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Abstract: Wine counterfeiting is a major problem worldwide. Within this context, an approach to
the problem of discerning original wine bottles from forged ones is the use of natural features
present in the product, object and/or material (using it “as is”). The proposed application
uses the cork stopper as a unique fingerprint, combined with state of the art image processing
techniques to achieve individual object recognition and smartphones as the authentication equipment.
The anti-counterfeiting scheme is divided into two phases: an enrollment phase, where every bottle
is registered in a database using a photo of its cork stopper inside the bottle; and a verification phase,
where an end-user/retailer captures a photo of the cork stopper using a regular smartphone, compares
the photo with the previously-stored one and retrieves it if the wine bottle was previously registered.
To evaluate the performance of the proposed application, two datasets of natural/agglomerate
cork stoppers were built, totaling 1000 photos. The worst case results show a 100% precision ratio,
an accuracy of 99.94% and a recall of 94.00%, using different smartphones. The perfect score in
precision is a promising result, proving that this system can be applied to the prevention of wine
counterfeiting and consumer/retailer security when purchasing a wine bottle.

Keywords: wine counterfeiting; anti-counterfeiting systems; image processing; ORB; validation gate;
RIOTA; object fingerprint

1. Introduction

One major problem that modern society faces today is counterfeiting, reaching a global scale.
The search for solutions to combat and prevent this issue is nothing recent, and the search for
user-friendly low-cost solutions is growing. According to a report published by The European
Union Intellectual Property Office in April 2016 [1], “the value of geographical indication infringing
products in the EU was approximately e4.3 billion in 2014 (...)”. From Table 1, it is clear that spirits
and wines are the largest portion of products affected by counterfeiting. Within this context, some
technologies have been proposed in the literature and applied in industrial domains to prevent wine
and spirit counterfeiting, such as RFIDs, NFCs, QR codes, barcodes, digital water marking, labels,
holograms, tags, among others, and some companies are specialized in the development of new and
hybrid strategies to make wine counterfeiting difficult. A common idea behind these approaches is the
need to add a defining trait or symbol, usually in the package, to improve the consumer safety and
increase the difficulty to counterfeit, while providing serialization for each bottle of wine. However,
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this added feature has some associated cost, increasing the price per bottle. This paradigm led to
the following research question: “Is there a way to perform individual object recognition for every
wine bottle without the need to add extra characteristics?”. By performing a product breakdown of
the structure of a wine bottle, the following components are usually present: glass bottle, wine, cork
stopper, capsule and printed labels.

Table 1. Percentage of geographic indication product counterfeiting; adapted from [1].

Percentage of Counterfeited Products Counterfeited Products

12.7% Spirits
8.6% Wines
0.1% Beers
11.5% Fruits, Vegetables and Cereals
11.0% Fresh Meat and Meat Products
10.6% Cheeses

Cork is a vegetal tissue extracted from the cork tree. This natural material possesses a collection of
properties not found in any other natural or man-made materials: it is elastic, lightweight, impermeable,
has good thermal and acoustic insulation, is resistant to attrition, as well as its texture displays
random patterns [2]. The random patterns displayed by cork have the potential to provide a solution
complying with the constraints mentioned before. Some issues need to be answered: Is it possible
to use the visible natural features of the cork to perform individual object recognition? Is it possible
to perform individual object recognition in a way that does not require adding extra components
to the product while ensuring its authenticity? Is there a way to use the cork’s natural patterns
combined with state of the art image processing technologies to perform individual object recognition?
To answer these questions, the following structure for the methodology was used: (i) a literature
review focusing on local feature detectors/descriptors and object fingerprinting; (ii) the design of
a system architecture for wine anti-counterfeiting purposes; (iii) the design, development and testing
of an artificial vision algorithm capable of cork individual object recognition; and (iv) characterization
of the proposed system.

A new concept in the context of anti-counterfeiting systems called RIOTA (Recognition of
Individual Objects using Tagless Approaches) is introduced in this work. RIOTA uses a non-invasive
tagless approach, leading to individual object recognition for anti-counterfeiting purposes with zero
added information and “zero added finishings”. The details of RIOTA are further explained in
Section 4. The design and implementation of a novel wine anti-counterfeiting scheme based on
the natural features of cork to attain individual object recognition, using state of the art image
processing techniques that suit the RIOTA’s formalization are also presented in this article. This wine
anti-counterfeiting method is composed of a two-stage process: (i) the enrollment phase, where a photo
of every cork stopper, already placed inside the bottle (or the necessary info to perform individual
object recognition) is registered in a database during the bottling process; and (ii) the verification phase,
where a common user/retailer using a smartphone with a pre-installed app takes a photo of the cork
inside the bottle; this photo (or the necessary info) is then queried in the database, and the relevant
information is retrieved for the user. Therefore, the authors highlight two main contributions:

1. RIOTA’s concept formalization in anti-counterfeiting systems;
2. A wine anti-counterfeiting scheme based on natural patterns of cork stoppers.

