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Abstract: Deceit occurs in daily life and, even from an early age, children can successfully deceive
their parents. Therefore, numerous book and psychological studies have been published to help
people decipher the facial cues to deceit. In this study, we tackle the problem of deceit detection by
analyzing eye movements: blinks, saccades and gaze direction. Recent psychological studies have
shown that the non-visual saccadic eye movement rate is higher when people lie. We propose a fast
and accurate framework for eye tracking and eye movement recognition and analysis. The proposed
system tracks the position of the iris, as well as the eye corners (the outer shape of the eye). Next,
in an offline analysis stage, the trajectory of these eye features is analyzed in order to recognize and
measure various cues which can be used as an indicator of deception: the blink rate, the gaze direction
and the saccadic eye movement rate. On the task of iris center localization, the method achieves
within pupil localization in 91.47% of the cases. For blink localization, we obtained an accuracy of
99.3% on the difficult EyeBlink8 dataset. In addition, we proposed a novel metric, the normalized
blink rate deviation to stop deceitful behavior based on blink rate. Using this metric and a simple
decision stump, the deceitful answers from the Silesian Face database were recognized with an
accuracy of 96.15%.
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1. Introduction

Deceit, the distortion or omission of the (complete) truth, is a frequent and important aspect of
human communication. However, most people, even with special training, fail to detect untruthful
behavior; some studies show that their odds of succeeding are worse than chance [1]. The problem is
that there is no such thing as an infallible source of deceit detection.

The traditional tools for deceit detection (i.e., the polygraph tests) are based on several responses
of the autonomic nervous system (ANS)— blood pressure, breathing pattern, skin resistance,
etc.—correlated with the interrogation of the suspect. No standardized interrogation protocol has
been proposed, so there are main ways of administering these questions [2] : the Control Question
Technique(CQT)—largely used in the United States, which aims at detecting psychological responses
to the questions, and the Concealed Information Test [3] (CIT)—used in Japan, which is designed to
detect concealed crime-related knowledge.

Besides these classical methods, other cues of deceit detection have been considered [4]: emblems,
illustrators, micro-expressions and eye movements. The eyes are perhaps the most expressive and
salient features of the human face, as they convey tremendous amounts of information: cognitive
workload, (visual) attention, neurological processes, just to name a few.

Popular theories state that the position of the eyes can tell deceit; such a belief is used by one of the
most popular so called personal development techniques: Neuro-Linguistic Programming (NLP) [5].
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One thesis from NLP states that the gaze direction can be used as an indicator to whether a person is
telling the truth or not. More specifically, this theory suggests that humans tend to move their eyes to
their left when visualizing past events, and tend to look right when constructing false events. A recent
study [6] tested this hypothesis and found no evidence to support the the idea that the eye movement
patters can indicate lying. Despite several critics [6,7] and the little scientific evidence to support the
NLP, this theory is still widely spread on the Internet and used my many NLP practitioners. However,
this does not imply that other eye features cannot be used as cues to deceit detection.

In the same context, it is worth mentioning the Facial Action Coding System
(FACS) [8]—ananatomical methodology, developed in the late 1970s, to describe all observable human
face movements. Basically, this taxonomy breaks down facial expressions into Action Units (AUs):
a contraction or relaxation of a facial movement. Since its publication, it has undergone multiple
revisions and updates, and now it is often used in facial expression analysis. AUs 61 to 69 describe the
eye movements: eyes (turn) left, eyes (turn) right, eyes up, eyes down.

Blinking is defined as a rapid closure followed by are-opening of the eyelids; this process is
essential in spreading the tears across the eyes’ surface, thus keeping them hydrated and clean.
The average duration of a blink is considered to be around 100–150 ms [9], although some studies
suggest longer intervals (100–400 ms) [10]. Eye closures that last longer than 1 s can be a sign of
micro-sleeps: short time intervals in which the subject becomes unconscious and it is unable to respond
to external stimuli. A detailed survey of the oculomotor measures which could be used to detect
deceitful behavior can be found in [11].

Blinks (and micro-sleeps) have been examined in a variety of multidisciplinary tasks: deceit
detection [12,13], driver drowsiness detection [14,15], human–computer interaction [16] and attention
assessment [17], just to name a few.

