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Abstract: Reconstruction of photoacoustic (PA) images acquired with clinical ultrasound transducers
is usually performed using the Delay and Sum (DAS) beamforming algorithm. Recently, a variant
of DAS, referred to as Delay Multiply and Sum (DMAS) beamforming has been shown to provide
increased contrast, signal-to-noise ratio (SNR) and resolution in PA imaging. The main reasons for
the use of DAS beamforming in photoacoustics are its simple implementation, real-time capability,
and the linearity of the beamformed image to the PA signal. This is crucial for the identification of
different chromophores in multispectral PA applications. In contrast, current DMAS implementations
are not responsive to the full spectrum of sound frequencies from a photoacoustic source and have
not been shown to provide a reconstruction linear to the PA signal. Furthermore, due to its increased
computational complexity, DMAS has not been shown yet to work in real-time. Here, we present an
open-source real-time variant of the DMAS algorithm, signed DMAS (sDMAS), that ensures linearity
in the original PA signal response while providing the increased image quality of DMAS. We show
the applicability of sDMAS for multispectral PA applications, in vitro and in vivo. The sDMAS and
reference DAS algorithms were integrated in the open-source Medical Imaging Interaction Toolkit
(MITK) and are available as real-time capable implementations.

Keywords: photoacoustics; image reconstruction; multispectral imaging; signal processing; delay
and sum; delay multiply and sum

1. Introduction

Currently, almost all applications of photoacoustic (PA) or ultrasonic (US) imaging, where real-time
capability is crucial, use the straightforward Delay and Sum (DAS) beamforming algorithm [1,2].
Its linear complexity ensures very short computing times even on a central processing unit (CPU), but,
in comparison to other beamforming algorithms, it suffers from worse contrast and Signal-to-Noise
Ratio (SNR) [3]. The Delay Multiply and Sum (DMAS) beamforming algorithm, an extension to DAS
beamforming, has recently been proposed for US B-Mode images [4] and has been shown to improve
image quality also when applied to the field of photoacoustics [5]. On the other hand, DMAS is
computationally expensive with a complexity of O(n2) compared to the DAS complexity of O(n).
Furthermore, DMAS, as proposed by Matrone et al. [4], is a non-linear beamformer [6] that has not
yet been confirmed to produce a linear response, which is a necessity for multispectral applications.
DMAS also needs to be post-processed with a bandpass filter (F-DMAS) to remove a low frequency
artifact introduced by the algorithm, which affects PA data [7] as well as US data. While filtering is not
problematic for US imaging, doing so with PA imaging systems that are sensitive to lower acoustic
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frequencies would also remove valuable PA information, as PA signal responses have a substantial
low frequency contribution [8].

The contribution of this paper is two-fold:

(1) We present a modified DMAS algorithm which we call signed DMAS (sDMAS). The modification
addresses the non-linear optical and acoustic frequency response of conventional DMAS. We show
linearity of sDMAS based B-Mode image reconstruction with respect to the source signal, which
makes sDMAS usable for spectroscopic applications.

(2) We present a graphics processing unit (GPU)-based implementation of the sDMAS algorithm
which is real-time capable and therefore usable in a clinical setting. This is validated on a tissue
mimicking PA characterization phantom and applied by measuring blood oxygenation in vivo
on the radial artery of a healthy human volunteer.

The implementation of the contributions of this paper, as well as all other algorithms used,
are provided open-source as an extension of the Medical Imaging Interaction Toolkit (MITK) [9], and
are applicable to both PA and US image data.

2. Materials and Methods

The first two parts of this section review the reference beamforming algorithms DAS (Section 2.1)
and DMAS (Section 2.2) as applied in this paper. Section 2.3 introduces the proposed DMAS variant,
sDMAS, and motivates theoretically how it achieves linearity to the original PA signal. Finally,
Section 2.5 provides implementation details for all beamforming algorithms.

2.1. Delay and Sum Beamforming

DAS beamforming is the most common and widely used method for reconstructing photoacoustic
and ultrasonic images in real-time applications [2,4]. The first step in beamforming an image is to
calculate the delays at which a signal originating at some depth y and lateral position x arrives at each
of the elements of the transducer. We assume to this end spherical waves coming from the positions
we want to reconstruct. Furthermore, we consider a linear transducer consisting of N elements spaced
with a distance ∆x and a spatially constant speed of sound c.