2. Literature Review

This section presents a literature review targeting local feature detectors/extractors, a few
examples of object fingerprinting and some technologies used for wine anti-counterfeiting. Global
features (e.g., template matching) are discarded from this study due to known limitations,
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like intolerance to partial occlusion, computational cost (searching in the space of all possible
correspondences), etc. Texture descriptors like Local Binary Patterns (LBP), Gabor filters or Gray
Level Co-occurrence Matrices (GLCM) were not included because these kinds of techniques do not
provide enough discrimination between the texture patterns present on the surface of the corks.
This will be further discussed in Sections 4.3 and 7. Machine learning techniques (e.g., Convolutional
Neural Networks (CNNs) and Support Vector Machines (SVMs)) are also ignored, since these methods
usually are computationally costly and arbitrarily complex; also, from the application point of view,
training a classifier each time a photo is registered in a database is infeasible, making machine learning
not suitable for this specific application.

2.1. Local Feature Detectors

A fairly known approach to object recognition is the use of feature detectors: techniques for
the extraction of keypoint descriptors combined with a matching process. Over the years, some
feature detectors have been proposed, namely: Feature from Accelerated Segment Test (FAST) [3],
Scale-Invariant Feature Transform (SIFT) [4], Speeded Up Robust Features (SURF) [5], Good Features to
Track (GFTT) [6], Oriented FAST and Rotated Binary Robust Independent Elementary Features (BRIEF)
(ORB) [7], Binary Robust Scalable Keypoints (BRISK) [8], STAR and Maximally-Stable Extremal Regions
(MSER) [9], Histogram of Oriented Gradients (HOG) [10] and Haar-like features [11], AKAZE [12],
among various others. Focusing on the keypoint extraction task, some descriptor extraction procedures
are also suggested, such as SIFT, SURF, HOG, AKAZE, Fast Retina Keypoint (FREAK) [13], BRIEF [14],
ORB and BRISK. Finally, in order to recognize an object in an image, a correct match between the
descriptors is needed. This matching stage can be performed in a heuristic way or by using brute
force. A common implementation based on a heuristic approach is Fast Library for Approximate
Nearest Neighbors (FLANN) [15]. This method employs several optimizations to improve its time
performance; for example: appropriate selection of the keypoints to match and the usage of k-d trees to
speed up the n-dimensional search. The brute force approach is computationally expensive, with each
descriptor of the queried image being compared with all of the descriptors of the stored image in order
to find a correspondence. Despite all of the research done in the field of object recognition, applications
using individual object recognition come across the dilemma of recognizing and distinguish objects of
the same class.

2.2. Object Fingerprinting

According to [16], “Fingerprinting an object is the ability to identify an individual object based on
unique features such that if the object is seen by the system in other unfamiliar environments, or views,
it can still be recognized”; in other words, it is the individual object identification in different scenes
based on unique features. The problem addressed in the mentioned article is an object tracking system
using a view-based classifier cascade that actively learns to recognize the generic class of the object,
also using a fuzzy graph matching fingerprint representation. The results presented in this article
showed that the system was capable of recognizing specific individuals in the selected class of objects.

A SIFT-based image fingerprinting approach was proposed in [17], by taking as a premise the fact
that if the SIFT algorithm is a reliable choice to localize objects in an image, it also can be a promising
candidate to analyze the image content and, therefore, determine if two images contain identical
information. The SIFT keypoints and descriptors are extracted from the queried image and then are
considered as a fingerprint of this image. Next, a best-bin-first matcher [18] is used to match the
keypoints with the ones previously stored in a database. If the number of matched keypoints is larger
than a threshold T, there is a possibility that the images are homologous, advancing to the next stage of
the algorithm; otherwise, the two images are heterogeneous, ending the algorithm execution. Outliers
are removed by assuming that keypoints generate a cluster, and the cluster’s centroid is calculated.
To remove the outliers, the mean and the standard deviation distances are calculated; for each keypoint,
if the distance is greater than or equal to the mean plus a standard deviation, then it is removed.
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The last step is detecting the homology. To prove the assumption, the authors tested their approach on
a dataset composed of 3000 independent images selected from CD-ROMs “Art Explosion 800,000”.
The range of selected images does not include several images of the same instance, meaning that the
calculated fingerprint is not unique for two identical objects.

In [19], the authors propose an artificial vision method and an acquisition system to distinguish
a bolt from a stack of bolts by taking advantage of the pear-skin finishing given to the bolts.
The acquisition system is composed of a white diffuser made from translucent plastics, a black
ring absorber and a macro lens. This setup prevents ambient light from falling on the metal surface,
directly enabling repeatable image features to be captured from a common camera. The proposed
system is highly dependent on the pear-skin finish given to the bolt, and the acquisition system was
designed to take advantage of the combination of bolt plus finishing. Moreover, the authors state that
their approach can be applied to tiny mass-produced metal parts with the same finishing. The impact
of this research may prevent metal bolt counterfeiting and/or help metal bolt traceability.