Automatic blink detection system can be roughly classified as appearance or temporal based [18].
The first methods rely on the appearance of the eye (closed or opened) in each frame to determine
the blink intervals. Temporal based methods detect blinks by analyzing the eyelid motion across
videoframes.

In [19], the authors propose a real-time liveness detection system based on blink analysis.
The authors introduce an appearance based image feature—the eye closity—determined using the
AdaBoost algorithm. Based on this feature, eye blinks are detected by a simple inference process in a
Conditional Random field framework.

The work [15] proposes a novel driver monitoring system based on optical flow and driver’s
kinematics. Among other metrics, the system computes the percentage of eyelid closure over time
(PERCLOSE) in order to infer the driver’s state. The blinks are detected by analyzing the response
of a horizontal Laplacian filter around the eyes. The authors assume that when the eyes are open,
numerous vertical line segments (caused by the pupils and the eye corners) should be visible; on the
other hand, when the eyes are closed only horizontal lines should be observed. The system decides
on the eye state by applying a simple threshold on the value of the horizontal gradient. The value of
this threshold value was established heuristically, based on trial and error experiments such that the
number of false positives is minimized.

In [20], the average height–width eye ratio is used to determine if the eyes are open or closed in a
given frame. First, 98 facial landmarks are detected on the face using active shape models; based on
the contour of the eyes, the height–width eye ratio is computed and a simple thresholding operation is
used to detect eye blinks: if this measure changes from a value larger than 0.12 to a value smaller than
0.02, then a blink was detected. As a static threshold value is used, this method cannot be used for real
world, “in the wild” video sequences.

In [18], blinks are detected by analyzing the vertical motions which occur around the eye region.
A flock of Kanade–Lucas–Tomasi trackers are initialized into a grid around the peri-ocular region
and are used to compute the motion of the cells which compose this grid. State machines analyze the
variance of the detected vertical motions. The method achieves a 99% accuracy rate.
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A real-time blink detector designed for very low near-infrared images is presented in [21]. Blinks
are detected based on thresholded image differences inside two tracked region of interest corresponding
to the right and left eye, respectively. Next, optical flow is computed in order to determine if the
detected motion belongs to an eyelid closing or opening action.

Automatic detection of gaze direction implies the localization of the iris centers and determining
their relative position to the eye corners or bounding rectangle.

Eye tracker have been extensively studied by the computer vision community over the last
decades; in [22], the authors present an extensive eye localization and tracking survey, which reviews
the existing methods the future directions that should be addressed to achieve the performance
required by real world eye tracking applications. Based on the methodology used to detect and/or
track the eyes, the authors identified the following eye tracking system types: shape based, appearance
based and hybrid systems.

Shape based methods localize and track the iris centers based on a geometrical definition of the
shape of the eye and its surrounding texture; quite often, these methods exploit the circularity of the
iris and the pupil [23–26]. In [26], the iris centers are located as the locus where most of the circular
image gradients intersect. An additional post-processing step is applied to ensure that the iris center
falls within the black area of the pupil.

Appearance based methods are based on the response of various image filters applied on the
peri-ocular region [27]. Finally, hybrid methods [28] combine shape based methods with appearance
based methods to overcome their limitations and increase the system’s overall performance.

Nowadays, deep learning attained impressive results in image classification tasks, and,
as expected, deceit detection was also addressed from this perspective. Several works used
convolutional neural networks (CNNs) to spot and recognize micro-expressions—one of the most
reliable sources of deceit detection. In [29], the authors trained a CNN on the frames from the start of
the video sequence and on the onset, apex and offset frames. The convolutional layers of the trained
network are connected to a long-short-term-memory recurrent neural network, which is capable of
spotting micro-expressions. In [30], the authors detect micro-expressions using a CNN trained on
images differences. In a post processing stage, the predictions of the CNN are analyzed in order to
find the micro-expression intervals and to eliminate false positives.

The work [31] presents an automatic deception detection system that uses multi-modal
information (video, audio and text). The video analysis module fuses the score of classifiers trained
trained on low level video features and high-level micro-expressions to spot micro-expressions.

This study aims at developing computer vision algorithms to automatically analyze eye
movements and to compute several oculomotor metrics which showed great promise in detecting
deceitful behavior. We propose a fast iris center tracking algorithm which combines geometrical and
appearance based methods. We also correlate the position of the iris center with the eye corners and
eyelid apexes in order to roughly estimate the gaze direction. Based on these features, we compute
several ocular cues which have been proposed as cues to deceit detection in the scientific literature: the
blink rate, the gaze direction and eye movement AUs’ recognition.

