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Abstract: A system for inspecting flat panel displays (FPDs) acquires scanning images using multiline
charge-coupled device (CCD) cameras and industrial machine vision. Optical filters are currently
installed in front of these inspection systems to obtain high-quality images. However, the combination
of optical filters required is determined manually and by using empirical methods; this is referred
to as passive color control. In this study, active color control is proposed for inspecting FPDs.
This inspection scheme requires the scanning of images, which is achieved using a mixed color light
source and a mixing algorithm. The light source utilizes high-power light emitting diodes (LEDs) of
multiple colors and a communication port to dim their level. Mixed light illuminates an active-matrix
organic light-emitting diode (AMOLED) panel after passing through a beam expander and after being
shaped into a line beam. The image quality is then evaluated using the Tenenbaum gradient after
intensity calibration of the scanning images. The dimming levels are determined using the simplex
search method which maximizes the image quality. The color of the light was varied after every scan
of an AMOLED panel, and the variation was iterated until the image quality approached a local
maximization. The number of scans performed was less than 225, while the number of dimming level
combinations was 20484. The proposed method can reduce manual tasks in setting-up inspection
machines, and hence is useful for the inspection machines in FPD processes.

Keywords: flat panel display; inspection process; scanning image; light control; mixed color source;
optimal illumination; simplex search method

1. Introduction

Flat panel displays (FPDs) have become an essential component in consumer electronics, and their
market is expected to expand at a compound annual growth rate (CAGR) of 5.8% by 2020. This is
due to the proliferation of smart devices such as televisions, monitors, laptops, tablets, smart-phones,
and digital cameras [1]. Thin film transistor-liquid crystal displays (TFT-LCDs) are the most popular
FPDs, and organic light-emitting diodes (OLEDs) have increasingly been used in smart-phones in
recent years. However, the use of plasma display panels (PDPs) has decreased in the market. For the
purpose of mass production and product quality, automatic optical inspection (AOI) is generally
promoted by manufacturing vendors [2]. FPDs are usually large, but the size of defects on them is of
the order of hundreds of micrometers. As such, the manual inspection of FPDs is not suitable [3].
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The AOI process identifies defects, such as dents, scratches, black spots, white spots, swollen
areas, and craters in FPDs using vision systems [2,4]. These defects are detected in an image using
mathematical algorithms, such as adaptive thresholding [2], the Fourier-based method [4], discrete
cosine transformation [5], a rule-based method [6], a periodic reference pattern [7], studentized
residuals [8], Hough transformation [9], Gabor wavelet [10], neural networks [11] and image-to-image
methods [12]. These techniques have been applied to TFT-LCD inspection, as well as Active-Matrix
Organic Light-Emitting Diode (AMOLED) inspection [13].

These studies however only reported on defect detection, and as such, there are only a few studies
on the image quality during acquisition. The conventional inspection of semiconductors usually
involves the examination of specific areas; however, AOI typically entails examination of the entire
area of FPDs. AOIs have a larger field of view (FOV) and, therefore, it is more difficult to set up optical
conditions for AOI than in the case of semiconductor inspections. Line light sources are mostly used in
AOI systems to illuminate inspection regions during scanning. However, commercial line light sources
have a non-uniform distribution of the luminance, and the light angle is usually adjusted by hand.
After appropriate adjustment of the image focus of the line cameras, the color and luminance of the
light source are determined based on previous experience with regard to image quality. AOI systems
normally generate a large image from multiple cameras and light sources. It is therefore difficult and
repetitive to establish optimal inspection conditions [13]. Lighting conditions greatly affect the image
quality, and they are crucial to the performance of AOI systems [4].

Previous studies on FPD inspection focused on defect detection based on acquired images,
but little attention has been paid to the determination of the light color and intensity with the aim of
maximizing image quality. Light control for TFT-LCD inspection was investigated in a study by Wang.
However, he did not outline a detailed approach for light control [14]. Furthermore, most studies have
relied on the use of single color sources rather than multiple color sources with a large number of
dimming level combinations, obtained via the involution of the different colors. This makes it difficult
to determine the dimming level required to maximize image quality.