2.3. Wine Anti-Counterfeiting Methods

Some technologies have been used to avoid the counterfeiting of wine bottles. One of them is
the usage of RFID tags. Tran and Hong proposed an RFID-based anti-counterfeiting system [20] that
combines two protocols: tag authentication and database correction. These authors claim that the tag
authentication protocol increases the usability for the costumers by allowing them to authenticate
RFIDs tags without the need for authenticating the reader and the server, while the database correction
allows the RFID tag to be updated by the seller or the server. Thin Film Electronics ASA company
(also known as “Thinfilm”) developed an NFC-based technology called OpenSenseTM Technology [21].
The NFC tag has one particularity: it possesses a loop connected to the NFC tag, which allows the
storage of two codes instead of one. The code read by the application when the loop is closed is
different than the one read when it is opened. Since the loop is attached to the opening zone of the
product when the user opens the product (i.e., the bottle), the loop is opened. This technology is used
for anti-counterfeiting and tampering detection purposes. To prevent the counterfeiting problem,
Krishna and Dugar centered their attention on the usage of QR codes [22]. The wine anti-counterfeiting
is achieved with a one-time QR code scan methodology. This method works as follows: the QR
code is registered in the database along with a field that indicates if the QR code as been read or not.
The user receives a different message when trying to read the QR code for the first time, meaning
that it is a genuine product, or when he/she tries to read the QR code of the n-th time, meaning
that is a non-genuine product (or the code was scanned earlier). Another common approach is the
usage of serial codes or tags. ProoftagTM is a technology company [23] that develops tracking and
security solutions for documents and products. Regarding product anti-counterfeiting, this company
combines the serial codes, tags and bubble dispersion, offering three solutions: The first one is BUBBLE
TAGTM and consists of a transparent polymer displaying a random bubble pattern and a printed
identifier on a tag. The bubbles appear in positions, shapes and sizes, from which it is not possible
to build a matrix from the generated product. As a consequence, each bubble group is unique
and impossible to replicate, even by ProoftagTM. Taking the user perspective, the authentication is
performed in three steps: (i) the user inserts the identifier from the BUBBLE TAGTM product with a web
browser; (ii) the image with the bubble pattern corresponding to that key is retrieved; (iii) the user
compares and validates visually if the bubble pattern returned is the same as the one he/she possesses.
The second, RamdotTM, is based on the random optical dispersion of particles made by a process
developed by ProoftagTM on their production equipment. During the production, the particles are
dispersed in a random way, creating unique aggregations. The particles are created in different colors.
This technique also uses the visual comparison of images made by the user. The last one, FIBERTAGTM,
has the same working principle as the previous ones, having as the object of analysis a random set of
fibers printed on a tag. These tags are available for any kind of paper.
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3. Research Questions, Goals and Proposal

From the literature review, it can be seen that several algorithms and strategies have been
presented in the field of object recognition. The search, discovery and matching of relevant features
leading to object recognition in a scene comprise a classification problem: To what class does this
object belong? The topic of distinguishing objects of the same class using artificial vision methods
is under-explored and just recently has become a topic of research interest [19]. Moreover, artificial
vision applications using cork are oriented toward the visual inspection topic of the cork stopper for
quality control purposes [24].

There are no wine anti-counterfeiting applications using no extra items to authenticate the wine
bottles, and there are no artificial vision applications using cork stoppers as a way to authenticate the
wine bottles. Being aware of this gap, some research questions arise, namely:

1. How does one prevent wine counterfeiting?
2. Are the natural patterns of the cork stoppers individually recognizable?
3. Can a photo of the cork stopper be used to identify a wine bottle?
4. Are photos of cork stoppers usable for anti-counterfeiting?

As such, two main objectives were formalized as follows:

• Proposing an anti-counterfeiting strategy;
• Proposing a methodology for individual cork stopper recognition.

To answer the research questions and fulfil the objectives, a wine anti-counterfeiting scheme is
proposed in Section 4.2 along with a formalization of RIOTA (see Section 4) and a specific approach for
individual cork stopper recognition (i.e., recognize and distinguish one cork stopper among several
cork stoppers) (Section 4.3).

4. RIOTA

As mentioned in the literature review, most of the discussed methods employ some kind of
added information and/or special treatment to provide some form of unique object recognition.
For that reason, the authors have devised a non-invasive tagless approach, leading to individual object
recognition for anti-counterfeiting purposes with zero added information and “zero added finishings”,
called RIOTA (Recognition of Individual Objects using Tagless Approaches). In this section, all steps
ranging from the RIOTA formulation to the implementation details are presented.

4.1. RIOTA Formulation

RIOTA uses the concept of “zero added finishings”: the absence of any type of surface finishing
and/or coating added to a material or product beyond those already used in the manufacturing
process that most likely would allow for individual object recognition. The usage of a tagless approach
combined with zero added finishing will allow a cost reduction per manufactured unit (compared to
tag approaches).

The idea behind RIOTA is to be a generalized application capable of recognizing and distinguishing
individual objects between others of the same class. RIOTA possesses four important characteristics:

1. Non-invasive property: in order to recognize and distinguish an object, the RIOTA system will
not need to be in contact with that object;

2. Tagless approach: the object does not include any kind of sensor and/or tag (e.g., RFID, NFC, etc.)
to help with its recognition and/or its distinctiveness;

3. Zero added info: the object does not need any kind of added information, such as serial numbers,
barcodes, QR codes, etc.;
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4. Zero added finishing: the object to be recognized does not include any kind of special surface
treatment, finishing and/or coating, visible or invisible to the naked eye, that could allow for
individual object recognition.

To achieve the previously-mentioned goals, a wine anti-counterfeiting scheme and a methodology
that suits the RIOTA formalization are described in the following subsections.

