
Journal of

Imaging

Article

Two-Dimensional Orthonormal Tree-Structured
Haar Transform for Fast Block Matching

Izumi Ito 1,* and Karen Egiazarian 2

1 School of Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
2 Signal Processing Laboratory, Tampere University of Technology, Tampere 33720, Finland;

karen.egiazarian@tut.fi
* Correspondence: ito@ict.e.titech.ac.jp; Tel.: +81-3-5734-2997

Received: 14 September 2018; Accepted: 31 October 2018; Published: 7 November 2018
����������
�������

Abstract: The goal of block matching (BM) is to locate small patches of an image that are similar to
a given patch or template. This can be done either in the spatial domain or, more efficiently, in a
transform domain. Full search (FS) BM is an accurate, but computationally expensive procedure.
Recently introduced orthogonal Haar transform (OHT)-based BM method significantly reduces the
computational complexity of FS method. However, it cannot be used in applications where the
patch size is not a power of two. In this paper, we generalize OHT-based BM to an arbitrary patch
size, introducing a new BM algorithm based on a 2D orthonormal tree-structured Haar transform
(OTSHT). Basis images of OHT are uniquely determined from the full balanced binary tree, whereas
various OTSHTs can be constructed from any binary tree. Computational complexity of BM depends
on a specific design of OTSHT. We compare BM based on OTSHTs to FS and OHT (for restricted patch
sizes) within the framework of image denoising, using WNNM as a denoiser. Experimental results
on eight grayscale test images corrupted by additive white Gaussian noise with five noise levels
demonstrate that WNNM with OTSHT-based BM outperforms other methods both computationally
and qualitatively.

Keywords: Haar transform; orthogonal transform; tree-structured transform; block matching; denoising

1. Introduction

Block matching (BM) is a fundamental method to locate small patches in an image that match
a given patch which is referred to as a template. It has many practical applications, such as object
detection [1], object tracking [2], image registration [3], and image analysis [4,5], to name few. Block
matching requires the vast computations due to a large search space involving many potential
candidates. Full search (FS) algorithm is generally most accurate BM, in which the similarity scores
of all candidate windows to the template are calculated in a sliding window manner in the spatial
domain. To speed up the matching procedure, various fast algorithms have been proposed. They can be
classified into the following two main categories: full search equivalent and non full search equivalent
algorithms. Full search equivalent algorithms accelerate the BM by pruning many candidate windows
that cannot be the best match windows. These algorithms ensure the results of the full search algorithm.
Conversely, non full search equivalent algorithms accelerate by limiting the scope of the search space
or by using approximated patterns. The results of non full search equivalent algorithms may be
different from those of the full search algorithms. Many full search equivalent algorithms have been
proposed in literature, see e.g., [6,7]. The BM methods can be also categorized into spatial- and
transform-based. Among transform-based methods, decompositions by the rectangular orthogonal
bases, such as orthogonal Haar and Walsh, are most studied ones [8,9]. As it was demonstrated in [8],
BM in orthogonal Haar transform (OHT) domain appears to be more efficient than BM based on

J. Imaging 2018, 4, 131; doi:10.3390/jimaging4110131 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0003-0026-3575
http://www.mdpi.com/2313-433X/4/11/131?type=check_update&version=1
http://dx.doi.org/10.3390/jimaging4110131
http://www.mdpi.com/journal/jimaging

J. Imaging 2018, 4, 131 2 of 18

Walsh-Hadamard transform (WHT) [9], Gray-Code kernels(GCK) [10], and incremental dissimilarity
approximations (IDA) [7]. One of the reason behind this is the use of the integral image, technique
originally proposed by Crow [11] and broadened later by Viola and Jones [12]. Once the integral image
is generated, the sum of pixel intensities of a rectangle region in the image can be easily obtained by
three operations (two subtractions and one addition), regardless of the size of a region. Thus, as it
was demonstrated in [8], integral image can be a useful tool to calculate OHT coefficients, and OHT
is efficient especially when the templates size is large. To evaluate the speed-up over FS equivalent
methods, a template of size 2n × 2n (n ≥ 4) was considered, with the standard deviation of pixel
intensities in the template greater than 45. In [13], it was reported that the algorithm based on OHT
was faster than other algorithms, including low resolution pruning (LRP) [14], WHT [9], and fast
Fourier transform (FFT).

Despite the above mentioned benefits of OHT-based BM, it has the following drawback - the block
size shall be a power of 2, restricting an applicability of OHT-based BM methods, e.g., in nonlocal
image restoration [15–19], in which the size of patch is important for the restoration performance.
Nonlocal image restoration methods use the fact that there exists a high level of self-similarity (fractal
similarity) in natural images, and one can use this for collaborative processing of similar patches
extracted from an image. Non-local image denoising method uses BM to collect similar patches and
process them collaboratively. The denoising performance directly depends on patches collected in
the image. One of the examples of such application is image denoising [15–17], where various size of
templates (a regions centered at each pixel) are used depending on noise level. For example, non-local
mean denoising [15], uses the template size is 7× 7 for a moderate noise level; in weighted nuclear
norm minimization denoising method [16], templates of sizes 6× 6, 7× 7, and 8× 8 are used.

In the present paper, we propose a specific design of the orthonormal tree-structured Haar
transform (OTSHT) for fast BM with an arbitrary size. The one-dimensional OTSHT [20], proposed by
one of the authors, has a freedom of the design and meets the requirements of fast BM. We present
the mathematical expressions defining 2D OTSHT, construct several types of the two-dimensional
OTSHTs including two prime tree structures, and evaluate them as FS equivalent algorithms in terms
of speed and pruning performance. In addition, as a non FS equivalent algorithm, we demonstrate
the applicability of the proposed OTSHT in the state-of-the-art image denoising. The obtained results
demonstrate that the new method is faster and even produces slightly better PSNR than those where
FS or OHT are used. This paper extends the results of the initial study, presented in [21,22].

The paper is organized as follows: We present the mathematical expression and concrete basis
images of OTSHT for BM in Section 2. The fast BM algorithm using OTSHT is described in Section 3.
Our evaluations of the specific designs of OTSHT for BM are detailed in Section 4. The application to
image denoising is demonstrated in Section 5. Finally, in Section 6, we conclude our study.