This work will highlight the following contributions:

• The development of a blink detection system based on the combination of two eye state classifiers:
the first classifier estimates the eye state (open or closed) based on the eye’s aspect ratio, while the
second classifier is a convolutional neural network which learns the required filters needed to
infer the eye state.

• The estimation of the gaze based on the quantification of the angle between the iris and the eye
center. The iris centers are detected using a shape based method which employs only image
derivatives and facial proportions. The iris candidates are only selected within the internal eye
contour detected by a publicly available library.

• The definition of a novel metric, the normalized blink rate deviation which is able to capture
the differences between the blink rate in cases of truthful and deceitful behavior. It computes
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the absolute normalized difference between a reference blink rate and the blink rate of the new
session. Next, this difference is normalized with the reference blink rate in order to achieve
inter-subject variability.

The remainder of this manuscript is structured as follows: in Section 2, we present in detail the
proposed solution and, in Section 3, we report the experimental results we performed. Section 4
presents a discussion of the proposed system and its possible applications and, finally, Section 5
concludes this work.

2. Eye Movement Analysis System: Design and Implementation

The outline of the proposed solution is depicted in Figure 1.

Face landmark 
localization

Eye localization

CNN eye state
classifier

AR based blink
classifier

Blink interval 
detection

Face & eye mask

Iris centers
Eye centers

Gaze direction 
estimation

Gaze 
direction

Eye AR

Periocular 
images

Blink intervals
Blink rate

Input 
image

Figure 1. Solution outline. The proposed system analyses two eye features which are accepted as
sources as deceit detection: blinks and gaze direction. The blink detection module combines the result
of two classifiers to determine the blink intervals. The gaze analysis module determines the position of
the iris centers using a shape based method and estimates the gaze direction using the distance and
orientation of the eye and iris center.

The proposed eye analysis method uses a publicly available face and face landmark detection
library (dlib) [32]; it detects the face area and 68 fiducial points on the face, including the eye corners
and two points on each eyelid. Is the italic necessary?

These landmarks are used as the starting point of the eye movement detection and blink
detection modules.

Based on the eye contour landmarks, the eye aspect ratio is computed and used as a cue for the
the eye state. If the eye has a smaller aspect ratio, it is more probable that it is in the closed eye state.
In addition, these landmarks are used to crop a square peri-ocular image centered in the eye center,
which is fed to a convolutional neural network which detects the eye state. The response of these two
classifiers is combined into a weighted average to get the final prediction on the eye state.

The eye AU type recognition module computes the iris centers and based on their relative
positions to the eye corners decide on the AU.

2.1. Blink Detection

We propose a simple yet robust, appearance based algorithm for blink detection, which combines
the response of two eye state classifiers: the first classifier uses the detected fiducial points in order to
estimate the eye state, while the latter is a convolutional neural network (CNN) which operates on
periocular image regions to detect blinks.

The first classifier analyses the eye aspect ratio (ar = eh
ew ); the width and height of the eyes are

computed based on the landmarks provided by the dlib face analysis toolkit. The width is determined
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as the Euclidian distance between the inner and outer eye corner, while the height is determined as
the Euclidian distance between the upper and lower eyelid apexes (Figure 2). As the face analysis
framework does not compute the eyelid apexes, but two points on each eyelid, we approximate them
through the interpolation between these two points. The aspect ratios extracted from each frame are
stored into an array AR.

ew

eh

Figure 2. Eye aspect ratio. The aspect ratio ar = eh
ew of the eyes is used to decide whether the eye is in

the open or closed state.

In the frames where the eyes are closed, the aspect ratio of the eye ar is expected to decrease below
its average value thought the video sequence. However, in our experiments, we observed that in cases
of low resolution, degraded images or in the presence of occlusions (eyeglasses or hair), the fiducial
points are not precisely detected, so this metric is not always reliable.