As illustrated in Figure 1, the delay τ after which a wave originating at lateral position x at a
depth y arrives at the element j is:

τ(x, y, j) =
√

y2 + (|x− j · ∆x|)2

c
(1)

The DAS algorithm proceeds by summing up the delayed signals of one position (x, y). We call
the signal response measured by transducer element j, at a time τ, S(j, τ). For a reconstructed pixel at
position (x, y), the beamformed signal SDAS is therefore:

SDAS(x, y) =
N

∑
j=1

S(j, τ(x, y, j)) · Ax(j) (2)

where 0 ≤ Ax(j) ≤ 1 is an apodization function, which can be used to reduce side lobes and similar
beamforming related artifacts, usually by weighting the transducer elements near x stronger than
those far away [10].

The complexity of the algorithm can be approximated to be proportional to the number of summations,
and is therefore O(N) for DAS.
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Figure 1. (a) Illustration of a signal S originating at depth y and lateral position x relative to a transducer
array with example element j and propagating as a spherical acoustic wave with speed c; (b) Illustration
of the same scenario in the time domain of pressure recorded in the transducer array (radio frequency
(rf) data), where τ(x, y, j) denotes the propagation time of that signal S.

2.2. Delay Multiply and Sum Beamforming

The DMAS algorithm as proposed by Matrone et al. [4] improves on DAS by relating each
signal response on each transducer to a single signal position by summing over the products of all
non-identical combinations of responses. This has the intention of amplifying actual source signals and
reducing noise. To retain linear units, the signed square root of the sums is taken to be the beamformer
response. The correlation matrix Mnm(x, y) of the signals of the transducer elements n and m, delayed
for a signal at lateral position x at depth y, is introduced:

Mnm(x, y) = S(n, τ(x, y, n)) · Ax(n) · S(m, τ(x, y, m)) · Ax(m) (3)

The reconstructed signal SDMAS(x, y) is then defined as:

SDMAS(x, y) =
N−1

∑
n=1

N

∑
m=n+1

sign(Mnm(x, y))
√
|Mnm(x, y)| (4)

While Mnm(x, y) is always positive in an ideal tissue and the absence of noise, sign(Mnm(x, y)) is
introduced in the equation to reduce the mean calculated value for noise and artifacts.

The number of summations necessary to determine SDMAS is N2−N
2 . Therefore, in view of N being

negligible against N2, computational complexity can be concluded to be O(N2) for DMAS.

2.3. Signed Delay Multiply and Sum Beamforming

In previous DMAS implementations [4], it was necessary to post-process the image after
beamforming by using a bandpass filter, as the loss of the sign introduces an additional low frequency
component to the actual signal, which is suppressed using the bandpass filter. Unlike in ultrasound
imaging, photoacoustic signals usually have a broad acoustic spectrum and therefore contain low
acoustic frequencies. These signal contributions will be filtered as well, which may lead to a suppression
of important signal components.

In our implementation, we overcome this issue by keeping the sign of the original signal which is
equivalent to integrating sign(SDAS) into Equation (4)

SsDMAS(x, y) = sign(SDAS(x, y)) · SDMAS(x, y) (5)

Keeping the sign of the original signal allows us to apply sDMAS for multispectral PAT application,
as shown in the following paragraph.

Here, the number of summations necessary to determine SsDMAS differs from the case of DMAS
only in the N operations for the DAS coefficient; therefore, the number of necessary summations
is N2+N

2 . Even so, the summations for DAS require far less operations than those for DMAS; either
way, we can approximate the complexity of sDMAS to be O(N2), the same as for DMAS.
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2.4. Linearity of Beamforming Algorithms

Spectral unmixing of multispectral photoacoustic signals assumes linearity of those signals to the
underlying absorption coefficient. While this assumption usually breaks down due to fluence effects,
we can still assure that we do not introduce further errors in our estimation through the beamforming
algorithm. To show that a beamforming algorithm reconstructs a signal SBF(x, y, λ) linear to the
originating signal S0(x, y, λ), we need to show that

SBF(x, y, λ) = C(x, y) · S0(x, y, λ) (6)

where C(x, y) has to be a real number, independent of λ, for any given position (x, y). In the
following, we show that this is the case for DAS but not for DMAS, and how we can remedy this by
introducing sDMAS.