4.2. Wine Anti-Counterfeiting Scheme

The wine anti-counterfeiting scheme proposed in this work based on the natural features of cork
stoppers is divided into two stages:

1. enrollment phase: After the bottling process, an image is captured at the top of cork (Figure 1)
and is registered in a database (only one photo per bottle is registered). The actual information
recorded may be an image or all the necessary information that will allow individual object
recognition. Additional details may also be recorded as needed, such as year of production,
lot, etc.;

2. verification phase: A common user, with a camera (e.g., smartphone), takes a picture of the
product under verification; the captured photo or all the necessary information that will allow
individual object recognition is uploaded to a server; then, the matching algorithm is employed,
providing the appropriate information, which is then sent back to the user (see Figure 2), either
notifying if the product is registered in the database or not (meaning genuine or not).

Figure 1. Industrial enrollment phase diagram.

S
E
R
V
E
R 

Figure 2. End-user/retailer verification phase diagram.
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This scheme uses a photo of the top of the cork as the Region of Interest (RoI) to authenticate
a wine bottle. The RoI detection and the matching algorithms are detailed in Sections 4.3 and 4.4.

4.3. Procedure and Algorithm Design

As mentioned in the Introduction, cork possesses a collection of properties not found in other
natural or man-made materials, thus presenting itself as an interesting object to be uniquely recognized.
The tests were made using real natural/agglomerate cork stoppers used in wine bottles, exemplified in
Figure 3. The steps followed to accomplish the results presented in Section 5 are described as follows:

1. Randomly select cork samples;
2. Construct the database by capturing one photo per object;
3. Capture a set number of images per cork (one, two or three) at different rotations, positions and

scales using four different cameras;
4. Iterate every image captured in Step 3 and compare with all images present in the database;
5. Store the result of the comparison for further analysis;
6. Characterization of the proposed approach.

To carry out the necessary testing of the algorithm, two datasets were generated, Tables 2 and 3.
For the creation of those datasets, two databases were built: one populated by 100 photos representing
100 different natural cork stoppers and the other with 100 photos representing 100 different agglomerate
cork stoppers.

Table 2. Characterization of the natural cork stopper dataset.

Natural Cork Database Natural Test Set 1 Natural Test Set 2

Number of photos 100 200 300
Smartphone Xperia Z1 Compact Xperia Z1 Compact Asus Zenfone 2

Camera Resolution 20.7 MP 20.7 MP 13.0 MP
Smartphone Release Date January 2014 January 2014 March 2015

Table 3. Characterization of the agglomerate cork stopper dataset.

Agglomerate Cork Database Agglomerate Test Set 1 Agglomerate Test Set 2

Number of photos 100 100 200
Smartphone Xperia Z3 Compact Asus Zenfone 2 Asus Zenfone 5

Camera Resolution 20.7 MP 13.0 MP 8.0 MP
Smartphone Release Date September 2014 March 2015 April 2014

The first dataset is comprised of two test sets of photos captured by two different cameras,
taken from the natural cork stopper database, resulting in a total of 500 images; similarly, the second
dataset is also comprised of two test sets of photos captured by two different cameras, taken from the
agglomerate cork stopper database, resulting in a total of 300 images. Note that, since the photos of
both cameras were taken manually, they have different scales/resolutions and rotations. Only one
photo per cork is registered in the database. The diameter of the top of the corks used ranges from 19
mm–23.5 mm. For the datasets’ creation, no special attention was given to the resolution of the captured
images. All captured images were scaled down to 640×H (wherein H is the corresponding height to
keep the aspect ratio), and the images were compressed as JPEG. The photos were captured using
a macro lens placed on the smartphone to enhance the details in the surface of the cork. The photos
were captured by placing the smartphone at a distance of approximately 2 cm or 3 cm from the top
surface of the cork stopper.

In order to evaluate the proposed approach, sensitivity and specificity tests were performed, and
the precision, recall and accuracy ratios were calculated.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Four different examples of the top surface of natural cork (a–d) and four different examples
of the top surface of agglomerate cork (e–h). These images were scaled to the same scale for
displaying purposes.

The algorithm that suits RIOTA’s formalization, presented in Figure 4, was designed based on the
premise given in [17]: “Intuitively, since the SIFT algorithm is able to localize objects in an image, it can
also help us to determine whether two images contain the identical content”. This is not exclusive to
SIFT and can be considered also for other local features detectors/extractors like SURF, BRIEF or ORB.

Texture descriptors like GLCM and LBP were firstly considered as a hypothesis, but were
discarded. Looking at the second row of Figure 3, it is possible to see that between corks, there
are no significant differences in texture. In other words, to be able to recognize one cork stopper among
several cork stoppers, texture descriptors do not provide enough discrimination.

This proposed algorithm can be divided into two phases: identification of the region of interest
and matching of the detected RoIs. In this case, the RoI is bounded by a circumference, as can be seen
in Figure 3. The identification step takes one RGB image, converts it to grey, then applies a Gaussian
blur filter to reduce some acquisition noise; next, a Canny edge detector is applied to find the edge
circumference. To detect the circumference, a least square fitting algorithm is applied [25], and both
the radius and center of the circle are obtained. Finally, the RoI is delimited on the grey image, and
four corners are painted in black (Figure 5), reducing the area to match (and the matching errors) for
the next step.