2. Basis Images of Two-Dimensional Orthonormal Tree-Structured Haar Transform for Fast
Block Matching

In this section, we consider the basis images of orthonormal Haar transform for fast BM with an
arbitrary patch size. To do this, extending the OTSH transforms, introduced in [20], to the 2D and
select two extreme cases of these transforms: one based on balanced-binary tree decompositions and
the second one on the logarithmic tree decomposition.

2.1. Binary Tree and Interval Subdivision

Two-dimensional orthonormal tree-structured Haar transform is designed by an arbitrary binary
tree having N leaves with d depth.

In the binary tree, the topmost node is referred to as a root and the bottom nodes are referred to
as the leaves. Each node is labeled by α. The labeling process starts from the root. The left and right
children of the root are labeled as 0 and 1, respectively. When the node has two children, the left and
right children are labeled by adding 0 and 1 to the right end of the precedent node label, respectively.

J. Imaging 2018, 4, 131 3 of 18

Let α0 and α1 be the left and right children of the node α, respectively. Let ν(α) be the number
of leaves that node α has. The interval, Iα, of node α is defined from the structure of the binary tree.
Intervals Iroot, I0, and I1 are defined as

Iroot = [0, 1) (1)

I0 =

[
0,

ν(0)
ν(root)

)
(2)

I1 =

[
ν(0)

ν(root)
, 1
)

. (3)

Otherwise, for Iα = [a, b),

Iα0 =

[
a, a +

ν(α0)

ν(α)
(b− a)

)
(4)

and

Iα1 =

[
a +

ν(α0)

ν(α)
(b− a), b

)
. (5)

Figure 1 shows the binary tree and the interval splitting. The tree has three leaves with depth two.
A circle represents a node. The number above the circle is the label and the number in the circle is the
number of the leaves that the node has.

3

2 1

1 1

0

00 01

1

root
Iroot

I0 I1

I00 I01

0 1

0

1

1

0

2/3

2/31/3

Figure 1. Binary tree and its interval.

2.2. Orthonormal Tree-Structured Haar Transform Basis Images

Label β is introduced for the vertical direction in addition to label α for the horizontal direction.
A total of N2 basis images of size N × N are generated from a binary tree having N leaves.

There are four functions for constructing the basis images of OTSHT for BM. The function for
regions (Iroot × Iroot) is defined as

ϕ0(s, t) = 1
N (s, t) ∈ Iroot × Iroot (6)

which is used once to generate the first basis image. Otherwise, for region (Iα × Iβ), the following
functions are used:

ϕ1(s, t) =

ν(β1)√

ν(α)ν(β)ν(β0)ν(β1)
, (s, t) ∈ Iα × Jβ0

− ν(β0)√
ν(α)ν(β)ν(β0)ν(β1)

, (s, t) ∈ Iα × Jβ1

0, otherwise

(7)

J. Imaging 2018, 4, 131 4 of 18

ϕ2(s, t) =

ν(α1)√

ν(α)ν(α0)ν(α1)ν(β0)
, (s, t) ∈ Iα0 × Jβ0

− ν(α0)√
ν(α)ν(α0)ν(α1)ν(β0)

, (s, t) ∈ Iα1 × Jβ0

0, otherwise

(8)

ϕ3(s, t) =

ν(α1)√

ν(α)ν(α0)ν(α1)ν(β1)
, (s, t) ∈ Iα0 × Jβ1

ν(α0)√
ν(α)ν(α0)ν(α1)ν(β1)

, (s, t) ∈ Iα1 × Jβ1

0, otherwise

(9)

The interval of the nodes of focus is used for generating the positive and negative value regions,
where the region is decomposed according to the intervals in the horizontal and vertical directions.
Figure 2 illustrates a set of procedures for decomposition of the region when the nodes of focus are (α, β).

Iβ

Iα

Iα0

Iα1
Iα0

Iα1

Iβ1

Iβ0

Iβ0

ϕ1(Iα, Iβ)

ϕ2(Iα, Iβ0
)

ϕ3(Iα, Iβ1
)

Iβ1

Iα

Figure 2. Decomposition of space Iα × Iβ. First, the region is divided by ϕi. Next, the positive region in
white is divided by ϕ2, Finally, the negative region in black is divided by ϕ3. This procedure is iterated
until all space cannot be divided.

A positive value and a negative value regions are represented in white and black, respectively.
First, region (Iα × Iβ) is vertically divided into two regions (Iα × Iβ0) and (Iα × Iβ1), and the value
at each region is assigned by (7). Then the positive value region (Iα × Iβ0) is horizontally divided
into two regions (Iα0 × Iβ0) and (Iα1 × Iβ0) by (8), while the negative value region is divided into two
regions (Iα0 × Iβ1) and (Iα1 × Iβ1) by (9).

The nodes of focus start with (root, root). Once the set of procedures is conducted, the nodes of
focus are changed to (α0, β0), (α1, β0), (α0, β1), and (α1, β1). The nodes of focus are changed until all
nodes are used. When the region is indivisible, i.e., ν(α) = 1 and ν(β) = 1, no more decomposition
is applied.

Figure 3 shows the appearance of constructing the set of basis images according to the binary
tree shown in Figure 1. A positive, a negative, and zero value regions are represented in white, black,
and grey, respectively. The first basis image is given by (6); the second, by (7); the third and forth,
by (8) and (9), respectively. The set of procedures is completed and then the nodes of focus are changed.
When (α, β) = (0, 0), the fifth basis image is given by (7); the seventh and eighth, by (8) and (9),
respectively. When (α, β) = (1, 0), the sixth basis image is given by (7), but no more decomposition is
applied because α has no child, i.e., ν(α) = 1. When (α, β) = (0, 1), since α has a child and β has no
child, i.e., ν(α) > 1 and ν(β) = 1. the ninth basis image is given by (8). When (α, β) = (1, 1), since
both α and β do not have any children, no more decomposition is applied. Thus, a total of nine basis
images of size 3× 3 is generated.

J. Imaging 2018, 4, 131 5 of 18

1 2

3

4

5

6

7

8

9

(α,β) = (0, 0)

(α,β) = (1, 0)

(α,β) = (0, 1)

(α,β) = (1, 1)

ϕ1

ϕ1

ϕ1

ϕ1

ϕ2

ϕ2

ϕ2

ϕ3

ϕ3

(α,β)
= (root, root)

Figure 3. Appearance of constructing the basis images of size 3× 3.