This study proposed an automatic color lighting algorithm for determining the light color and
intensity for inspecting FPD images. The algorithm controls the activation of the mixed light source,
the acquisition of scanning images, correction of non-uniform luminance, calculation of image quality
index (IQI), and the adjustment of the dimming level of the light source. This algorithm was derived
under the assumption of an arbitrary number of colors in the mixed light source. The raw images
acquired after scanning usually exhibit vertical patterns due to non-uniform luminance; hence,
brightness correction was performed [13]. The acquired image is sufficiently large and has small
periodic patterns, and thus the Tenenbaum gradient was applied to calculate the index, instead of
the sharpness, which was used in previous studies [15,16]. The dimming level for maximizing the
image quality was determined by iterating the simplex search method (SSM). Automatic color lighting
was proposed in our previous studies; however, the focus was on non-repetitive patterns in a small
area [17]. As such, they are not suitable for these FPD inspection processes.

The proposed algorithm was applied to a scanning stage to inspect an AMOLED panel.
A red-green-blue-white (RGBW) source was used to illuminate the AMOLED panel, and the SSM was
used to determine the dimming levels of the RGBW source with respect to the scanning images.
Therefore, the automatic lighting process used in the experiments was based on searching and
determining the light color and intensity required for inspecting the AMOLED panel. This paper is
organized as follows. Section 2 instructs how to obtain image index from a raw image and Section 3
presents the simplex search method to determine the optimal lighting conditions. Experimental setup
and results are shown in Section 4. A conclusion is made in Section 5.



J. Imaging 2018, 4, 133 3 of 12

2. Image Correction and Index

The camera and the optical assembly inspect a large area, and the charge-coupled device (CCD)
pixels of the camera are generally sensitive to light conditions. Compared with the inspection units, the
mixed light source and the beam expander are not as precise, which causes non-uniform illumination
and vertical patterns in a scanning image. This phenomenon is usually adjusted using image
correction [7,13]. After image correction, light color and intensity must be determined for the maximum
of the image quality index (IQI). IQI has been discussed in image quality assessment measured in the
absence of reference image. Hence the no-reference model has been presented in previous research [18].
The IQI in industrial machine vision can be evaluated using focus indices [15,16]. Several no-reference
models of IQI have been applied to aspects of image processing, such as sharpness/blurriness [18–21],
contrast [22], noise [23], and image spectrum [24,25]. Sharpness is the inverse of blurriness and many
sharpness metrics are related to focus indices. Contrast is also evaluated using focus indices. Machine
vision cameras have low-noise levels and acquire still images; hence, noise and image spectra do not
have many effects on an AOI system. Image quality can be evaluated using the image index, which is
normally based on a pixel level operation. Tens of image indices have been proposed for automatic
focusing algorithms in microscopy [26]. The index is usually called the sharpness and the focusing
method is used to investigate the peak of the sharpness when optical conditions are adjusted [27].
Several focusing methods for inspecting TFT-LCDs using sharpness has been proposed in previous
reports. Indices based on variance and fast Fourier transform (FFT) are advantageous for large and
non-repetitive patterns in semiconductors. Lee’s study considered various focus estimators to inspect
small, periodic and regular (SPR) patterns on TFT-LCDs [28]. However, the gradient-based index
is advantageous for the SPR patterns [29]. The sharpness for focusing was used for light control in
previous studies [15–17,30], the gradient-based index was considered for lighting, and the Tenenbaum
gradient was finally chosen [31].

2.1. Image Acquisition with a Mixed Color Source

Images of FPDs are typically acquired using a line scan camera. The line scan camera has a linear
CCD array with pixel sizes ranging from 2000 to 64,000. An optical assembly with a long main scope
tube is attached to the front of the camera. The FOV of the optical assembly is much larger than that
of conventional area cameras. FPDs are placed on a stage and translated in a vertical direction along
the pixel array to obtain a scanning image. A line light is generated in the FOV of the line camera,
and the light and the linear camera are aligned by adjusting the optical components. The image focus
is also determined by adjusting the optical assembly. The line image can be acquired after the setup.
It is transferred to a frame-grabber, and subsequently stored in computer memory. As these images
accumulate in the memory during scanning, a large and continuous image of the FPD is constructed.
The automatic color lighting algorithm performs image correction, index calculation and simplex
searching. After the dimming level is determined, the mixed color source drives color light emitting
diodes (LEDs) whose intensities are proportional to the dimming level.

The light from the color LEDs is integrated into a mixed color light using optical components,
and the mixed light is transferred outward using an optical fiber [30]. The optical fiber is connected to
a beam expander and generates a linear light in the FOV. This procedure from image acquisition to
the generation of a linear light source forms a feedback loop. Figure 1 shows a conceptual diagram
of an AOI system for the case of a mixed color source, and the feedback loop is established using the
scanning image and mixed light generation.
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Figure 1. Conceptual diagram of an an automatic optical inspection (AOI) system using a mixed
color source.

