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Abstract: Segmentation of regions of interest is an important pre-processing step in many colour
image analysis procedures. Similarly, segmentation of plant objects in digital images is an important
preprocessing step for effective phenotyping by image analysis. In this paper, we present results of
a statistical analysis to establish the respective abilities of different colour space representations to
detect plant pixels and separate them from background pixels. Our hypothesis is that the colour
space representation for which the separation of the distributions representing object and background
pixels is maximized is the best for the detection of plant pixels. The two pixel classes are modelled
by Gaussian Mixture Models (GMMs). In our statistical modelling we make no prior assumptions
on the number of Gaussians employed. Instead, a constant bandwidth mean-shift filter is used to
cluster the data with the number of clusters, and hence the number of Gaussians, being automatically
determined. We have analysed the following representative colour spaces: RGB, rgb, HSV, Ycbcr
and CIE-Lab. We have analysed the colour space features from a two-class variance ratio perspective
and compared the results of our model with this metric. The dataset for our empirical study consisted
of 378 digital images (and their manual segmentations) of a variety of plant species: Arabidopsis,
tobacco, wheat, and rye grass, imaged under different lighting conditions, in either indoor or outdoor
environments, and with either controlled or uncontrolled backgrounds. We have found that the best
segmentation of plants is found using HSV colour space. This is supported by measures of Earth
Mover Distance (EMD) of the GMM distributions of plant and background pixels.

Keywords: plant phenotyping; plant pixel classification; colour space; Gaussian Mixture Model;
Earth Mover Distance; variance ratio; plant segmentation

1. Introduction

Compared with the growing interest in plant phenotyping using computer vision and image
analysis, plant phenotyping by visual inspection is slow and subjective, relying as it does on human
evaluation. Two of the aims of digital imaging and image analysis are (a) the removal of any degree
of subjectivity associated with an individual human’s perception, and (b) the expedition of the
analysis procedure. This is especially important for the high throughput assessment of the phenotypic
manifestations of genetic expressions in plants.

Another and particular application of digital imaging in an agricultural setting is the detection
and identification of weeds for the purpose of spot spraying of herbicide. Spot spraying, as opposed to
blanket spraying, is more economical and environmentally less detrimental. It is worth considering
that successful application of spot spraying may also depend on weed size (volume of herbicide) as
well as weed identification (type of herbicide). Consequently, being able to estimate weed volume or
biomass by 3D reconstruction from digital images is potentially beneficial. In [1], An et al. presented a
novel method that used plant segmentation from images for 3D plant morphology quantification and
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phenotyping. Plant segmentation was used by An et al. in [2] to measure phenotypic traits such as
leaf length and rosette area in 2D images. Plant pixel detection by a Gaussian Mixture Model (GMM)
was used by Kovalchuk et al. in [3] for the automatic detection of plot canopy coverage and analysis
of different genotypes. Thus, it can be noted that an important basic precursor to both detection,
identification and 3D reconstruction [4,5] is the process of plant segmentation. That is, the binary
classification of pixels into plant and non-plant groups.

There are many approaches to segmentation. These fall into one of two camps: supervised or
unsupervised segmentation [4,6]. However, active contours or level sets and fuzzy logic can also be
used for object segmentation [7,8]. All these different methods of segmentation will benefit from the
study presented in this paper. A colour space which enhances the ability to separate plant pixels from
non-plant pixels will improve the performance of any segmentation method based on colour.

Many segmentation methods are based on colour distinction. To achieve optimal plant
segmentation, however, the natural question to first pose is which colour space is the more effective for
the detection of plant pixels? Is there a suitable transformation of {Red Green Blue} (RGB) colour space
to a representation that will make plant pixel detection more accurate and more reliable? Can a suitable
representation be found that will improve the degree to which plant pixel detection is independent of
illumination condition? Does the contrast between plant and background naturally get enhanced in
certain colour space irrespective of illumination condition? These are some of the questions we address
in this paper. Similar questions have been raised and answered for skin pixel segmentation [9–11],
shadow and traffic object detection [12–14] and image segmentation by graph cut [15,16]. It has been
shown in [17] that the choice of colour space does influence object recognition.