2.3. Balanced Binary Tree and Logarithmic Binary Tree

Tree structured Haar transform has a freedom of the design. We consider two prime tree structures,
balanced binary tree and logarithmic binary tree. They are extreme cases.

The balanced binary tree is depth-balanced where the depths of left and right subtrees of each
node are within 1. Figure 4a shows an example of the balanced binary tree of the depth 3 having N = 5
leaves and its intervals.

3

2 1

2

1

1 1

1

0 1

00 01 10 11

000 001

5
0 1

0

0

0

1

1

Iroot

I0 I1

I00 I01 I10 I11

I000I001

1

3/5

3/52/5 4/5

2/51/5

ϕ1

ϕ2

ϕ3

ϕ1

ϕ1

ϕ1

ϕ1

ϕ2

ϕ3

ϕ2

ϕ3

ϕ1

ϕ1

ϕ1

ϕ1

ϕ2

ϕ3

ϕ2

ϕ3

ϕ2

ϕ3

ϕ2

ϕ2

ϕ2

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ϕ1

ϕ1

ϕ1

(a) Binary tree and its interval. (b) Appearance of generating the basis images.

Figure 4. An example of OTSHT basis images based on a balanced binary tree having five leaves.

J. Imaging 2018, 4, 131 6 of 18

Figure 4b shows the appearance of the balanced binary tree-based (B-) OTSHT basis images
generated by (6) through (9). In the 25 basis images, there are totally r = 11 rectangles with different
sizes: 5× 5, 5× 3, 5× 2, 3× 3, 3× 2, 3× 1, 2× 3, 2× 2, 2× 1, 1× 2, and 1× 1, having Nh = 4 different
heights: 5, 3, 2, and 1.

The logarithmic binary tree is the special case of the Fibonacci p-tree [20] when p→ ∞. Figure 5a
shows an example of the logarithmic binary tree of the depth 4 having N = 5 leaves. Figure 5b shows
the appearance of logarithmic binary tree-based (L-) OTSHT basis images generated by (6)–(9). In the
set of 25 basis images, there are totally r = 15 rectangles with the different sizes: 5× 5, 5× 4, 5× 1,
4× 4, 4× 3, 4× 1, 3× 3, 3× 2, 3× 1, 2× 2, 2× 1, 1× 4, 1× 3, 1× 2, and 1× 1, having Nh = 5 different
heights: 5, 4, 3, 2, and 1.

5

4

3

2

1

1

1

1 1

0 1

10 11

110 111

1110 1111

0 1

0

0

0

1

1

Iroot

I0 I1

I10 I11

13/5

2/5

4/5

1/5

2/5

3/50 1

1/5

I110 I111

I1110 I1111

(a) Binary tree and its interval.

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ϕ1

ϕ2

ϕ3

ϕ1

ϕ1

ϕ1

ϕ2

ϕ3

ϕ3 ϕ1

ϕ1

ϕ1

ϕ1

ϕ3

ϕ3

ϕ3

ϕ2

ϕ1

ϕ1

ϕ2 ϕ1 ϕ2 ϕ1 ϕ2

ϕ1

ϕ1ϕ2

ϕ1

ϕ1

ϕ2

ϕ2

ϕ2

ϕ3

(b) Appearance of generating the basis images.

Figure 5. An example of OTSHT basis images based on a logarithmic binary tree having five leaves.

As we have seen, although the number of leaves is the same, the different structures are
constructed, which leads to the different number of rectangles. The number of rectangles with
different sizes affects the computational complexity.

J. Imaging 2018, 4, 131 7 of 18

2.4. Relation between OHT and OTSHT

The OHT is the special case of OTSHT, when the tree for constructing OHT is a full balanced
binary tree. Figure 6a,b shows the full binary tree having four leaves and the appearance of generating
OHT basis images, respectively.

2

1

2

11 1

0 1

00 01 10 11

4
0 1

0

0

1

1

Iroot

I0 I1

I00 I01 I10 I11

1/2

1/21/4 3/4

ϕ1

ϕ2

ϕ3

ϕ1

ϕ1

ϕ1

ϕ1

ϕ2

ϕ3

ϕ2

ϕ3

ϕ2

ϕ3

ϕ2

ϕ3

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(a) Binary tree and its interval. (b) Appearance of generating the basis images.

Figure 6. An example of OHT basis images based on a full binary tree having four leaves.

3. Fast Block Matching Algorithm Using Two-Dimensional Orthonormal Tree-Structured
Haar Transform

OTSHT is used for both FS-equivalent fast BM algorithm and non FS-equivalent one. In both
algorithms, the similarity of all candidate patches to the template is calculated by SSD in the
transform domain.

Let xj be the column vector of the j-th window in a proper order. The k-th OTSHT coefficient,
Xj(k) of xj is obtained by

Xj(k) = hT
k xj (10)

where hk is the column vector of the k-th OTSHT basis image in a proper order. In practice, since the
elements of OTSHT basis images have +1 and −1, forming a rectangle region, the OTSHT coefficient
is obtained by just few operations with the integral image [11,12]. Moreover, the strip sum technique
reduces the number of operations [8].

3.1. FS-Equivalent Algorithm Using OTSHT

The OTSHT can be used for FS-equivalent algorithm. The fast FS-equivalent algorithm using
OHT [8] is applicable to OTSHT. The operations are significantly reduced by iterative pruning process
described below.

When an appropriate threshold is used, one may securely reject the windows with sum of squared
differences (SSDs) above the threshold: If

||XK
j − XK

t ||2 > threshold, (11)

J. Imaging 2018, 4, 131 8 of 18

then the j-th window is rejected from the search, where XK
j and XK

t are the OTSHT coefficients

including the first to K-th ones, i.e., XK
j = [Xj(1), Xj(2), . . . , Xj(K)]T , of the j-th window and the

template, respectively. Once the window is rejected, neither the OTSHT coefficient nor the SSD
of the window is calculated. For each iteration of k, the k-th OTSHT coefficient and the SSDs of
the remaining windows are calculated. The iteration is performed until the number of remaining
windows is small. Algorithm 1 shows the pseudo code for FS-equivalent algorithm using OTSHT.