Whenever a PA signal originating at position (x, y) arrives at transducer element j, the sound
wave traveled a distance d(x, y, j) = c · τ(x, y, j). The signal will have experienced signal attenuation.
This acoustic attenuation in a homogeneous medium is e−α(ω)d, where α(ω) is the sound attenuation
coefficient dependent on sound frequency ω and medium. The acoustic signals generated in the
tissue during PA image acquisition depend on the optical properties of the tissue and are wavelength
dependent. Let S0(x, y, λ) denote the signal that originates as a spherical wave in a sufficiently
homogeneous medium at a position (x, y) in response to a laser pulse of wavelength λ. Then, the
resulting attenuated signal S(j, d(x, y, j), λ) arriving at transducer element j can be expressed as follows:

S(j, d(x, y, j), λ) = e−α(ω)·c·τ(x,y,j) · S0(x, y, λ) (7)

In the following paragraphs, we examine the DAS, DMAS and sDMAS algorithms to see how
their reconstructions depend on the original signal S0.

2.4.1. Linearity of DAS

From the definition of the DAS beamformed signal (Equation (2)), we directly find linearity for
SDAS after introducing signal attenuation (Equation (7)) and λ explicitly.

SDAS(x, y, λ) =
N

∑
j=1

(
Ax(j) · e−α(ω)·c·τ(x,y,j)

)
· S0(x, y, λ)

= CDAS(x, y) · S0(x, y, λ)
(8)

2.4.2. Linearity of DMAS

Using the definition of the DMAS beamformed signal (Equation (4)), we need to consider signal
attenuation (Equation (7)) in Mnm(x, y), extended for λ.

SDMAS(x, y, λ) =
N−1

∑
n=1

N

∑
m=n+1

sign(Mnm(x, y, λ))
√
|Mnm(x, y, λ)|

with Mnm(x, y, λ) = Ax(n)Ax(m) · e−α(ω)·c·(τ(x,y,n)+τ(x,y,m)) · S0(x, y, λ)2

(9)

From this expression of Mnm(x, y, λ)m, we see that its sign has to be +1, considering Ax(j) ≥ 0.

SDMAS(x, y, λ) =
N−1

∑
n=1

N

∑
m=n+1

(√
Ax(n)Ax(m) · e−

1
2 α(ω)·c·(τ(x,y,n)+τ(x,y,m)) · |S0(x, y, λ)|

)
= CDMAS(x, y) · |S0(x, y, λ)|

(10)

which means that, in DMAS beamforming, we lose the original sign of the signal.
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2.4.3. Linearity of sDMAS

We aim to recover this lost sign with sDMAS (Equation (5)) by introducing the sign of
SDAS into DMAS

SsDMAS(x, y, λ) = sign(SDAS(x, y, λ)) · SDMAS(x, y, λ)

= sign(SDAS(x, y, λ)) · CDMAS(x, y) · |S0(x, y, λ)|
(11)

from which we can restore the sign of S0 lost in DMAS, because all other terms in SDAS (Equation (8))
are positive (Ax(j) ≥ 0 and er ≥ 0 because r is a real number).

SsDMAS(x, y, λ) = sign(CDAS(x, y)) · CDMAS(x, y) · sign(S0(x, y, λ)) · |S0(x, y, λ)|
= CsDMAS(x, y) · S0(x, y, λ) (12)

Note that we did not explicitly model noise N(x, y, λ) corresponding to the measured signals
S(j, d(x, y, j), λ) as we assume S0(x, y, λ)� N(x, y, λ) for the source signals of interest. If the original
signal is too small—on a noise equivalent level—linearity cannot be ensured. In the absence of noise,
the sign of SDMAS is always positive for an emerging signal S0, which means that the sign of the original
signal is lost through the DMAS double summation process. In contrast, the sign of the original signal
is not lost in sDMAS, because we inserted the factor sign(SDAS) thereby eliminating the need for
further post-processing with a bandpass filter. Other than that, both beamforming algorithms can be
regarded as proportional to the original signal in each beamformed position (x, y). This is regardless of
choice in apodization function (as long as Ax(j) ≥ 0) but assuming the same acoustic spectrum of the
source. For a spectroscopic PA application of DMAS, the acoustic spectrum ω has to be independent
of PA excitation wavelength but can and will depend on the tissue under examination [11].