2.2. Image Correction

Non-uniform illumination was also caused in the AOI system and image correction was required.
Figure 2 shows a raw image of an AMOLED panel after scanning. The raw image contains SPR patterns
in the AMOLED panel, and brightness is varied along the horizontal pixel position. The average
brightness of a horizontal pixel can be written as follows.

µi =
1
N

N

∑
j

I(i, j) (1)

where I is the grey level of a pixel, (i, j) is the pixel coordinate in an image, and N is the vertical
pixel number of the image. Figure 2 also shows the variation of the average brightness. Because the
image is filled with SPR patterns, the variation must be small. However, the chart shows that there is
a brightness variation, and hence, it must be corrected. The reference value for the correction is the
brightness of an entire image, which can be obtained by averaging the grey levels as follows:

µ̄ =
1

MN

M

∑
i

N

∑
j

I(i, j) (2)

where M is the horizontal pixel number of the image.
The correction coefficient of the horizontal position, λi, is given by the ratio of the brightness of

the entire image to that of a horizontal position as follows:

λi =
µ̄

µi
(3)

The correction coefficient is applied to grey levels over the entire image, and then a corrected
image, I′, can be achieved such that.

I′(i, j) = I(i, j)λi (4)

This image correction is typically conducted using a reference sheet. However, the images were
corrected after each scan in this study because the images mostly consisted of SPR patterns and the IQI
is evaluated using no-reference model.
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2.3. Image Index

The Tenenbaum gradient is obtained by using the convolution of the horizontal and vertical Sobel
operators. The Sobel operator is a popular computational tool used in machine vision, which is defined
as follows:

Sx =

−1 0 1
−2 0 2
−1 0 1

 Sy =

 1 2 1
0 0 0
−1 −2 −1

 (5)

The Tenenbaum gradient can be calculated from the square sum after the horizontal and vertical
Sobel operation, as shown below:

σ =
M

∑
i

N

∑
j
[(I(i, j) ∗ Sx)

2 + (I(i, j) ∗ Sy)
2] (6)

The brightness, standard deviation, and Tenenbaum gradient were evaluated when the dimming
level of single color light was increased, as shown in Figure 3. The dimming levels at maxima
were different but the curve shapes were similar. The brightness is average grey level of an image.
Thus, the brightness was increased according to dimming level. The brightness was saturated in high
light intensity. The sharpness of the standard deviation was available in other studies for semiconductor
patterns, but was saturated in case of the SPR patterns on FPDs. However, the Tenenbaum gradient
has a peak so, therefore, it is used as an image index. The dimming level of a multiple color source will
have an L-sized vector P given by

P = (p1, p2, · · · , pL) (7)

Then, the relation between the dimming level and the Tenenbaum gradient can be described with
an arbitrary function as follows:

σ = f (P) (8)

Figure 2. Non-uniformity of brightness in a raw image after scanning.



J. Imaging 2018, 4, 133 6 of 12

(a) (b)

(c) (d)

Figure 3. Response of normalized image index by dimming level increment (a) red (b) green (c) blue
and (d) white.

3. Maximizing Image Quality

SSM is a multi-dimensional and non-derivative optimization method. It shows good convergence
for non-linear, non-smooth, and complex problems [32]. SSM can also be applied to automatic color
lighting for semiconductors [16] and for color control of a mixed color source [33]. The approach
constructs a simplex using L+1 test points in the case of L dimming levels. A mixed color source in this
study has four LEDs for RGBW colors. As such, the simplex has five probe points. The Tenenbaum
gradients, σ1 ∼ σL+1, are obtained using the p values.

The probe points are sorted according to a descending order of the σ values, then assigned into
Q1∼QL+1. The best point will be Q1, and the worst point QL+1. If the probe points are connected,
a multi-dimensional shape with triangular faces can be constructed. The initial dimming level, α, was
applied to the probe points as (α, 0, 0, 0), (0, α, 0, 0), (0, 0, α, 0), (0, 0, 0, α) and (α, α, α, α). The centroid
of the simplex can be defined by averaging as follows.