A related study seeking to improve plant segmentation by colour analysis was carried out by
Golzarian et al. [18] using colour indices. Colour indices, individually however, do not provide a
complete representation of a colour space. Individual indices are scalar-valued variables obtained
by a linear manipulation of the components of the three dimensional colour space vector of a pixel.
The individual colour indices considered by Golzarian et al. [18] were g, DGR, EGI, MEGI, NDI, Hue,
and the hue channel of HSV colour space. Their results showed that hue achieved the least amount of
type I I error with a small loss of plant pixel. Our results and conclusions differ somewhat. We attribute
the difference in conclusions to the fact that our study is more encompassing as our larger dataset
includes a greater number of lighting conditions and a larger number of plant species. Thus, in contrast
to Golzarian et al.’s findings, our results show that HSV is overall best suited for segmentation of
plants under the majority of lighting conditions. An important aspect which has not been addressed in
this study is how color balancing would affect the plant pixel detection. Color balancing was shown in
[19] to affect texture classification studies.

This paper is organized as follows. In Section 2.1 we introduce briefly the different colour spaces
we experimented with and their mathematical relationship to each other. Then, in Section 2.2 we
outline our method for discriminating pixels into one of two classes using GMMs and evaluating the
separability of the classes by computing their class distance using Earth Mover Distance (EMD) and
variance ratios. EMD [20] has a long history for use in image processing and analysis. Rubner et al.
used EMD on cluster signature of images for image retrieval and for object tracking by Zhao et al.
in [21] and by Kumar et al. in [22]. The details of our dataset are provided in Section 2.3. We present
our results and discuss those in Section 3, and finally conclude the paper with summary comments in
Section 4.

2. Methods

2.1. Colour Representation

Colour spaces allow for different representations of intensity and colour information in colour
images. Past research activities on colour representation, psycho-visual perception of colour,
video signal transmission and computer graphics have given rise to many colour spaces having
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different desirable properties. Here, we briefly review the five well-known colour spaces RGB, rgb,
HSV, Ycbcr and CIE-Lab that we shall utilize and we summarize how they are related to the common
RGB colour space. A consideration of less well-known spaces such as the colour derivative spaces, as
described in Gevers et al [23], and opponent colour space as mentioned in [24] by Gevers and Stokman,
could be made the subject of subsequent study.

2.1.1. RGB

Red, green and blue are the familiar primary colours and it is now accepted that their different
practical combinations are capable of generating almost all possible colour shades. This colour space
has been the basis for the design of CRTs, television and computer screens. Most still cameras and
scanners save their images in this colour space. However, the high correlation between channels as
well as the mixing of chrominance and luminance information makes RGB space a sub-optimal choice
for colour-based detection schemes.

2.1.2. Normalized rgb

r =
R

R + G + B
, g =

G
R + G + B

, b =
B

R + G + B
(1)

This is a colour space in which intensity information is normalized, which in turn leads to a
reduced dependence on the luminance information. The normalization property, however, introduces
a redundancy amongst the three components. For instance, no additional information is available in
b since b = 1− r− g. In such a case, the components, r and g, are referred to as pure colours due to
the absence of a dependence on the brightness of the source RGB. A mention of rg space can also be
found in [23].

2.1.3. HSV

This colour space specifies any colour in terms of three quantities: Hue, Saturation, and Value.
It was introduced to satisfy user need to specify colour properties numerically. Hue defines the
dominant colour of a pixel, Saturation measures the colourfulness of a pixel in proportion to its
brightness, and Value is related to colour luminance. HSV is non-linearly related to RGB via the
following set of equations

H =

{
θ if B ≤ G,

2π − θ if B > G.

where θ = cos−1 1/2[(R− G) + (R− B)]
[(R− G)2 + (R− B)(G− B)]1/2 (2)

S = 1− 3
R + G + B

[min(R, G, B)]

V = 1/3(R + G + B)

A polar co-ordinate representation of HSV results in a cyclic colour space. HSV colour space was
recently used for adaptive skin classification in [25]. This colour space is similar to the colour space
representations, HIS, HLS, and HCI.

2.1.4. Ycbcr

This colour space is utilized in most image compression standards such as JPEG, H.261, MPEG,
and television studios (video cameras also usually save in this format). Pixel intensity is represented
by Y luminance, computed as a weighted sum of RGB values; the matrix of weights which transforms
the RGB pixel value to Ycbcr is given in Equation (3). The chrominance component of the pixel
information is contained in the cb and cr channels. The colour space is characterized by a simple but
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explicit separation of luminance and chrominance components. It is similar to YIQ and YUV color
spaces and linearly related to RGB as followsY

cr
cb

 =

 0.299 0.587 0.114
0.711 −0.587 −0.114
−0.299 −0.587 0.886

×
R

G
B

 (3)

where the matrix elements are fixed.