2.5. Implementation of Beamforming Algorithms

Our implementation of the beamforming algorithms running on a CPU has been multithreaded,
but the attainable speed is nevertheless limited. We therefore added implementations of DAS, DMAS
and sDMAS using the GPU through the Open Computing Language (OpenCL) [12], which enables
us to get increased performance through the massive parallelization of the beamforming algorithms.
Delays τ(i, j, y) for the whole image are computed for a given speed of sound c and up to a maximum
scan depth and saved in a persistent GPU buffer. Whenever relevant beamforming parameters change
a renewed calculation of the delay buffer is needed. The number of transducer elements which are
used for the calculation of a pixel is determined by the sensitive angle, therefore the apodization is
also computed beforehand by a separate OpenCL kernel and saved in a persistent buffer. The actual
beamforming kernel uses the previously computed buffers to sum over the needed input values
according to DAS or sDMAS. In doing so, the main performance limitation is the memory access
time on the GPU. Furthermore, we use Ax(j) = 1, for all x and j for the calculation of sign(SDAS),
as apodization mainly increases SNR, but the sign of actual signals remains unaffected. Therefore,
to reduce computational cost, we refrain here from using an apodization function.

In contrast to the original DMAS formulation, sDMAS does not rely on a bandpass filter as
integral part of the beamforming process, which increases performance, as bandpass filters rely on
two computationally intensive Fourier transforms. Nevertheless, we provide a bandpass filter as an
optional processing step for our implementations of DAS, DMAS and sDMAS as it can reduce noise
and artifacts. Our bandpass implementation performs first a Fourier transform of the beamformed
image in depth direction using the Fast Fourier Transform (FFT) implementation of the Insight Imaging
Toolkit (ITK), then multiplies the resulting image with a Tukey window which can be adjusted to select
the desired band of frequencies and gives the option to smoothly set the boundaries of that band to
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zero [13]. Afterwards, an inverse FFT is applied. The ITK FFT implementation runs on CPU exclusively.
Regarding apodization, our MITK implementation supports boxcar, Hanning, and Hamming.

3. Experiments and Results

The purpose of our experiments was to characterize the sDMAS beamforming algorithm in vitro
and apply it in vivo for qualitative validation. The first experiment (Section 3.1) characterizes sDMAS
beamforming in a controlled in vitro setting and shows both its real-time capability and the linearity.
The second experiment (Section 3.2) comprises in vivo measurements on a healthy human volunteer to
estimate blood oxygenation (sO2) with varying beamformers.

In our setup, raw PA data acquisition is performed using MITK with the DiPhAS US system
(Fraunhofer IBMT, St. Ingbert, Germany) and a 128-element linear US transducer operating on a
center frequency of 7.5 MHz (L7-Xtech, Vermon, Tours, France). The light from a fast tuning OPO
laser (Phocus Mobile, Opotek, Carlsbad, CA, USA) is delivered via a custom fiber bundle to the probe
and into the tissue or phantom. A pulse energy of up to 40 mJ at a pulse repetition rate of 20 Hz is
delivered over a surface of 2 cm2 to avoid tissue damage [14]. After the data acquisition, beamforming
is performed with the MITK PA image processing plugin [15].

3.1. Beamforming Characterization

The phantom used to characterize the performance of our sDMAS implementation in comparison
to DAS and DMAS consists of diluted milk as background medium and a methylene blue solution in
silicone tubing with an inner diameter of 1 mm spaced 5 mm apart both vertically and horizontally.
To achieve a reduced scattering comparable with tissue (µ′s ≈ 15 cm−1 in the near infrared range) [16],
the optical properties of concentrated (10% fat) milk and methylene blue were measured by a
spectroscopic method [17] and then diluted to yield the desired optical properties, as shown in
Figure 2c. The wavelength of the acquisition was varied between 700 and 800 nm to generate PA
signals corresponding to a range of absorption coefficients µa between 21 and 1.4 cm−1.

Figure 2. The characterization phantom, consisting of (a) an array of silicone tubing filled with diluted
methylene blue and placed inside (b) a tank filled with diluted milk. (c) The methylene blue in the
tubing was diluted to yield absorption coefficients as encountered in blood in the near infrared range
(the overlaid dots are the wavelengths of the acquisition sequences). The milk was diluted to yield a
reduced scattering coefficient consistent with tissue.