Algorithm 1: FS-equivalent BM.
Input: template t of size N × N and image x

1: make basis images
2: make the integral image of x
3: initialize a vector Flg to ‘true’
4: for k = 1: N2

5: set the k-th OTSHT coefficient of xt to Xt(k)
6: for each patch xj in x
7: if Flgj == ‘true′

8: set the k-th OTSHT coefficient of xj to Xj(k)
9: if ||XK

j − XK
t ||22 ≥ threshold

10: Flgj = ‘ f alse′

11: end
12: end
13: end
14: if the number of ‘true′ in Flg is enough small
15: break
16: end
17: end
18: FS in remaining candidates
Output: estimated window

3.2. Non FS-Equivalent Algorithm Using OTSHT

The OTSHT can be used for non-FS-equivalent algorithm. Instead of the iterative pruning process
of the FS-equivalent algorithm mentioned above, the number of OTSHT basis images is limited
for reducing the computational load. The similarity using the first to K-th OTSHT coefficients are
calculated at a time. The number K is determined by users. Algorithm 2 shows the pseudo code for
non FS-equivalent algorithm using OTSHT.

Algorithm 2: non FS-equivalent BM.
Input: template t of size N × N and image x

1: make basis images
2: make the integral image of x
3: for k = 1: K
4: set the k-th OTSHT coefficient of xt to Xt(k)
5: for each patch xj in x
6: set the k-th OTSHT coefficient of xj to Xj(k)
7: end
8: end
9: estimated window j =minj(||XK

j − XK
t ||22)

Output: estimated window

J. Imaging 2018, 4, 131 9 of 18

3.3. Computational Complexity

Figure 7a,b shows the number of additions per pixel and the number of memory fetch operations
per pixel, respectively, for computing the OTSHT coefficients using strip sum technique [8] (referred to
as (S)), and integral image only (referred to as (I)). Compared to the number of operations for OHT
(i.e., N = 8 or N = 16), the number of additions and memory fetch operations for B-OTSHT coefficients
does not gain much, while that for the L-OTSHT is more than double and increases as N increases.

5 6 7 8 9 10 11 12 13 14 15 16

N

0

20

40

60

80

100

120

140

160

180

200

#

o
f

a
d
d
i
t
i
o
n

p
e
r

p
i
x
e
l B-OTSHT(S)

B-OTSHT(I)

L-OTSHT(S)

L-OTSHT(I)

5 6 7 8 9 10 11 12 13 14 15 16

N

0

50

100

150

200

250

#

o
f

m
e
m
o
r
y

f
e
t
c
h

p
e
r

p
i
x
e
l

B-OTSHT(S)

B-OTSHT(I)

L-OTSHT(S)

L-OTSHT(I)

(a) number of additions (b) number of memory fetch

Figure 7. The number of operations per pixel for computing B-OTSHT and L-OTSHT coefficients using
strip sum (S) and integral image only (I).

With regard to memory usage, when the width and height of an image are J1 and J2, respectively,
and r rectangles having Nh different heights in OTSHT basis images, J1 J2Nh memory size will be
required for the horizontal strip sum technique [8], J1 J2 memory for the integral image, and J1 J2

memory for saving the similarity. Therefore, Nh time more memory size is required for the strip sum
technique. Table 1 summarizes the number of rectangles with different sizes having different heights
and different widths in the set of N2 OTSHT.

Table 1. The number of rectangles, r, with different sizes having different height, Nh, and different
width, Nw, in the set of OTSHT of size N × N.

N B-OTSHT L-OTSHT

r Nh Nw r Nh Nw

5 11 4 4 15 5 5
6 9 4 4 19 6 6
7 15 5 5 23 7 7
8 7 4 4 27 8 8
9 19 6 6 31 9 9

10 13 5 5 35 10 10
11 19 6 6 39 11 11
12 11 5 5 43 12 12
13 23 7 7 47 13 13
14 17 6 6 51 14 14
15 23 7 7 55 15 15
16 9 5 5 59 16 16

J. Imaging 2018, 4, 131 10 of 18

4. Experimental Section

In experiments, the fast BM algorithm using OHT and the fast BM algorithm using OTSHT are
simply denoted by OHT and OTSHT, respectively, unless otherwise specified. We evaluate OTSHT
in comparison to OHT and FS. All experiments are implemented using MATLAB and performed on
Macintosh with 4.0 GHz core i7. Eight test images [23] were used for the evaluation.

4.1. Pruning Performance of Different Tree Structures

We evaluated the tree structures for the OTSHT basis images. We consider five examples of binary
tree having N = 9 leaves shown in Figure 8.

(a) balanced tree (b) binary tree (1) (c) binary tree (2)
(B-OTSHT) (OTSHT(1)) (OTSHT(2))

(d) logarithmic tree (e) logarithmic tree
(LR-OTSHT) (LL-OTSHT)

Figure 8. Five examples of binary tree having nine leaves.

Figure 8a–e shows examples of a balanced binary tree, a binary tree of depth 4, a binary tree of
depth 5, the logarithmic binary tree where all right children are leaves, and the logarithmic binary
tree where all left children are leaves, respectively. Table 2 summarizes the number of rectangles
of different sizes having different heights. From the trees shown in Figure 8a–e, we construct
the OTSHT basis images, which are referred to as B-OTSHT, OTSHT(1), OTSHT(2), LR-OTSHT,
and LL-OTSHT, respectively.

J. Imaging 2018, 4, 131 11 of 18

Table 2. Number of rectangles of different sizes having different heights of 9× 9 OTSHT.