2.1.5. CIE-Lab

This colour space, originally proposed by G. Wyszecki [26], to approximate perceptually-uniform
colour space information has been standardized by the Commission Internationale de L’ Eclairage
(CIE). By "perceptually-uniform” one means that it was designed to approximate human vision.
The L-channel contains information about pixel intensity/brightness, while a and b store the colour
information. The CIE-Lab colour space is non-linearly related to CIE-XYZ.

The RGB to Lab conversion is achieved by a transformation , M:

L
a
b

 = M

R
G
B

. Standard

methods exist for specifying the transformation M when the co-ordinates of the RGB system and
reference white has been specified. One such M has been used in [14] for sRGB, D65 device-dependent
colour space. Related colour spaces are CIE-LUV and CIE-LCH. More details of the different colour
spaces could be found in [27].

2.2. Evaluation of Colour Space Representations

To evaluate the suitability of a colour space representation for the detection of plant pixels, we
differentiate background from foreground pixels based on their relative position within a GMM
which has been constructed using the respective colour space information possessed by the pixels.
The Gaussian Mixture Model is a function of a random variable, z, which in our case is the feature
vector comprising the information contained in the three pixel colour channels:

gmm(z, φ) =
K

∑
k=1

wkg(z : µk, Σk) (4)

The model parameter set φ is the set {wk, µk, Σk}K
k=1 where K is the number of Gaussian

distributions in gmm and each g is of the form

g(z : µk, Σk) =
1√

2πΣk
exp

(
−1

2
(
‖ z− µk ‖

Σk
)2
)

. (5)

In applying the GMM using the expectation maximization (EM) algorithm, there arises the
fundamental problem of how to predetermine the number of Gaussian functions to include in the
GMM. We ameliorate this problem by using a mean-shift algorithm to cluster both the background
pixel and foreground plant pixel data. The same fixed bandwidth is used to cluster both sets of pixel
data. Each cluster is then modelled as a Gaussian distribution with a diagonal co-variance matrix,

Σk =

σ11 0 0
0 σ22 0
0 0 σ33

 . (6)

This is utilized to reduce computational load at the cost of an insignificant loss of accuracy.
We denote the background GMM be gmmbg and foreground plant pixel GMM be gmm f g. A distance
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function based on Earth Mover Distance (EMD) is used as a measure of the distance between gmmbg
and gmm f g. The EMD can be considered as a measure of dissimilarity between two multi-dimensional
distributions. The greater the EMD between two distributions the more dissimilar they are. It was used
by Rubner et al. in [28] for colour- and texture-based image retrieval. It was also employed by Kumar
and Dick in [22] to track targets in an image sequence. In the present case, we apply the EMD measure
to the multi-dimensional Gaussian mixture distributions that correspond, respectively, to background
and foreground/plant pixel colour in a given colour space. We then consider the relative success of
the EMD-based clustering in the different colour spaces to compare the effectiveness of the spaces.
The greater the EMD value between the background and foreground GMMs in a given colour space,
the better is that colour space for separating plant pixel from non-plant pixel. Using an EMD as a
quantifier we aim to discover in which colour space the distance between the two distributions is
maximal. We then explore how this distance varies with plant type and imaging condition.

Computing the EMD is based on a solution of the transportation problem [29]. In our case the two
distributions are the two GMMs corresponding to the two classes of plant pixel and background pixel:

gmmbg = ∑L
l=1 wl g(z : µl , Σl) and

gmm f g = ∑K
k=1 wkg(z : µk, Σk).

(7)

Here, gmmbg has L Gaussian in its model and gmm f ghas K). To compute the EMD between them,
L need not be equal to K.