The second phase matches the two RoIs obtained in the previous stage. As such, from the list
of methods presented in Section 2, the approach uses the ORB detector, descriptor and brute force
matcher to match the keypoints. The underlying details that the problem presents make ORB a prime
choice over the other state of the art detectors/descriptors: invariance to rotation and translation is
necessary, but scale invariance can be discarded, possibly improving time performance. Since ORB
possesses these crucial characteristics and there is no need to use a richer feature detector/descriptor,
this satisfies the problem’s requirements.
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Figure 4. Flowchart of the algorithm developed for RIOTA.

Figure 5. Matched result of the proposed approach using two different photos of the same natural cork
stopper. The blue lines are the matched keypoints before the validation gate and the green lines after
the validation gate.
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Next, the number of keypoints is compared with a predefined threshold T1. This is an intermediate
step, included for time performance purposes; if there is not sufficient evidence that the images
represent the same object (the number of keypoints is smaller than T1), then there is no need to
continue the program execution, and it is assumed that the images represent two different objects,
ending the program execution. Otherwise, it is possible that the two images represent the same
object, continuing to the next step, entitled “validation gate”. This step tries to eliminate some
wrongly-matched keypoints by calculating and comparing the relative distances between them (this
will be further explained in greater detail in Section 4.4). Finally, in order to decide if the two test
images belong to the same object, the number of keypoints detected is compared to a pre-defined
threshold T2. If the number exceeds the threshold, the two photos taken belong to the same object;
otherwise, the photos are from two different objects.

4.4. Validation Gate

This section explains and details two important tasks for the described implementation.
After applying the ORB detector, descriptor and brute force matcher to get a correspondence in
two images, a validation gate vg is applied to test if each matched keypoint is correctly matched. Let I1
and I2 be two vectors of keypoints of Image 1 (input RGB image) and Image 2 (queried database image),
respectively. These vectors are sorted in ascending order of their distances (these being a measure
of similarity; in this case, computed using the Hamming distance), so that the matches with the
highest probability of being correctly matched come first. Each keypoint is represented by its position
coordinates and orientation (Equations (1) and (2)). With this, it is possible to define a reference point
in each image (Equations (3) and (4)) by taking advantage of the sorting done in these two vectors,
assuming that m1 is correctly matched with m′1.

I1 = {m1, m2, ...mm}, mi = {xi, yi, θi} i = 1...m (1)

I2 = {m′1, m′2, ...m′n}, mj = {x′j, y′j, θ′j} j = 1...n (2)

PI1 = (x1, y1) (3)

PI2 = (x′1, y′1) (4)

Then, the spatial distance d of each keypoint to the reference point in each image can be defined
as the Euclidean distance between them. The scale of the two images may differ, and to guarantee
a fair comparison between dI1 and dI2, the Euclidean distance is corrected by a factor calculated from
the detected radius, r1 and r2 (Equations (5) and (6)).

dI1(mi, PI1) =

√
(xi − x1)2 + (yi − y1)2

r1
(5)

dI2(mj, PI2) =

√
(xj − x′1)

2 + (yj − y′1)
2

r2
(6)

vg(dI1 , dI2) = |dI1 −−− dI2 | ≤ r0 (7)

r0 = k
√

2 (8)

Finally, to reject or accept a matched pair, the absolute value of the difference of dI1 and dI2 is
calculated. Ideally, this value should be equal to zero. However, due to unavoidable errors during the
acquisition process, like distortions caused by the lens of the devices, a tolerance box r0 is defined. This
tolerance eliminates wrongly-matched point pairs. Using the previously-mentioned assumption, m1

corresponds to m′1, the absolute value of the difference of the relative distances of a correctly-matched
point should be approximately equal to zero. In the case of an incorrectly-matched keypoint, this value
will be greater than zero. Obviously, a tolerance is needed, represented in this work as r0, defined as
the distance in pixels from which a matched pair point is considered valid. This distance is defined in
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Equation (8), wherein the term
√

2 represents the largest Euclidean distance of two adjacent pixels and
k is a real constant, greater than one. The value of k was tuned manually, resulting in k = 1.5.

5. Results

This section presents examples of the application of the proposed approach. Representative
results and critical analysis of the validation gate are also presented.

Tables 4 and 5 present the comparison results between the database and the test sets, both in
natural and agglomerate cork, respectively. The ratio results presented in all tables (Tables 4–6) were
calculated using Equation (9).

Precision(%) =
TP

TP + FP
× 100

Recall(%) =
TP

TP + FN
× 100

TrueNegativeRate(%) =
TN

TN + FP
× 100

Accuracy(%) =
TP + TN

TP + TN + FP + FN
× 100

(9)

Another test performed includes the comparison between the database of natural corks with
the two test sets collected for the agglomerate corks and the comparison between the database of
agglomerate corks with the two test sets collected for the natural corks. Table 6 presents the results
obtained for this test. This was performed to retrieve feedback about how reliable the proposed
approach is at uniquely identifying a cork among the others. Critical analysis of the validation gate,
circle detection and the overall approach is discussed in Section 6.

Table 4. Ratio results on the natural cork dataset.

Test Performed Precision Recall Accuracy

Natural Cork Database with Test Set 1 100.0% 100.0% 100.0%
Natural Cork Database with Test Set 2 100.0% 94.33% 99.94%

Table 5. Ratio results on the agglomerate cork dataset.