Q̄ =
1

L + 1

L+1

∑
l

Ql (9)

A reflection point, Q′, is defined outside the simplex on an extension line between the worst point
and the centroid, and is given as

Q′ = Q̄ + η(Q̄−QL+1) (10)

If the reflection point is better than the best point, then an expansion point, Q′′, is defined outside
the expansion point as:

Q′′ = Q̄ + 2η(Q̄−QL+1) (11)
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If the reflection point is worse than the best point, then a contraction point is defined inside the
simplex on the midline as:

Q′′ = Q̄ +
1

1 + η
(Q̄−QL+1) (12)

If the contraction point is still worse than the simplex, then the contraction point is condensed
towards the best point and is given as:

Ql,new =
1

1 + η
(Ql,old + Q1) (13)

These deformations of the simplex are iterated until it becomes less than a sufficiently small value.
This is the terminal condition, which can be expressed as:

|σmax − σmin|
|σmax + σmin|

< ε (14)

The size of a simplex, ∆, is obtained by adding the distance between the centroid and the probe
points as:

∆ =
L+1

∑
l

√
(Ql − Q̄)2 (15)

Computational complexity of the proposed method is affected by image size and the probing
points of the SSM, such as O[NM(L + 1)].

4. Experiment and Results

A scanning stage was constructed to translate an AMOLED panel. A line scan camera and
a mixed color source were installed to obtain scanning images. Optimal light color and intensity was
determined using the SSM. The cost function of the SSM was the Tenenbaum gradient, one of the image
indices. Iterations of the SSM and images in optimal light conditions were discussed in the result.

4.1. Experiment

A scanning stage was installed on an optical table that was isolated from floor vibrations.
The scanning stage was composed of a motor, a linear encoder, a ball screw, linear guides, and an upper
plate. The motor rotated the ball screw according to the control signal. The linear guides facilitated
translation in the scanning direction using the pitch of the ball screw. The upper plate was fixed onto
the linear guides; an FPD sample that is attached to this upper plate was translated in the scanning
direction. The motor was connected to a driver that was interfaced to a motion controller on the
peripheral component interconnect express (PCIe) slot of a PC. A zoom lens and a main scope tube
were joined and attached to the front of a line scan camera. A beam expander was connected to the
light source using an optical fiber from a mixed color source. The camera and the beam expander were
placed above the FPD sample, and the angles of these two components was tilted to minimize the
non-uniformity in the images.

The line camera was connected to the CAMERALINK port of the frame-grabber that interfaces
with the PCIe 4x slot of the PC. The mixed color source was linked to the PC through an RS-232
port. Figure 4 shows the construction of the experimental apparatus on an optical table, and Table 1
lists the system’s specifications. The parameters of the SSM are listed in Table 2. The initial size of
the simplex and the convergence constant were varied to take the effect of the SSM parameters into
consideration and to determine the best combination of these parameters. The performance of the
SSM was investigated with respect to its influence on the number of iterations and the value of the
Tenenbaum gradients after each iteration.
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Table 1. Specifications of experimental setup.

Components Model (Bender) Performance / Version

Line camera P24x08k40 (Dalsa)
pixels: 8 k

frame rate: 18 kHz
resolution: 8 bit

Zoom lens Marko Symmar (Schneider) f-number: 5.6
focal length: 120 mm

Mixed color source KLS-150 (KwangWoo)
colors: 4

power: 150 W
resolution: 10 bit

Framegrabber Solios eCL/XCL (Matrox) interface: CAMERALINK
memory: 64 MB

Stage SAN4510-500PL (i-robo) stroke: 500 mm
repeatability: ±5 µm

Software OS
MIL (Matrox) 9.1

Visual studio (MS) 2008
Windows (MS) 7.0 × 64

FPD Sample AMS369FG06 (Samsung)
type: AMOLED

size: 3.7′′

pixels: 480 × 800

Table 2. Parameters of simplex search methods.

Symbol Meaning Value

α initial size of a simplex 128∼1024
η convergence constant 0.2∼1.0
ε terminal condition 0.01
L light colors 4
M horizontal pixel number 8192
N vertical pixel number 1024

Figure 4. Experimental setup for inspecting an AMOLED panel using a mixed color source.