Before our characterization experiment, we imaged tubing filled only with water, using the same
wavelength sequence to ensure that there was no PA signal contribution by the tubing itself. In these
measurements we did not see any PA signal above a noise equivalent level. The characterization
phantom was then filled with the diluted methylene blue and measured at a fixed position, as shown
in Figure 2a. For each wavelength n = 100 measurements were performed. Beamforming of raw data
from the 128-element transducer was performed to 256 beamformed lines with 2048 samples and up
to a depth of 3.8 cm. The speed of sound for that reconstruction was set to 1474 m s−1 as calculated
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using the corresponding US measurement. Beamforming was performed with with DAS, DMAS and
sDMAS using both Hanning and boxcar apodization and with or without a subsequent bandpass filter.
When a Tukey bandpass filter was used, it was always applied after beamforming and set to α = 0.5
with a nominal range from 0 to 10 MHz. B-Mode images were formed by a Hilbert transform based
envelope detection and subsequent down-sampling to a 0.15 mm equal spacing.

A section of the B-Mode images from the phantom which corresponds to µa = 8.5 cm−1 is shown
in Figure 3. Bandpass filtered (F) images are shown in the second row. To quantify the improvement in
image quality when using sDMAS, we use the Contrast-to-Noise Ratio (CNR) defined as in [18]:

CNR = 20 · log10

(
〈S〉 − 〈N〉

σ(N)

)
in db (13)

with 〈S〉 being the mean signal intensity in a region of interest, 〈N〉 the mean noise intensity and σ(N)

the standard deviation of the noise in the adjacent background, as highlighted in Figure 3.

Figure 3. Visualization of B-Mode PA images with logarithmic compression using DAS, DMAS and
sDMAS beamforming in the first row, with an additional bandpass filter (F) applied in the second row.
The PA signals from the upper and lower boundaries of the tubes are visible with a distance of 1 mm.
For the purpose of ascertaining a CNR ratio as defined in Equation (13), the white box indicates the
signal S and the black boxes the corresponding noise N. These regions are identical for all algorithms.
The images shown are a representative example, beamformed using a boxcar apodization using an
acquisition wavelength corresponding to an absorption coefficient of µa = 8.5 cm−1 inside the tubing.

We determine 〈S〉 from the area highlighted as a white box in Figure 3 and 〈N〉 as well as
σ(N) from the corresponding two black boxes. The increases in CNR using sDMAS over DAS are
averaged over n = 100 and three depths (8, 13 and 18 mm—the three tube sections shown in the figure).
As shown in Table 1, when apodization and bandpass filter are the same for both algorithms, CNR
using sDMAS beamforming is consistently at least twice the CNR as when using DAS beamforming
(>6 db). In addition, sDMAS improved over DAS regardless of apodization and bandpass for our
settings. Sections of B-Mode images with boxcar apodization are shown in Figure 3, which also shows
that sDMAS does not suffer from artifacts due to the low frequency term usually introduced in DMAS
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beamforming. The bandpass filter is therefore an optional step in sDMAS beamforming. The increase
in CNR had a depth dependence, with the CNR increasing an average of 1 db more for the structure
at 13 mm depth, and having a higher standard deviation at higher depths. In additionl as shown in
Table 2, the experiments suggest a 2 db increase in CNR using F-sDMAS over F-DMAS and a similar
CNR when comparing sDMAS to F-DMAS.

Table 1. Increase in CNR using sDMAS in different variants (columns) compared to DAS in different
variants (rows) in db for µa = 8.5 cm−1. Box and Hann denotes if box car or Hanning apodization is
compared. F denotes the use of a bandpass filter. For instance, the sDMAS algorithm with boxcar
apodization and no bandpass filter (sDMAS, Box, -) on average yielded an improvement of 8 db in
CNR over the DAS algorithm with boxcar apodization and using a bandpass filter (DAS, Box, F). CNRs
are averaged over n = 100 slices and three signals in depths of 8 mm to 18 mm. The increases in CNR
over the three structures in different depths had standard deviations of 2 db.

sDMAS

Box Hann

F − F −

DAS

Box
F 9 8 11 9

− 9 7 11 9

Hann
F 6 4 8 6

− 6 5 8 6

Table 2. CNR of DAS, DMAS and sDMAS in db for µa = 8.5 cm−1. CNRs are averaged over n = 100
slices and listed for three signal positions. The CNRs for depths 8 mm and 13 mm had a standard
deviation of ≈ 1 db. For the depth of 18 mm the standard deviation was ≈ 1.5 db.