Test Performed Precision Recall Accuracy

Agglomerate Cork Database with Test Set 1 100.0% 100.0% 100.0%
Agglomerate Cork Database with Test Set 2 100.0% 94.00% 99.94%

Table 6. True negative ratio results of the inter-dataset tests.

Test Performed True Negative Rate

Natural Cork Database with Agglomerate Cork Test Set 1 100.0%
Natural Cork Database with Agglomerate Cork Test Set 2 100.0%
Agglomerate Cork Database with Natural Cork Test Set 1 100.0%
Agglomerate Cork Database with Natural Cork Test Set 2 100.0%

Figure 5 shows the results of the usage of the validation gate. The cork on the right has been
rotated along with the keypoints to help with reading. It can be verified that some mismatched
keypoints were removed, which improved the confidence level of the proposed algorithm.



J. Imaging 2018, 4, 54 12 of 16

6. Discussion

The recall rates shown in Tables 4 and 5 are not perfect. By analyzing each resulting false negative,
it can be concluded that the causes of these ratios originate from the RoI detection, perspective
changes, blurred photos, variations in illumination, etc. Inspecting the natural cork tests individually,
the percentage of the false negatives due to the wrong RoI detection is 58.82%. Regarding the
agglomerate cork false negatives, 50% of them are due to the wrong RoI detection.

The RoI detection is based on two major steps (Figure 4): (i) segmentation (composed by the
conversion from the RGB color space to a grayscale intensity image (RGB2Gray), the application of
a Gaussian filter to remove noise (GaussianBlur Filter) and a Canny edge detector); and (ii) circle
detection (using least square fitting to estimate the circle). Performing a more thorough analysis,
the RoI detection problems are always localized in the segmentation stage; the proposed segmentation
fails at correctly detecting the cork area, and the problem lies in the chosen Canny edge detector fixed
minimum and maximum thresholds. Due to the normalization in the validation gate (Equations (5)
and (6)), an incorrect segmentation will increase the odds of accepting a false negative result.

With an improvement/change of the algorithm’s segmentation stage, the recall rate would most
likely rise.

Regarding the validation gate, its application proves to be beneficial, improving the matching
results by up to 20%. It also made possible the 100% precision rate in all tests, including the comparison
between the natural cork test sets and the agglomerate cork test sets, which in the context of an
anti-counterfeiting system looks promising.

7. Research Directions and Applicability Issues

This work presented an image-based approach to handle the wine counterfeiting problem.
Naturally, from the application point of view and due to its novelty, some issues may arise. This section
serve to discuss some of these issues.

The first issue that can be identified comes with the proposed anti-counterfeiting scheme, requiring
that the query image be compared with all images in the database. With an eventually ever-growing
database, this is not a viable solution. An alternative is to combine the information already used in the
label of the bottle like the lot number or the serial-key (some expensive wine bottles use a unique serial
number). This solution, despite being pragmatic, makes it necessary for the user to accomplish two
tasks: (i) insert a number and (ii) take a photo of the cork. This could prove to be inconvenient, from the
user point of view. To overcome this usability issue, an automatic solution to query the image in the
database using the information of the photo taken will reduce the search space, thus improving the
time performance, and this is a more pleasant solution for the end-user. Some technologies naturally
emerge from this context, namely: image hashing and content-based image retrieval systems. In the
near future, this topic will be addressed.

Another relevant discussion is the viability of the proposed method for wine anti-counterfeiting.
A relevant question to answer is: How easy or difficult is it to deceive this system? Since the method
relies on the existing visual aspects present on the surface of the cork, there are two main ways to
cheat the system: (i) find an instance that possesses the same visual characteristics as a single cork
(e.g., a printed photo of a genuine cork), which responds in the same way as a previously-registered
cork stopper; or (ii) reuse a genuine cork to circumvent the system (e.g., remove the cork stopper and
reinsert it, into the same bottle or another one). Generally, the attack presented in (i) is described in the
literature as spoofing attacks, and these are commonly found in face biometrics systems. Since the
approach in this work relies on the matching of feature descriptors, there is a strong hypothesis that the
system would recognize a print of a high-definition photo of a cork as a genuine photo of a cork stopper.
From the user perspective, this does not present itself as a limitation; it is trivial to distinguish a printed
paper from a real cork stopper without any specialized equipment. However, taking into account an
autonomous system, completely devoid of human input, this presents itself as an issue that needs to
be addressed. Therefore, a closer look as the face anti-spoofing biometric systems that do not use face
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features (i.e., eye blinks, mouth movements) will most likely benefit the proposed anti-counterfeiting
scheme, making it more robust to attacks. Regarding the counterfeit attacks described in (ii), some
details need to be highlighted. For a counterfeiter to be able to reuse a cork stopper, the following
steps must be executed: 1, remove the capsule; 2, remove the cork stopper; 3, insert the cork stopper in
a bottle (the same or another bottle); 4, insert an equal capsule; 5, encapsulate the bottle (compress
the capsule mechanically in the case of an aluminum capsule or by heat in the case of a PVC capsule).
A particular, important detail to note is that it is mandatory for all wine bottles to be encapsulated,
due to legal reasons. Thus, for a counterfeiter to succeed, he/she must have access to the capsules
(the same as those intended to be used in the bottle to be counterfeited) and find a way to fasten
the capsules on those bottles. This, perhaps, is the simpler step in this counterfeit chain. For Step 2,
the removal of the cork stopper needs to be done by meeting one simple requirement: not damaging
or altering the visual characteristics of the top surface of the cork stopper. This condition must be also
followed in Step 3, when inserting the cork stopper into another bottle. Moreover, the initial relative
distance between the cork and the bottleneck must be kept when reinserting the cork stopper into the
bottle, in order to minimize the visual changes of the pair cork stopper/capsule. Albeit that this is
unquestionably difficult, it is plausible. Notice that, between Steps 2 and 3, there are some relevant
elements that require a detailed analysis. As stated before, cork is a vegetal tissue that possesses,
among others, an elastic property. In other words, it is capable of being compressed to fit inside the
bottle and, depending on the elastic domain of the cork and conditions, recovering to the initial state.
Other important notion to understand is the time frame between the removal of the cork stopper and
the insertion of the same cork stopper. The longer this process takes, the more likely it is for the cork
stopper to achieve its equilibrium state. At the same time, the longer the counterfeiter takes, the more
unlikely it is for the visual properties to remain the same (remember that the method requires a macro
lens). Combining all the variables that a counterfeiter needs to manage, one conclusion can be drawn:
it is a hard process to handle, with many assumptions. Note also that, from the counterfeiter point of
view, the product’s counterfeiting is only feasible when the resources spent are lower than the profits
achieved, and considering all the above-mentioned variables, it is hard to predict and discuss if the
obtained profits justify the wine counterfeiting.