Structure r Nh Details

B-OTSHT (Figure 8a) 19 6
9× 9, 5× 9, 4× 9, 5× 5, 5× 4, 4× 5, 4× 4,
3× 5, 2× 5, 3× 4, 2× 4, 3× 3, 3× 2, 2× 3,
2× 2, 1× 3, 1× 2, 2× 1, 1× 1

OTSHT (1) (Figure 8b) 17 5
9× 9, 6× 9, 3× 9, 6× 6, 6× 3, 3× 6, 3× 3,
3× 2, 3× 2, 3× 1, 2× 6, 2× 3, 2× 2, 2× 1,
1× 6, 1× 3, 1× 2, 1× 1

OTSHT (2) (Figure 8c) 25 6

9× 9, 6× 9, 6× 6, 6× 3, 4× 6, 4× 4, 4× 3,
4× 2, 4× 1, 3× 9, 3× 6, 3× 4, 3× 3, 3× 2,
3× 1, 2× 6, 2× 4, 2× 3, 2× 2, 2× 1, 1× 6,
1× 4, 1× 3, 1× 2, 1× 1

LR-OTSHT (Figure 8d) 31 9

9× 9, 8× 9, 1× 9, 8× 8, 8× 1, 1× 8, 1× 1,
7× 8, 7× 1, 1× 7, 7× 7, 6× 1, 1× 6, 6× 7,
5× 1, 1× 5, 6× 6, 4× 1, 1× 4, 5× 6, 3× 1,
1× 3, 5× 5, 2× 1, 1× 2, 4× 5, 4× 4, 3× 4,
3× 3, 2× 3, 2× 2

LL-OTSHT (Figure 8e) 31 9

9× 9, 8× 9, 1× 9, 8× 8, 8× 1, 1× 8, 1× 1,
7× 8, 7× 1, 1× 7, 7× 7, 6× 1, 1× 6, 6× 7,
5× 1, 1× 5, 6× 6, 4× 1, 1× 4, 5× 6, 3× 1,
1× 3, 5× 5, 2× 1, 1× 2, 4× 5, 4× 4, 3× 4,
3× 3, 2× 3, 2× 2

Figure 9 shows the percentage of remaining windows after pruning, which was conducted every
k-th basis image. The number is averaged over 100 templates. In this experiment, the performance
of OTSHT(1) is only slightly better than that of B-OTSHT and OTSHT(2). On the other hand,
the performances of LR-OTSHT and LL-OTSHT were not satisfactory.

Figure 9. Percentage of remaining windows after pruning that is conducted every k-th basis images.

4.2. FS Equivalent Algorithm

We performed OTSHT, OHT and FS for evaluating the processing time. The template size, N× N,
was changed from N = 5 to 15. 100 templates were chosen every 55 pixels in the raster scan. Balanced
binary tree is used for constructing OTSHT basis images. All of the results are identical to FS.

Figure 10 shows the mean processing time. The processing time of FS increases linearly as N
increases, while the plot of OTSHT is flat. The OTSHT is faster than FS when N is greater than or equal
to 7. The OHT is just a bit faster than OTSHT but the size of it is limited to be power-of-two. In [8],
the time speed-up of algorithms over FS was examined reporting the speed up of OHT over FS to be
roughly 10 times faster when N = 16. In our experiment, the speed up of OHT over FS was 6 times
faster due to the fact that we do not use the particular template used in [8] showing high standard
deviation of pixel intensities in the template.

J. Imaging 2018, 4, 131 12 of 18

Figure 10. Mean processing time of OTSHT vs. FS. 100 templates are used for evaluation.

5. Image Denoising Application

We have compared the OTSHT to FS and the 8× 8 OHT [8] within the framework of image
denoising, where the denoising performance depends on collecting similar patches. For this purpose,
as an image denoising method, the weighted nuclear norm minimization (WNNM) [16] has been used.
In WNNM, the optimal patch size and other parameters are set depending on noise level, which are
shown in Table 3. Noise added to the image was white Gaussian with zero mean and the standard
deviation of σ, where σ = 10, 20, 30, 40, and 50.

Table 3. Parameters of WNNM.

σ N Iteration Similar Patches Search Window

10 6 8 70 60 × 60
20 6 8 70 60 × 60
30 7 12 90 60 × 60
40 7 12 90 60 × 60
50 8 14 120 60 × 60

The OTSHT(OHT) and FS are used as the procedure of collecting similar patches in WNNM, which
are referred to as WNNM-K and WNNM-FS, respectively. The pseudo code is shown in Algorithm 3.
From the observation in Sections 4.1 and 4.2, we constructed the OTSHT basis images from the balanced
binary tree and used the non FS-equivalent algorithm where K = 2, 4, 8, and 16 described in Section 3.2
because the speed up over FS cannot be expected when the patch size is small.

Algorithm 3: WNNM Image denoising.
Input: Noisy image y

1: Initialize x̂(0) = y, y(0) = y
2: for i = 1 : maxi
3: Iterative regularization y(i) = x̂(i−1) + δ(y− y(i−1))
4: for each patch yt in y(i)
5: BM for collecting similar patches to form similar patch group ỹt by SSDj
6: estimate weight vector w
7: singular value decomposition [U, Σ, V] = SVD(ỹt)
8: get the estimate : x̂t = USw(Σ)VT

9: end
10: aggregate x̂t to form the clean image x̂(i)
11: end
Output: clean image x̂(maxi)

J. Imaging 2018, 4, 131 13 of 18

First, we compare the OTSHT to FS. Figure 11a shows the mean PSNR of WNNM-FS and
WNNM-K, K = 2, 4, 8, and 16 in different noise levels. The PSNR of WNNM-2 was below that of
WNNM-FS but almost the same when the noise level is low. When K ≥ 4, the PSNR of WNNM-K
is almost the same as that of WNNM-FS. The PSNR of WNNM-16 is slightly higher than that of
WNNM-FS. The PSNR of each image is shown in Table 4. The best PSNR is shown in bold. We observe
that there is almost no difference of PSNR between WNNM-K and WNNM-FS, often the results of
the first are even better, although FS is generally considered as more accurate than non-FS equivalent
algorithm. The reason behind this is that BM in the spatial domain is not efficient for noisy images since
it may result in matching noisy patterns, and thus, deceasing the denoising performance. The filtered
images by these methods are almost undistinguishable. Figure 11b shows the mean processing time
in different noise levels. The number of y-axis in the bar chart is the number of limited basis images,
K. The processing time for BM and the other denoising method’s modules are expressed in blue
and yellow bars, respectively. The processing time for BM of WNNM-2 is 46 to 56 percent of that of
WNNM-FS; WNNM-4, 53 to 63%; and WNNM-8, 62 to 75%. In addition, the larger is the patch size,
the more efficient is the procedure. The OTSHT reduces the processing time while keeping the same
PSNR level as FS.