2.2.1. EMD on GMMs

In this section we provide an overview of the use of EMD as a measure of separation/distance
between two GMM distributions. Let the two distributions, gmmbg and gmm f g, be characterized
by their weights, means, and variances, (wl , µl , Σl)

L
l=1 and (wk, µk, Σk)

K
k=1. The EMD is used to

compute the distance between these cluster signatures. Cluster signatures are characterised by
weights; a signature differs from a distribution in the sense that the weights are not normalized.
Also, cluster signatures do not have a cluster spread associated with them, since the GMMs have
variances associated with each Gaussian. In our case the weights wk{k = 1...K} are normalized, i.e.,
∑K

k=1 wk = 1. EMD can also be used to compute the dissimilarity between unnormalized cluster
signatures. However, in our application the weights are normalized. The EMD is defined in terms of
an optimal flow fkl which minimizes the following

EMD(gmm f g, gmmbg) =
K

∑
k=1

L

∑
l=1

fkldkl , (8)

where dlk = D(g(z : µk, Σk), g(z : µl , Σl)) is a measure of dissimilarity/distance between Gaussians
g(z : µk, Σk) and g(z : µl , Σl), and is also referred to as ground distance (GD). The computed flow after
an optimization process satisfies the following constraints

fkl ≥ 0 , for 1 ≤ l ≤ L, 1 ≤ k ≤ K
∑L

l=1 fkl ≤ wk, for 1 ≤ k ≤ K
∑K

k=1 fkl ≤ wl , for 1 ≤ l ≤ L
∑K

k=1 ∑L
l=1 fkl = min(∑K

k=1 wk, ∑L
l=1 wl) = 1

(9)

The formulation of EMD is slightly different when the weights are not normalized. For computing
the ground distance dlk we need a distance measure between two Gaussians g(z : µl , Σl) and g(z :
µk, Σk). We propose here to use a modified Mahalanobis distance to compute the ground distance dlk
between Gaussians l and k:

dlk = (µl − µk)
T [(Σl + Σk)/2]−1(µl − µk). (10)
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The Mahalanobis distance, formally introduced by P.C. Mahalanobis in [30], is a measure of
similarity/difference of a multivariate data point z = (z1, z2, ..., zN) with a known Gaussian
distribution in the same dimension

DM(z) =
√
(z− µ)TΣ−1(z− µ) (11)

This distance is different from Euclidean distance in that it scales down the distance by the
standard deviation of the distribution. The intuition behind this distance is that the distance of a data
point to a normal distribution is inversely proportional to the latter’s spread. This is an important
concept in cluster analysis. The distance of a data point to a cluster is not just the Euclidean distance of
the data point to the cluster centre. It also depends inversely on the spread of the cluster. The same
intuitive notion extends to the distance between two Gaussians, as suggested by the distance function
in Equation (10). The distance between two Gaussians with similar differences in mean values increases
as their standard deviation decreases. A problem with the distance function in Equation (10) is that
it becomes unbounded as the variance of the Gaussian goes to zero. However, this phenomena is
of theoretical interest only, since for real life data sets it is seldom necessary to model something
with a zero variance normal distribution. Furthermore, a zero variance normal distribution has no
physical meaning. Other distance functions like Bhattacharyya distance, Hellinger distance, Kulback
Leibler etc., could also have been modified to formulate a distance function between two multivariate
Gaussians and in future studies we will consider this aspect of the problem.

2.2.2. Two-Class Variance Ratio

To study the discriminative power of different colour spaces with respect to segmenting plant
pixels from background pixels, we compare the results of the present approach to results of augmented
variance ratio (AVR). AVR has been used for feature ranking and as a preprocessing step in feature
subset selection [31,32], and for online selection of discriminative feature tracking [33]. AVR is defined
as the ratio of the inter-class variance to the intra-class variance of features. We use this variance ratio
to measure the power of different colour spaces to discriminate plant pixel from background pixel.
It is well known that linear discriminant analysis (LDA) and the variance ratio are inappropriate for
separating multi-modal class distributions. The plant pixel colours and background pixel colours
are generally multi-model. Therefore, we use the log-likelihood ratio, a non-linear transformation, to
transform the features of a pixel i

L(i) = log
max(pp(i), δ)

max(bg(i), δ)
(12)

The parameter δ is set to a small value, e.g., 0.001, to avoid creating a divergence (divide by zero
or logarithm of zero). The vectors pp(i) and bg(i) are the class-conditional probability distributions
(normalized histograms) of plant and background pixels, respectively, learnt from a training data set.
This log-likelihood ratio transforms the class distributions into a uni-modal form, making the use of
the variance ratio appropriate for measuring the discriminative power of the colour space feature. The
variance of L(i) for class pp(i) is

var(L; pp) = E[L2(i)]− (E[L(i)])2

= ∑i pp(i)L2(i)− [∑i pp(i)L(i)]2
(13)

Similarly, the variance ratio for the background class is

var(L; bg) = ∑
i

bg(i)L2(i)− [∑
i

bg(i)L(i)]2 (14)
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The variance ratio now is

VR(L; pp, bg) =
var(L; (pp + bg)/2)

var(L; pp) + var(L; bg)
(15)

The denominator ensures that the colour space for which the within-class variance is smaller will
be more discriminative, while the numerator favours the feature space in which the between-class
variance is larger.