Taking this discussion even further, let us assume the worst case scenario: a counterfeiter can
reuse the same cork stopper and trick this system. There is no evidence that the same process will work
in another bottle with the same success rate. The reason to support this relies on the methodology
employed in this anti-counterfeiting method, which is individual object recognition. The usage of
minutiae/details to achieve individual object recognition is advantageous in the context of wine
anti-counterfeiting. This fact overcomes the expected limitation of using general features of the cork
for wine anti-counterfeiting purposes. Once the forger discovers a way to circumvent the system and
counterfeit one bottle, he/she most likely has found a generalized way to delude this system.

Finally, another issue that must be taken into account is the requirement of capturing a photo by
the user. As mentioned in the Discussion section, Section 6, this photo must not be blurred. Otherwise,
it may compromise the result. From this problem, these questions arise: How easy is it to take a good
picture? How does one measure the easiness? Arguably, some assistive indicator can be provided to
the user by the smartphone application (e.g., draw a circle in the smartphone camera app to help the
user point at the RoI, in the same way as the square used to read the QR code; automatically measure
the sharpness/blurriness and take the photo; warn the user when a photo is of poor quality; etc.). Even
so, more conclusions about this issue will only appear after testing this method in an industrial setup
and testing using “personas” or real end-users.

8. Conclusions

A wine anti-counterfeiting scheme based on natural features/patterns of cork stoppers combined
with image processing techniques was proposed in this article.
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The anti-counterfeiting is achieved using a two-phase scheme: (i) during the bottling process,
every wine bottle is registered in a database using a photo (or the necessary info to allow object
recognition) of the top of the cork already inside of the bottle; (ii) after that, an end-user/retailer
verifies the authenticity of a wine bottle by capturing a photo at the top of the cork using a smartphone
with a pre-installed app, and the according information is retrieved for the user.

The first step of RIOTA’s formulation was presented and discussed, and given its characteristics,
it looks to be a promising approach, possessing non-invasive properties, zero added info, a tagless
approach and zero added finishing. RIOTA has advantages over other implementations [19], not
requiring any kind of finishing, thus not increasing the cost per manufactured product while
maintaining its purpose: the prevention of the product’s counterfeiting.

The achieved results prove that natural patterns of the cork stoppers, being irreplaceable and
intricate, make cork stoppers individually recognizable. Thus, they can be used to uniquely identify
a wine bottle. The 100% precision ratio both in natural and agglomerate cork using four different
cameras and the accuracy results obtained, ranging from 99.94%–100.0%, prove that the proposed
approach for individual cork stopper recognition using ORB combined with a brute force matcher and
validation gate to eliminate outliers can be robust enough in security systems for anti-counterfeiting
and/or traceability purposes. However, the recall rate points to improvements in the segmentation
phase, because it is not desirable for a common user to take more than one photo of an authentic
product in order to recognize it. The usage of a local feature detector provides more tolerance to
noise in existing features (e.g., some small risk), enabling more resistance to noise and tolerance to
partial occlusion.

The two main goals of this work have been achieved, and the research questions have been
answered; yet, within this application, some new research questions may arise: Is it possible to
measure the object’s richness taking into account previous knowledge? Is it possible to “hack” the
proposed approach by taking a photo of a high quality printed photo of a cork? Future work includes
answering these questions.

9. Patents

The system presented is expected to be used in the consumer market in the near future; as such,
a pending patent process related to this work is in progress.

Acknowledgments: The authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022
(SciTech (Science and Technology for Competitive and Sustainable Industries)), co-financed by Programa
Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).