DAS F-DMAS sDMAS

Box Hann Box Hann Box Hann

Depth F − F − F − F −

8 mm 5 5 8 7 10 11 12 10 14 11

13 mm 4 5 8 7 12 14 14 13 17 15

18 mm −3 −2 0 0 6 8 8 6 10 8

The runtimes of the sDMAS and DAS algorithms, as listed in Table 3, were measured on the
characterization phantom dataset with n = 1300 recorded frames and for a reconstruction depth of
3.9 cm. The reconstruction was performed running MITK on a Ubuntu 18.04 operating system using
a i7-5960X CPU (Intel, Santa Clara, CA, USA) and a GeForce GTX 970 GPU (Nvidia, Santa Clara,
CA, USA). As the complexity of the DMAS and sDMAS algorithms is the same, the computational
performance of DMAS has not been compared to sDMAS and DAS here explicitly.

Table 3. Runtime of our DAS and sDMAS implementations, processing one frame. The standard
deviations of the runtimes are each smaller than 5% of the listed means. Choice of apodization had no
impact on the runtime. The Tukey window bandpass as well as the B-Mode envelope detection were
exclusively performed on CPU.

DAS sDMAS Bandpass B-Mode

Lines CPU GPU CPU GPU CPU CPU

128 29 ms 6 ms 502 ms 33 ms 9 ms 5 ms
256 58 ms 18 ms 990 ms 63 ms 18 ms 10 ms
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In Figure 4, we plot the dependence of the signal intensity in the B-Mode images of the
beamformed signals on the absorption coefficient of the methylene blue source in the tubing. We did
this for the same three tubes as shown in Figure 3 using DAS and sDMAS with a boxcar apodization.
A linear fit worked well for the three sources regardless of beamformer. Due to the lower noise level,
using sDMAS beamforming, sDMAS has a smaller offset to the x−axis.

Figure 4. Comparison of the signal intensities dependence on the absorption coefficient. The maximum
signal intensities in B-Mode images beamformed with DAS and sDMAS using boxcar apodization are
averaged over n = 100 images for three sources. Linear fits are plotted alongside with the measured
data. Both DAS and sDMAS have a proportional relation to the sources absorption coefficient when
accounting for an additive noise term.

3.2. Blood Oxygenation Estimation

To demonstrate the increased quality of blood oxygenation estimation when using sDMAS instead
of DAS, we recorded raw PA data of the radial artery and accompanying vein of a healthy human
volunteer at five wavelengths in the near infrared. While a good ground truth for blood oxygenation
is not easily obtained, in a healthy human, arterial blood is expected to have no less than 90% blood
oxygenation [19], which we use as a qualitative reference. Based on the work of Luke et al. [20] and
considering the power spectrum of our laser source, we altered our wavelength sequence from an
equidistant spacing towards wavelengths with optimal differences between absorption of oxygenated
and deoxygenated hemoglobin. The acquisition wavelength sequence was measured by a spectrometer
(HR2000+, Ocean Optics, Dunedin, New Zealand) as (722, 756, 831, 907, 943) nm with an accuracy of
1.5 nm. The acquired raw PA data were corrected for fluctuations in laser pulse energy and then
beamformed using the DAS and sDMAS beamforming algorithms.

Spectral unmixing was performed using the non-negative constrained least squares solver
scipy.optimize.nnls [21] on sets of five beamformed images, yielding abundances for hemoglobin
and deoxygenated hemoglobin by fitting the spectra of the two chromophores to the five measured
wavelengths in each pixel. The unmixing algorithm was implemented for CPU only, as its performance
was not critical. Figure 5 shows a F-DAS and F-sDMAS beamformed example image recorded at an
excitation wavelength of 831 nm. Sections of the radial artery and accompanying vein were identified
by a vascular surgeon in the US image live stream of the acquisition system. The unmixing results for
oxygenated (HbO2) and deoxygenated hemoglobin (Hb) were used to calculate blood oxygenation
and total hemoglobin (THb):

sO2 =
HbO2

Hb + HbO2
, THb = Hb + HbO2. (14)
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sO2 is visualized by masking the results for low values of THb.
The median blood oxygenations sO2 were averaged over n = 84 beamformed B-Mode images

for both F-DAS and F-sDMAS. Using F-DAS, this yielded an estimation of arterial blood oxygenation
SaODAS

2 = 71% ± 6% while the same unmixing on F-sDMAS yielded SaOsDMAS
2 = 89 ± 6%.