2.3. Dataset and Experiments

The data set contains images of Arabidopsis and tobacco plants grown in growth chambers which
have been taken under controlled lighting conditions. A distinct subset of the data set consists of wheat
and rye grass images which have been taken in the field and thus subject to different lighting conditions.
Figure 1 shows the two imaging platforms used for imaging some of the plants used in this study.
The platform on the left is for imaging indoor plants while the platform on the right is for imaging
outdoor plants. After imaging, the plant regions were manually selected and segmented for this study.
Arabidopsis images have two types of backgrounds: one black and one red. Plant images were taken
both indoors and outdoors in order to capture as great a variety of illumination and background
conditions as possible. The complete data set comprises 378 images.

(a) (b)

Figure 1. This figure shows the two imaging platforms we have build in house for imaging plants.
(a) is the platform for imaging plants indoor and (b) is the platform for imaging outdoor plants growing
in field condition.

For segmentation of images in different colour spaces we used mean-shift clustering and region
fusion. We selected the cluster related to leaves in a semi-supervised way and undertook a two-pass
mean-shift clustering. The first pass was to determine the leaf area and separate it from the background.
The second pass was to cluster individual leaves and separate them into different leaf areas. Different
sets of parameters were used for the two passes of the clustering algorithm as described in [6].

3. Results

The results of applying the proposed EMD measure, Equation (8), on the GMMs of foreground and
background pixels from training data are shown in Tables 1 and 2. These tables also show the variance
ratios given by Equation (15) for the two classes of pixels in different colour channels. The HSV
colour space had the highest scoring of all systems in terms of EMD distance. There appears to be
no clear uniformally high performer amongst the different colour spaces, in terms of variance ratio.
The segmentation results shown in Figure 2 and in Table 3 show that segmentation based on the HSV
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colour space was nevertheless superior in two out of three different scenarios. Table 3 shows that
segmentation in terms of percentages using the FGBGDice code provided by the LSC challenge dataset.
Finally, we show the segmentation results for the test data set in CIE-Lab colour space. The reason for
using the CIE-Lab colour space for this comparison is that this colour space was recommended by the
authors of [6].

(a) (b) (c) (d) (e) (f) (g)

Figure 2. This figure shows the results of segmentation using the method of mean-shift clustering, used
in the paper, for different colour spaces. Image in column (a) are the original images of Arabidopsis
and Tobacco plants. One set of Arabidopsis plant has a contrasting red background and the other has
black background. The images in column (b) are the ground truth segmentation results. The ground
truth segmentation were generated by manual labelling of the image data. In columns (c–g) are the
segmentation in different colour spaces RGB, HSV, CIE-Lab, normalized rgb, and YCbCr, respectively

Table 1. Table for different plant types and the computed Earth Mover Distance (EMD) on the Gaussian
Mixture Models (GMM) models in different colour spaces and their comparison with variance ratio in
different colour spaces. EMD based distance are higher for HSV on both plant types, where as variance
ratios are higher for normalized rgb colour space.

Plant Type Colour Space EMD Distance Variance Ratio

Arabidopsis

RGB 282.46 1.17
HSV 847.24 1.09

CIE-Lab 246.14 2.19
nrgb 264.67 2.23

YCbCr 155.01 1.67

Tobacco

RGB 228.65 0.76
HSV 1389.56 0.99

CIE-Lab 415.17 0.43
nrgb 347.63 1.11

YCbCr 235.15 0.47
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Table 2. Table for different imaging senarios for same plant type. Their computed EMDs on the GMM
models in different colour spaces and their comparsion with variance ratio in different colour spaces.
EMD based distance are higher for HSV on both background types, where as variance ratios are higher
for normalized rgb colour space for contrasting red background and CIE-Lab for the black background.