10 20 30 40 50
27

28

29

30

31

32

33

34

35

m
e
a
n

P
S
N
R

[
d
B
]

WNNM-2

WNNM-4

WNNM-8

WNNM-16

WNNM-FS

 = 10

2 4 816F
0

1

2

3

4

t
i
m
e

[
1
0
0
s
]

matching

others

 = 20

2 4 816F
0

1

2

3

4
 = 30

2 4 816F
0

1

2

3

4
 = 40

2 4 816F
0

1

2

3

4
 = 50

2 4 816F
0

1

2

3

4

(a) PSNR (b) processing time

Figure 11. OTSHT vs. FS. (a) Mean PSNR and (b) mean processing time of WNNM-FS and WNNM-K
in different noise levels. In the bar chart, the number and ‘F’ of y-axis are the number of limited basis
images and FS, respectively.

Table 4. Mean PSNR of WNNM with FS (WNNM-FS) and WNNM with OTSHT and OHT using K
limited basis images (WNNM-K) in different noise levels.

σ = 10 WNNM-2 WNNM-4 WNNM-8 WNNM-16 WNNM-FS
OTSHT OHT OTSHT OHT OTSHT OHT OTSHT OHT

Lena 35.96 35.61 36.01 35.64 36.03 35.70 36.00 35.73 36.02
Barbara 35.13 34.80 35.31 34.95 35.35 35.03 35.47 35.12 35.49

boat 33.97 33.63 34.07 33.79 34.07 33.82 34.06 33.88 34.03
house 36.86 36.54 36.96 36.67 36.98 36.76 36.91 36.78 36.86

peppers 34.78 34.28 34.91 34.41 34.92 34.47 34.95 34.50 34.96
man 34.11 33.79 34.22 33.93 34.21 33.96 34.21 34.01 34.17

couple 33.98 33.66 34.11 33.79 34.10 33.83 34.12 33.88 34.11
hill 33.75 33.48 33.81 33.56 33.79 33.58 33.77 33.62 33.76

average 34.82 34.47 34.93 34.59 34.93 34.64 34.94 34.69 34.92

J. Imaging 2018, 4, 131 14 of 18

Table 4. Cont.

σ = 20 WNNM-2 WNNM-4 WNNM-8 WNNM-16 WNNM-FS
OTSHT OHT OTSHT OHT OTSHT OHT OTSHT OHT

Lena 32.98 32.65 33.13 32.74 33.12 32.82 33.13 32.91 33.11
Barbara 31.71 31.44 31.94 31.62 32.00 31.76 32.14 31.89 32.15

boat 30.81 30.46 30.98 30.68 30.94 30.70 30.95 30.80 30.95
house 33.85 33.41 33.97 33.61 34.13 33.76 34.09 33.77 34.05

peppers 31.32 30.84 31.52 30.97 31.54 31.05 31.58 31.13 31.55
man 30.65 30.38 30.79 30.52 30.76 30.57 30.74 30.62 30.71

couple 30.59 30.30 30.83 30.52 30.79 30.56 30.81 30.63 30.77
hill 30.75 30.48 30.87 30.60 30.82 30.64 30.81 30.70 30.77

average 31.58 31.25 31.75 31.41 31.76 31.48 31.78 31.56 31.76

σ = 30 WNNM-2 WNNM-4 WNNM-8 WNNM-16 WNNM-FS
OTSHT OHT OTSHT OHT OTSHT OHT OTSHT OHT

Lena 31.33 31.34 31.44 31.41 31.46 31.45 31.44 31.45 31.43
Barbara 29.90 29.96 30.11 30.14 30.17 30.22 30.27 30.32 30.28

boat 29.00 28.99 29.18 29.17 29.15 29.15 29.18 29.20 29.16
house 32.32 32.27 32.52 32.42 32.59 32.48 32.67 32.56 32.58

peppers 29.26 29.19 29.51 29.40 29.54 29.43 29.56 29.46 29.55
man 28.89 28.90 29.02 29.00 28.99 29.00 28.97 28.99 28.95

couple 28.72 28.73 28.94 28.94 28.96 28.96 28.97 28.99 28.94
hill 29.15 29.15 29.27 29.26 29.25 29.26 29.22 29.25 29.18

average 29.82 29.82 30.00 29.97 30.01 29.99 30.04 30.03 30.01

σ = 40 WNNM-2 WNNM-4 WNNM-8 WNNM-16 WNNM-FS
OTSHT OHT OTSHT OHT OTSHT OHT OTSHT OHT

Lena 29.99 30.03 30.12 30.13 30.12 30.15 30.14 30.18 30.07
Barbara 28.44 28.55 28.63 28.71 28.68 28.79 28.74 28.87 28.75

boat 27.67 27.68 27.88 27.88 27.88 28.89 27.88 27.91 27.86
house 30.95 30.93 31.21 31.15 31.31 31.24 31.49 31.42 31.34

peppers 27.84 27.82 28.05 27.95 28.11 28.03 28.15 28.07 28.13
man 27.70 27.72 27.85 27.84 27.82 27.82 27.79 27.80 27.76

couple 27.38 27.43 27.58 27.60 27.63 27.66 27.63 27.69 27.58
hill 28.01 28.03 28.12 28.15 28.09 28.13 28.07 28.12 28.02

average 28.50 28.52 28.68 28.68 28.70 28.71 28.74 28.76 28.69

σ = 50 WNNM-2 WNNM-4 WNNM-8 WNNM-16 WNNM-FS
OTSHT OHT OTSHT OHT OTSHT OHT OTSHT OHT

Lena 29.12 29.24 29.25 29.24 29.22
Barbara 27.52 27.72 27.75 27.81 27.82

boat 26.74 26.95 26.90 26.92 26.88
house 29.96 30.18 30.39 30.41 30.38

peppers 26.63 26.90 26.93 26.94 27.01
man 26.85 26.95 26.95 26.93 26.91

couple 26.47 26.62 26.62 26.64 26.63
hill 27.19 27.32 27.28 27.27 27.24

average 27.56 27.73 27.76 27.77 27.76

Next, we compare the OTSHT to the 8 × 8 OHT used in WNNM-K (K = 2, 4, 8, and 16).
Although the OHT cannot be used in WNNM with the optimal patch size, we force the 8× 8 OHT to
WNNM by fixing the patch size to 8× 8 for evaluating the performance in the different patch sizes.
Figure 12 shows the PSNR and processing time of the OTSHT and the 8× 8 OHT. The number of y-axis
in the bar chart is the number of limited basis images, K, in the processing time. The processing time
for BM and the other denoising method’s modules are expressed in blue and green bars, respectively.