The estimation of venous blood oxygenation yielded SvODAS
2 = 44%± 7% and SvOsDMAS

2 = 37± 8%.

Figure 5. The radial artery and accompanying vein of a healthy human volunteer. Representative
B-Mode images recorded at an acquisition wavelength of 831 nm are shown in the top row.
Beamforming was performed using Hanning apodization and the images where postprocessed with a
bandpass filter (F). In the second row, blood oxygenation (sO2) is visualized. Only values with high
total hemoglobin as determined by the spectral unmixing are shown. The dashed green box marks
the artery and the dotted line the accompanying vein as identified by a consulting physician; both are
annotated with the median oxygenation within these boxes.

4. Discussion

We presented a variant of the (F-)DMAS algorithm termed sDMAS that preserves linearity in
the original signal response while increasing image quality. We implemented the sDMAS algorithm
within MITK to be easily accessible and open-source to be easily reproducible and to address the
lack of such resources in the field. A user manual for the software can be found here http://docs.
mitk.org/nightly and demo installation packages with a sample of the raw data here http://mitk.
org/wiki/Photoacoustics. We also provide reference DAS, DMAS implementations and bandpass
filtering and include envelope detection algorithms for B-Mode imaging. Our results clearly show
that our implementation is real-time capable (for frame rates of 20 Hz at which our imaging system
operates), although there is a limit for the achievable image resolution when using consumer GPUs,
as we did. Image quality was clearly improved using (F-)sDMAS compared to (F-)DAS. Due to this
increase in CNR, we could also show that sDMAS B-Mode images are not only linear to the absorption
coefficient of a source but also have a lower noise component than DAS, which systematically skews
the spectral unmixing of DAS beamformed images more than for DMAS. This is finally illustrated in
vivo on a healthy human volunteer’s radial artery and accompanying vein. Although we are missing
a reliable reference measurement, the spectral unmixing results of the arterial blood oxygenation
for sDMAS (89%) are in closer agreement with the literature [19] than the SaO2 values using F-DAS,
which estimated it as 71%, which is definitely too low for a healthy human. While this suggests
that sDMAS results are more easily quantified in functional terms and can more accurately estimate
quantities such as blood oxygenation, it is far from conclusive and, as it is only a qualitative result,
further research is needed. The reconstructed images still contain artifacts and noise that might be

http://docs.mitk.org/nightly
http://docs.mitk.org/nightly
http://mitk.org/wiki/Photoacoustics
http://mitk.org/wiki/Photoacoustics


J. Imaging 2018, 4, 121 11 of 12

reduced further using other beamforming methods such as Minimum Variance (MV) beamforming [10],
Double stage DMAS [3] or further modifications of DMAS such as the introduction of MV into
DMAS [22]. They are however non-linear and computationally expensive. Therefore, they are currently
not usable for real-time multispectral applications. However, further study of those methods and
appropriate extensions and implementations might give insight into their applicability to multispectral
PA imaging. Other issues such as wavelength dependent fluence effects [23], or limited views of PA
sensor arrays cannot be solved by a beamforming algorithm alone and will impact functional PA
imaging independent of the beamformer.

In conclusion, the presented sDMAS algorithm offers a superior image quality compared to DAS
and preserves linearity in the original signal on the same level as DAS, which makes it suitable for
spectroscopic PA applications. Furthermore, sDMAS can be performed in real-time and is as such
usable in a clinical setting.
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Abbreviations

PA photoacoustic
DAS Delay and Sum
DMAS Delay Multiply and Sum
sDMAS signed DMAS
MV Minimum Variance
US ultrasonic
MITK Medical Imaging Interaction Toolkit
SNR Signal-to-Noise Ratio
CNR Contrast-to-Noise Ratio
GUI Graphical User Interface
API Application Programming Interface
ITK Insight Toolkit
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