Background Type Colour Space EMD Distance Variance Ratio

Contrasting

RGB 230.36 1.07
HSV 401.81 0.78

CIE-Lab 182.77 1.77
Green-Red nrgb 39.43 1.88

YCbCr 178.47 1.57

RGB 282.16 1.27
HSV 404.70 2.13

Green-Black CIE-Lab 272.88 9.17
nrgb 257.87 2.24

YCbCr 181.57 3.62

Table 3. Percentage foreground background segmentation results in the different colour spaces for
there different datasets. A1’s are Arabidopsis plants with a red background, A2’s are Arabidopsis
plants with black background and A3’s are tobacoo plants imaged in controlled growth chambers.

Plant type Percentage Foreground Background Segmentation

RGB HSV CIE-Lab rgb YCbCr

A1 96.32 % 96.67% 93.40% 10.87% 94.25%
A2 90.53% 98.51% 95.54% 49.69% 97.83%
A3 64.8% 89.6% 57.23% 19.56% 51.79%

Table 4. Overall plant and leaf segmention results using the method of mean-shift clustering as
described in Section 2.3

Plant Type Plant Segmentation Leaf Segmentation

Mean Std Mean Std

A1 92.14% 2.82 % 47.14% 11.14%
A2 93.31% 2.41 % 55.16% 13.15%
A3 76.52% 35.32% 34.03% 22.35%

The segmentation results of separating plant leaves from the background obtained on the test
dataset for Arabidopsis images were quite reasonable, achieving mean values of 0.9215 with a standard
deviation of 0.0282 on A1 test images (see Table 4) and a mean of 0.93313 with a standard deviation
of 0.0241 for test images of A2 (see Table 4). Set A1 are Arabidopsis plants with red background
imaged indoors under controlled lighting conditions. Set A2 comprised images of Arabidopsis
plants with black background also imaged indoors. Set A3 was composed of images of tobacco
plants at different stages of development. Some errors in plant and background segmentation
were mainly due to the presence of green moss on the background soil. The leaf segmentation
results were not as good as the plant segmentation results as the algorithm was designed mainly for
background-foreground segmentation. The results can be improved with the use of shape priors for
leaf segmentation. The accuracy of plant segmentation for the tobacco test data set was quite poor,
which could have resulted for one of two reasons. Firstly, the colours of some of the tobacco plant
leaves in the test data set were quite different from what was typically found in the training data
set. Secondly, the illumination present in the tobacco images was not as intense as that applied to
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the Arabidopsis plants. Consequently, some of the darker regions of the tobacco plants have been
classified as background.

Plant pixel detection and segmentation is certainly affected by the choice of the colour space being
used for image analysis. Hence, the choice of colour space should be given careful consideration for
plant phenotyping purposes. In this study where we considered and analysed five different colour
spaces, better plant pixel detection was achieved using the HSV colour space for almost all plant types
and under different illumination conditions. This can be attributed to the fact that HSV is a perceptual
colour space. Usually, best results of detection and segmentation are obtained in perceptual colour
spaces. This outcome is supported by Golzarian et al.’s study in [18], where the authors obtained
the least amount of type I I error with a small loss of plant pixels. However, here we have shown
that the segmentation in HSV colour space gives better results under a greater variety of illumination
conditions and for a greater range of plant species.

4. Conclusions

In this paper we have presented a method for dynamically selecting the suitability of a feature
space (colour space in this case) for segmenting plant pixels in digital images which have both classes
of plant pixels and background pixels modelled by Gaussian Mixture Models. For the data set of plants
imaged under controlled lighting conditions, the proposed method of colour space selection seems
to be more effective than the variance ratio method. The HSV colour space clearly performs better
for tobacco plants and is one of the higher quality segmentation performers for Arabidopsis plant
images under two different scenarios. This conclusion extends to plants imaged either in field-like
conditions where no lighting control is possible, or close to field-like conditions where there is a
mix of ambient and controlled lighting. It is well known that the choice colour space influences the
performance of image analysis, and the use of perceptual spaces generally provide more satisfying
results, whatever database is being considered. Our experimental results on plant pixel detection
under different illumination condition supports this prevalent hypothesis. In additon, the separability
analysis based on EMD of GMMs for different colour spaces reveals the same phenomena. Our
use of different distance functions to measure the separation of Gaussian distributions, and hence
GMMs, has the added benefit of providing better analytical understanding of the results on which our
conclusion is based. In future work we would like to experiment with how color balancing [19] affects
the segmentation and detection of plant pixels.
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