Author Contributions: The authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

RIOTA Recognition of Individual Objects using Tagless Approaches
ORB Oriented Fast and Rotated BRIEF

References

1. European Observatory on Infringements of Intellectual Property Rights. Infringement of Protected Geographical
Indications for Wine, Spirits, Agricultural Products and Foodstuffs in the European Union; Technical Report April;
European Union Intellectual Property Office: Alicante, Spain, 2016.

2. Duarte, A.P.; Bordado, J.C. Cork—A Renewable Raw Material: Forecast of Industrial Potential and
Development Priorities. Front. Mater. 2015, 2, 2, doi:10.3389/fmats.2015.00002.

3. Rosten, E.; Drummond, T. Machine Learning for High-Speed Corner Detection. In Computer Vision—ECCV
2006; Springer: Berlin, Germany, 2006; pp. 430–443.



J. Imaging 2018, 4, 54 15 of 16

4. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
5. Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst.

2008, 110, 346–359.
6. Feichtenhofer, C.; Pinz, A. Spatio-temporal Good Features to Track. In Proceedings of the 2013 IEEE

International Conference on Computer Vision Workshops, Sydney, NSW, Australia, 2–8 December 2013;
pp. 246–253.

7. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings
of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011;
pp. 2564–2571.

8. Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary Robust invariant scalable keypoints. In Proceedings
of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011;
pp. 2548–2555.

9. Forssen, P.E. Maximally Stable Colour Regions for Recognition and Matching. In Proceedings of the 2007
IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007;
pp. 1–8.

10. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA,
USA, 20–25 June 2004; Volume 1, pp. 886–893, arXiv:chao-dyn/9411012.

11. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of
the Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 8–14 December 2011; Volume 1,
pp. I-511–I-518, arXiv:1011.1669v3.

12. Alcantarilla, P.; Nuevo, J.; Bartoli, A. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale
Spaces. In Proceedings of the British Machine Vision Conference 2013, Bristol, UK, 9–13 September 2013;
British Machine Vision Association: Durham, UK, 2013; pp. 13.1–13.11.

13. Alahi, A.; Ortiz, R.; Vandergheynst, P. FREAK: Fast Retina Keypoint. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition,Providence, RI, USA, 16–21 June 2012; pp. 510–517.

14. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features.
In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6314 LNCS,
pp. 778–792.

15. Muja, M.; Lowe, D.G. Fast Matching of Binary Features. In Proceedings of the 2012 Ninth Conference on
Computer and Robot Vision, Toronto, ON, Canada, 27–30 May 2012; pp. 404–410.

16. Medasani, S.; Srinivasa, N.; Owechko, Y. Active learning system for object fingerprinting. In Proceedings
of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004;
IEEE Cat. No.04CH37541; Volume 1, pp. 345–350.

17. Yu, X.; Huang, T. A SIFT-based image fingerprinting approach robust to geometric transformations.
In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan,
24–27 May 2009; pp. 1665–1668.

18. Beis, J.S.; Lowe, D.G. Shape Indexing Using Approximate Nearest-Neighbour Search in High-Dimensional
Spaces. In Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’97), San Juan, Puerto Rico, USA, 17–19 June 1997; pp. 1000–1006.

19. Takahashi, T.; Ishiyama, R. FIBAR: Fingerprint Imaging by Binary Angular Reflection for Individual
Identification of Metal Parts. In Proceedings of the 2014 Fifth International Conference on Emerging Security
Technologies, Alcala de Henares, Spain, 10–12 September 2014; pp. 46–51.

20. Tran, D.T.; Hong, S.J. RFID Anti-Counterfeiting for Retailing Systems. J. Appl. Math. Phys. 2015, 3, 1.
21. Thinfilm. Products NFC Solutions. Available online: http://thinfilm.no/solutions-nfc-solutions/

(accessed on 20 January 2018).
22. Bala Krishna, M.; Dugar, A. Product Authentication Using QR Codes: A Mobile Application to Combat

Counterfeiting. Wirel. Personal Commun. 2016, 90, 381–398.
23. Prooftag Home Page—Prooftag|Unique Proof of Authenticity. Available online: http://www.prooftag.net/

(accessed on 28 December 2017).

http://xxx.lanl.gov/abs/9411012
http://xxx.lanl.gov/abs/arXiv:1011.1669v3
http://thinfilm.no/solutions-nfc-solutions/
http://www.prooftag.net/


J. Imaging 2018, 4, 54 16 of 16

24. Paniagua, B.; Vega-Rodríguez, M.A.; Gomez-Pulido, J.A.; Sanchez-Perez, J.M. Improving the industrial
classification of cork stoppers by using image processing and Neuro-Fuzzy computing. J. Intell. Manuf. 2010,
21, 745–760.

25. Gander, W.; Golub, G.H.; Strebel, R. Least-squares fitting of circles and ellipses. BIT 1994, 34, 558–578.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Local Feature Detectors
	Object Fingerprinting
	Wine Anti-Counterfeiting Methods

	Research Questions, Goals and Proposal
	RIOTA
	RIOTA Formulation
	Wine Anti-Counterfeiting Scheme
	Procedure and Algorithm Design
	Validation Gate

	Results
	Discussion
	Research Directions and Applicability Issues
	Conclusions
	Patents
	References