J. Imaging 2018, 4, 131 15 of 18

We observe the mean PSNRs of the OTSHT are larger than those of the 8× 8 OHT and the other
processing time of the OTSHT is approximately 50 seconds faster than that of the 8× 8 OHT. This is
due to the fact that the patches collected by the 8× 8 OHT contain extra regions that are not appropriate
for collecting similar patches and for processing in other modules. The PSNRs of each image are shown
in Table 4, where the best PSNR is shown in bold. When σ = 10 and 20, in WNNM-2 and WNNM-4,
the PSNRs of OTSHT were 0.33 to 0.35 higher than those of OHT; WNNM-8, 0.28 to 0.29. When σ > 30,
the PSNRs of OTSHT were almost the same as those of OHT in WNNM-2, 4, 8, and 16.

10 20 30 40

28

29

30

31

32

33

34

35

m
e
a
n

P
S
N
R
[
d
B
]

N x N

8 x 8

 = 10

6

x

6

8

x

8

0

1

2

3

4

5

m
e
a
n

p
r
o
c
e
s
s
i
n
g

t
i
m
e

[
1
0
0
s
]

 = 20

6

x

6

8

x

8

0

1

2

3

4

5

matching

others

 = 30

7

x

7

8

x

8

0

1

2

3

4

5
 = 40

7

x

7

8

x

8

0

1

2

3

4

5

(a) WNNM-2

10 20 30 40

28

29

30

31

32

33

34

35

m
e
a
n

P
S
N
R
[
d
B
]

N x N

8 x 8

 = 10

6

x

6

8

x

8

0

1

2

3

4

5

m
e
a
n

p
r
o
c
e
s
s
i
n
g

t
i
m
e

[
1
0
0
s
]

 = 20

6

x

6

8

x

8

0

1

2

3

4

5

matching

others

 = 30

7

x

7

8

x

8

0

1

2

3

4

5
 = 40

7

x

7

8

x

8

0

1

2

3

4

5

(b) WNNM-4

Figure 12. Cont.

J. Imaging 2018, 4, 131 16 of 18

10 20 30 40

28

29

30

31

32

33

34

35

m
e
a
n

P
S
N
R
[
d
B
]

N x N

8 x 8

 = 10

6

x

6

8

x

8

0

1

2

3

4

5

m
e
a
n

p
r
o
c
e
s
s
i
n
g

t
i
m
e

[
1
0
0
s
]

 = 20

6

x

6

8

x

8

0

1

2

3

4

5

matching

others

 = 30

7

x

7

8

x

8

0

1

2

3

4

5
 = 40

7

x

7

8

x

8

0

1

2

3

4

5

(c) WNNM-8

10 20 30 40

28

29

30

31

32

33

34

35

m
e
a
n

P
S
N
R
[
d
B
]

N x N

8 x 8

 = 10

6

x

6

8

x

8

0

1

2

3

4

5

m
e
a
n

p
r
o
c
e
s
s
i
n
g

t
i
m
e

[
1
0
0
s
]

 = 20

6

x

6

8

x

8

0

1

2

3

4

5

matching

others

 = 30

7

x

7

8

x

8

0

1

2

3

4

5
 = 40

7

x

7

8

x

8

0

1

2

3

4

5

(d) WNNM-16

Figure 12. OTSHT vs. the 8× 8 OHT. Mean PSNR and mean processing time of WNNM-K in different
noise levels. In the chart, 8× 8 denotes OHT; otherwise, OTSHT.

6. Conclusions

We have considered the fast block matching (BM) based on orthonormal tree-structured Haar
transform (OTSHT). We have described how to construct the two-dimensional OTSHT and use
them for BM with a freedom of the design. The OTSHT can be used for FS-equivalent BM and non
FS-equivalent one. In FS-equivalent BM, the conventional techniques, such as pruning and strip sum
via integral image, are used for speed up. In non FS-equivalent BM, limited basis images are used.
As a FS-equivalent BM, we have evaluated the computational complexity and pruning performance on
the design of tree structures. We have demonstrated that the OTSHT based on balanced binary tree is
more efficient than that based on the logarithmic binary tree, with respect to pruning performance and
computational cost. As a non FS-equivalent BM, we have demonstrated the capability of the introduced
method in image denoising application, where an arbitrary template size is used, depending on a noise
level. In all our experiments, we have observed that not only PSNR values but also visual appearance
of denoised images by WNNM-K and WNNM-FS are extremely close, so we can conclude that filtered
images by these methods are almost indistinguishable. Thus, to conclude, the main advantage of the

J. Imaging 2018, 4, 131 17 of 18

proposed WNNM-K is that it can effectively substitute a baseline WNNM (where FS is used for BM)
providing a significant reduction of its computational time.

Author Contributions: Conceptualization, K.E.; Methodology, I.I.; Software, I.I.; Validation, I.I; Formal Analysis,
I.I.; Investigation, I.I.; Resources, I.I. and K.E.; Data Curation, I.I.; Writing—Original Draft Preparation, I.I.;
Writing—Review & Editing, K.E.; Visualization, I.I.; Supervision, K.E.; Project Administration, I.I.; Funding
Acquisition, I.I.

Funding: This research was funded by JSPS KAKENHI grant number 15K06055.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Dufour, R.; Miller, E.; Galatsanos, N. Template matching based object recognition with unknown geometric
parameters. IEEE Trans. Image Process. 2002, 11, 1385–1396. [CrossRef] [PubMed]

2. Yuan, J.; Xu, D.; Xiong, H.-C.; Li, Z.-Y. A novel object tracking algorithm based on enhanced perception
hash and online template matching. In Proceedings of the 2016 12th International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China, 13–15 August 2016;
pp. 494–499.