4.2. Results and Discussion

The SSM showed convergence for all parameter variations. The Tenenbaum gradient determined
by equal search was 21,550, but some results for the SSM revealed values that were much lower than
that of the case of equal search. A Tenenbaum gradient above 20,000 can be obtained by applying the
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initial simplex size, α = 512 ∼ 768. The convergence constant, η, is less affected by the Tenenbaum
gradient than α; however, it is highly affected by the number of iterations. To determine the simplex
parameters, the amplitude of the Tenenbaum gradient is the most important factor, but the number
of iterations might also be taken into account in regard to the processing time. Figure 5 shows the
relationship between the Tenenbaum gradient and the number of iterations considering initial simplex
size and convergence constant. As initial simplex size increased in small ranges, the Tenenbaum
gradient became higher at termination. However, the Tenenbaum gradient was degraded above
middle ranges. The high convergence constant approximately showed small iterations. These trends
shown in Figure 5 indicate that α and η have significant effects on the Tenenbaum gradient for image
quality. A high Tenenbaum gradient is desirable and small iterations are preferred. Thus, parameters
from the bottom right corner were selected for the best combinations.

The best parameter combinations are indicated by a red arrow in Figure 5, and were selected
as α = 768 and η = 1.0. In this case, the Tenenbaum gradient was 21,342, and the number of
iterations was 13. These values show that 99% of the Tenenbaum gradient can be obtained when the
processing time is reduced by 56% compared with the case where the Tenenbaum gradient has its
highest value (σ > 20,000).

(a) (b)

Figure 5. Relation between Tenenbaum gradient and iterations considering (a) initial simplex size and
(b) convergence constant.

Figure 6 shows the convergence of the SSM by investigating the variation of the Tenenbaum
gradient and simplex size for the best case. The minimum and maximum Tenenbaum gradients
converged to one value, and their difference was reduced to zero. The simplex size, ∆, was largest
for the initial iteration, but subsequently decreased to zero at the end of the iteration. This indicates
convergence of the SSM. Figure 7 shows the scanning images of an AMOLED panel for the optimal
parameters of the SSM with the Tenenbaum gradient, via equal search with the Tenenbaum gradient
and the variance after correction. The optimized images based on the Tenenbaum gradient in
Figure 7a,b show similar brightness and clarity of internal patterns. However, the image optimized
using the variance in Figure 7c appears too bright and coarse compared with that in Figure 7a,b.
The results in Figures 8 show the SPR patterns for the images in Figure 7, which were obtained by
magnifying the top-left regions of Figure 7. The SPR pattern images optimized by the Tenenbaum
gradient are clear and distinct, but those optimized using the variance were saturated.

The SPR patterns, as well as the large patterns at the edge of the panel, were clearly visible.
The brightness among the SPR patterns also appears to be uniform. The number of scans for equal
search is 20484, which indicates an enormous amount of processing time and is therefore inapplicable
to automatic color lighting. The number of scans used in this investigation was between 13× 5 = 65
and 45× 5 = 225. Compass search, a stable and non-differential method, was tested to compare
performance. The compass search also provided useful values and the test was performed under
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tuning conditions. The number of iterations was 31 and the cost function was calculated nine times
for one iteration, in the best case. Therefore, the proposed SSM can greatly reduce the number of
iterations needed to obtain useful values of the Tenenbaum gradient, which were determined by the
equal step search. The speed is also faster than for the compass search. This indicates that automatic
color lighting can be achieved in practical inspection systems using the proposed algorithm.

Figure 6. Convergence of Tenenbaum gradient and simplex size.

(a)

(b)

(c)

Figure 7. Scanning images (8192 × 1024) of an AMOLED panel (a) by simplex search method (SSM)
with Tenenbaum (b) by equal search with Tenenbaum and (c) equal search with variance.

(a) (b) (c)

Figure 8. Small, periodic and regular (SPR) pattern images (256 × 256) of an AMOLED panel (a) by
SSM with Tenenbaum (b) by equal search with Tenenbaum and (c) equal search with variance.
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5. Conclusions

This study proposed a simplex search method for automatic color lighting using a mixed color
source for automatic inspection of FPDs. Images were obtained by scanning a large area of the
FPDs. The brightness of the scanned images was corrected in the line CCD direction because of the
non-uniformity of the optical components. The Tenenbaum gradient was applied as an index of image
quality, because large areas are usually inspected in FPDs. Therefore, the scans have SPR patterns.
The SSM was applied to maximize the Tenenbaum gradient by adjusting the dimming level of the
mixed color source. These tests were conducted for an AMOLED panel, and optimal parameters were
determined by considering a higher Tenenbaum and a smaller number of iterations. The number of
scans via SSM was much lower than that by equal search, and better than that by compass search.
The Tenenbaum gradient had a useful value, compared with the best value. Therefore, automatic color
lighting for the acquisition of high-quality images can be achieved using the proposed method.
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