MHD extracted from each lead in the 12-lead ECG. On the x-axis, the
numbers 1–12 represent the 12 leads used in standard 12-lead ECG in the following order: I, II, III, aVR,
aVL, aVF, V1, V2, V3, V4, V5, and V6. This lead numbering system is defined in Table 1. (c) Phase
contrast MR (PCMR) transverse plane images of the aortic arch and left common carotid artery used
to estimate systolic magnitude (top) and phase (bottom). (d) MHD (top) and flow (bottom) in the
aortic arch and the common carotid artery during exercise stress testing, illustrating close relationship
between flow in the vessels.
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Extracted flow and VMHD from the carotid artery and the aortic arch were each shown to
have a similar increase during exercise stress testing (Figure 3d). MRI-derived flow showed a lower
percent increase in SV as compared to MHD-derived flow, which was attributed to the increased
acquisition time required by PCMR scanning as opposed to the real-time beat-to-beat estimation
provided using VMHD.

Cross-correlation coefficients between MHD obtained from the left common carotid artery and the
12-lead ECG maintained a mean coefficient greater than each alternate peripheral vasculature source,
with a minimized standard deviation in correlation coefficients in the Left-Right lead placement as
opposed to the Superior-Inferior lead placement (Table 1). The first column in Table 1 defines the
numbering system used in this paper for the 12 leads in standard 12-lead ECG.

Table 1. Correlation coefficients obtained between 12-lead MHD and peripheral vasculature.

Lead Number Lead Name Carotid (L-R) Carotid (S-I) Axillary Chest Femoral

1 I 0.51 0.47 0.03 0.01 0.01
2 II 0.49 0.43 0.13 0.09 0.04
3 III 0.43 0.37 0.29 0.21 0.09
4 aVR 0.50 0.45 0.09 0.06 0.03
5 aVL 0.45 0.47 0.44 0.25 0.10
6 aVF 0.47 0.41 0.18 0.13 0.06
7 V1 0.61 0.70 0.17 0.19 0.14
8 V2 0.51 0.56 0.23 0.11 0.08
9 V3 0.54 0.63 0.20 0.34 0.36
10 V4 0.63 0.75 0.17 0.25 0.25
11 V5 0.53 0.62 0.18 0.27 0.23
12 V6 0.60 0.71 0.10 0.16 0.21

Mean 0.52 0.55 0.18 0.17 0.13
Standard
Deviation 0.06 0.13 0.11 0.10 0.11

3.2. Adaptive Filter Training

Figure 4 presents the ECGs acquired to evaluate the ECGreal extraction method. The unfiltered
ECG acquired outside the MRI bore is shown in Figure 4a and the unfiltered ECG acquired inside the
MRI bore is shown in Figure 4b. ECGreal was then extracted from the ECG acquired inside the MRI
bore with the filtering technique, and the result is shown in Figure 4c.
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Figure 4. Training of LMS adaptive filters to remove induced MHD signals, and response to real-time
feedback from carotidal MHD. (a) 12-lead ECG acquired outside the MRI bore. (b) 12-lead ECG acquired
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The extracted 12-lead ECGreal after the filter training stage was found to correlate well with the
“gold standard” ECG obtained outside the MRI, with an average cross-correlation index across all
leads of 0.81 (Table 2).

Table 2. Cross-correlation coefficients between ECGreal and ECGreal extracted intra-MRI.

Lead I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Correlation
Coefficient 0.79 0.77 0.72 0.78 0.78 0.76 0.87 0.91 0.89 0.86 0.85 0.76

3.3. Evaluation during Exercise Stress Testing

The results of ECGreal extraction performed using carotidal dynamic feedback during exercise
stress testing are illustrated in Figure 5. Variations in ECG segments were observed due to the elevated
heart rate. This more accurate separation of ECGreal will in turn allow for increased accuracy in
estimating MHD-derived metrics, such as stroke volume. There was less than a 5% variation in
R-peak between filtered ECGs obtained inside the MRI and ECGs obtained outside the MRI scanner in
all subjects.
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4. Discussion

4.1. Discussion

A method to extract ECG signals with reduced VMHD from intra-MRI 12-lead ECGs was
presented and shown to provide accurate dynamic measurements of induced VMHD using flow
in the carotid artery as a source of dynamic feedback. The addition of the dynamic feedback allows for
a shorter filter response time to heartbeat variability, and the potential to more accurately estimate
ECGreal and VMHD-derived metrics such as stroke volume.

VMHD was acquired using a single-lead ECG monitor from several different vasculature sources
on the human body in order to determine an optimal flow source which induces VMHD with a similar
morphology to that observed in 12-lead ECGs. The left common carotid artery was observed to have
the highest correlation with regards to signal morphology of the aortic MHD extracted from 12-lead
ECGs and was therefore selected as the source of dynamic feedback for training of adaptive filters
to more accurately separate ECGreal and VMHD intra-MRI. The adaptive filtering schema presented
was able to morph carotidal VMHD to match the aortic MHD template, and provide dynamic cardiac
feedback to increase the accuracy of physiological monitoring during exercise stress testing.

This method will allow for advanced physiological monitoring within the MRI and has the
potential to reduce the time associated with cardiac imaging by increasing the accuracy of cardiac ECG
gating through improved MHD suppression.

4.2. Limitations

Although the dynamic feedback was shown to be useful in the extraction of ECGreal, this method
does require the addition of a secondary physiological monitor to provide diagnostic quality ECG traces.
This hardware constraint can potentially inhibit the ability of the proposed methodology to become
widely used in practice and in conjunction with modern MRI-compatible 12-lead ECG recorders.

4.3. Future Work

To more thoroughly and rigorously test the proposed methodology, the experiments should
be conducted on a larger group of subjects and expanded to a wider subject population, including
individuals of varying physical fitness and gender. Additionally, the subject population should include
not only healthy subjects but also subjects with pathologies such as cardiac disorders and arrhythmias.
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This data should then be further evaluated by a cardiologist to validate the ability to acquire diagnostic
quality ECGs using the proposed methodology.

5. Conclusions

Real-time 12-lead ECGs were acquired and filtered of the magnetohydrodynamic effect through
the addition of a dynamic feedback term to a conventional adaptive filtering schema. The feedback term
allowed for dynamic changes in induced VMHD to be assessed using a single bipolar lead positioned
on the left common carotid artery and for a demonstrated level of accuracy during induced stress.
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