3. Ding, L.; Goshtasby, A.; Satter, M. Volume image registration by template matching. Image Vis. Comput. 2001,
19, 821–832. [CrossRef]

4. Sarraf, S.; Saverino, C.; Colestani, A.M. A robust and adaptive decision-making algorithm for detecting
brain networks using functional mri within the spatial and frequency domain. In Proceedings of the 2016
IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, USA,
24–27 February 2016; pp. 53–56.

5. Sarraf, S.; Anderson, J.; Tofighi, G. Deepad: Alzheimer disease classification via deep convolutional neural
networks using MRI and fMRI. bioRxiv 2016, 070441. [CrossRef]

6. Ouyang, W.; Tombari, F.; Mattocia, S.; Stefano, L.D.; Cham, W.-K. Performance Evaluation of Full Search
Equivalent Pattern Matching Algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 127–143. [CrossRef]
[PubMed]

7. Tombari, F.; Mattoccia, S.; Stefano, L.D. Full search-equivalent pattern matching with incremental
dissimilarity approximations. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 129–141. [CrossRef]
[PubMed]

8. Ouyang, W.; Zhang, R.; Cham, W.-K. Fast pattern matching using orthogonal Haar transform.
In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA, 13–18 June 2010; pp. 3050–3057.

9. Ouyang, W.; Cham, W.K. Fast algorithm for Walsh Hadamard transform on sliding windows. IEEE Trans.
Pattern Anal. Mach. Intell. 2010, 32, 165–171. [CrossRef] [PubMed]

10. Moshe, Y.; Hel-Or, H. Video block motion estimation based on Gray-code kernels. IEEE Trans. Image Process.
2009, 18, 2243–2254. [CrossRef] [PubMed]

11. Crow, F. Summed-area tables for texture mapping. ACM SIGGRAPH Comput. Graph. 1984, 18, 207–212.
[CrossRef]

12. Viola, P.; Jones, M.J. Robust real-time object detection. Int. J. Comput. Vis. 2001, 57, 37–154.
13. Li, Y.; Li, H.; Cai, Z. Fast orthogonal Haar transform pattern matching via image square sum. IEEE Trans.

Pattern Anal. Mach. Intell. 2014, 36, 1748–1760. [CrossRef] [PubMed]
14. Alkhansari, M.G. A fast globally optimal algorithm for template matching using low-resolution pruning.

IEEE Trans. Image Process. 2001, 10, 526–533. [CrossRef] [PubMed]
15. Buades, A.; Coll, B.; Morel, J.-M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005; pp. 60–65.

16. Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image
denoising. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869.

http://dx.doi.org/10.1109/TIP.2002.806245
http://www.ncbi.nlm.nih.gov/pubmed/18249707
http://dx.doi.org/10.1016/S0262-8856(00)00101-3
http://dx.doi.org/org/10.1101/070441
http://dx.doi.org/10.1109/TPAMI.2011.106
http://www.ncbi.nlm.nih.gov/pubmed/21576734
http://dx.doi.org/10.1109/TPAMI.2008.46
http://www.ncbi.nlm.nih.gov/pubmed/19029551
http://dx.doi.org/10.1109/TPAMI.2009.104
http://www.ncbi.nlm.nih.gov/pubmed/19926906
http://dx.doi.org/10.1109/TIP.2009.2025559
http://www.ncbi.nlm.nih.gov/pubmed/19535322
http://dx.doi.org/10.1145/964965.808600
http://dx.doi.org/10.1109/TPAMI.2014.2303082
http://www.ncbi.nlm.nih.gov/pubmed/26352229
http://dx.doi.org/10.1109/83.913587
http://www.ncbi.nlm.nih.gov/pubmed/18249642

J. Imaging 2018, 4, 131 18 of 18

17. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by 3D transform-domain collaborative
filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [CrossRef] [PubMed]

18. Criminisi, A.; Perez, P.; Toyama, K. Region Filling and Object Removal by Exemplar-Based Image Inpainting.
IEEE Trans. Image Process. 2004, 13, 1200–1212. [CrossRef] [PubMed]

19. Wexler, Y.; Shechtman, E.; Irani, M. Space-Time Completion of Video. IEEE Trans. Pattern Anal. Mach. Intell.
2007, 29, 463–476. [CrossRef] [PubMed]

20. Egiazarian, K.; Astola, J. Tree-structured Haar Transform. J. Math. Imaging Vis. 2002, 16, 269–279. [CrossRef]
21. Ito, I.; Egiazarian, K. Design of orthonormal Haar-like features for fast pattern matching. In Proceedings of

the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017;
pp. 2452–2456.

22. Ito, I.; Egiazarian, K. Full search equivalent fast block matching using orthonormal tree-structured Haar
transform. In Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis),
Ljubljana, Slovenia, 18–20 September 2017. [CrossRef]

23. Image Denoising with Block-Matching and 3D Filtering. Available online: http://www.cs.tut.fi/~foi/3D-
DFT/ (accessed on 14 September 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2007.901238
http://www.ncbi.nlm.nih.gov/pubmed/17688213
http://dx.doi.org/10.1109/TIP.2004.833105
http://www.ncbi.nlm.nih.gov/pubmed/15449582
http://dx.doi.org/10.1109/TPAMI.2007.60
http://www.ncbi.nlm.nih.gov/pubmed/17224616
http://dx.doi.org/10.1023/A:1020385811959
http://dx.doi.org/10.1109/ISPA.2017.8073591
http://www.cs.tut.fi/~foi/3D-DFT/
http://www.cs.tut.fi/~foi/3D-DFT/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	 Basis Images of Two-Dimensional Orthonormal Tree-Structured Haar Transform for Fast Block Matching
	Binary Tree and Interval Subdivision
	Orthonormal Tree-Structured Haar Transform Basis Images
	Balanced Binary Tree and Logarithmic Binary Tree
	Relation between OHT and OTSHT

	Fast Block Matching Algorithm Using Two-Dimensional Orthonormal Tree-Structured Haar Transform
	FS-Equivalent Algorithm Using OTSHT
	Non FS-Equivalent Algorithm Using OTSHT
	Computational Complexity

	Experimental Section
	Pruning Performance of Different Tree Structures
	FS Equivalent Algorithm

	Image Denoising Application
	Conclusions
	References