Therefore, to address this issue, we decided to combine the response of this simple classifier
with the predictions of a convolutional neural network (CNN). CNNs achieved impressive results in
several image recognition tasks; as opposed to classical machine learning algorithms, which require
the definition and extraction of the training features, CNNs also learn optimal image filters required to
solve the classification problem. To achieve time efficiency, we propose a light-weight CNN inspired
from the Mobilenet architecture [33]. The key feature of Mobilenet is the replacement of classical
convolutional layers with depth-wise convolutional layers, which factorize the convolutions into a
depth-wise convolution followed by a point-wise convolution ( 1× 1 convolution). These filters allow
building simpler, lighter models which can be run efficiently on computational platforms with low
resources, such as embedded systems and mobile devices.

The topology of the proposed network is reported in Table 1.

Table 1. Structure of the eye state detection network.

Layer Filter Size Stride Number of Filters

Convolutional 3× 3 2 32
Depth-wise convolutional 3× 3 1 64
Depth-wise convolutional 3× 3 2 128
Depth-wise convolutional 3× 3 1 1024

The network has only four convolutional layers. The input layer consists of 24× 24 gray-scale
images and it is followed by a classical 3 × 3 convolutional layer. Next, three 3 × 3 depth-wise
convolutional layers follow. A dropout layer with a dropout keep probability of 0.99 is added before
the last convolutional layer which is responsible with the eye state classification. Finally, the output
layer is a softmax layer.

The training data for the network consists of images from Closed Eyes In The Wild (CEW)
database [34]. The dataset comprises 24× 24 resolution images from 2423 subjects; 1192 subjects have
the eyes closed, while the remaining 1231 have opened eyes. Some examples of images used to train
the neural network are depicted in Figure 3. To ensure that the training set is representative enough
and to avoid over-fitting, the training images underwent several distortions: contrast and brightness
enhancement, random rotation and random crops.
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(a)

(b)

Figure 3. Examples of eye samples used to train the eye state detection convolutional neural network.
(a) closed eye samples; (b) opened eye samples.

The network was trained using the softmax cross entropy loss function, RMSProp optimizer and
asynchronous gradient descent, as described in [33].

The problem now is to merge the response of the two classifiers to obtain the eye state: for each
frame index, we combine the two predictions into a weighted average:

r(t) = α ∗ pcnn(t) + (1− α) ∗ (1− par(t)/M), (1)

where r(t) is the response of the combined classifiers at frame t, pcnn(t) is the probability of the eye
being closed at frame t as predicted by the CNN, par(t) is the eye aspect ratio at frame t and M is the
maximum value from the array par.

The result of combining the estimation of these two classifiers is depicted in Figure 4. In this
figure, the aspect ratio is normalized as described in the above equation: it is divided by the maximum
value of the par so that its maximum value becomes 1.0 and then inverted by subtracting its value from
1.0. In this way, blinks correspond to higher values in the feature vector.

The value of the weight α was determined heuristically through trial and error experiments.
All our experiments were performed using the same value for α = 0.75, independently of the test
database. We observed that the CNN gave predictions around 0.5–0.6 in case of false positives and
very strong predictions (>0.97) for true positives. The aspect ratio based classifier failed to identify the
closed eye state in degraded cases. We concluded that the CNN classifier should have a slightly higher
weight, as in the majority of the cases it recognized with high probability the eye state. On the other
hand, in cases of false positives, when combined with the other classifier, the overall classification was
better as it compensated the “errors” made by the CNN.
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Figure 4. The eye state is estimated by combining the predictions of two classifiers based on the aspect
ratio of the eye and on the response of a CNN, respectively. The ground truth position of the blinks is
marked with a red bar at the bottom of the image.

The blinks (the intervals when the eyes were closed) should correspond to local maxima in the
response vector R. Using a sliding window of size w, we iterate through these predictions to find the
local maxima, as described in Algorithm 1. An item k from the prediction sequence is considered a
local maximum if it is the largest element from the interval [w− k, w + k] and its value is larger than
the average τ of the elements from this interval by a threshold TH.

Algorithm 1: Blink analysis.
Input:
AR—eye aspect ratio evolution over time
w—window size
Output:
Blink rate. Blink duration.
initialize blink apexes: BA← {};
sz← length(AR) ;
while not at end of sequence do

τ ← average value of samples from AR in interval [k− w, k + w];
if AR[k] ≤ τ − TH and AR[k] is local maximum in [k− w, k + w] then

insert k into BA;
end

end

Finally, we apply a post processing step in order to avoid false positives: for each local maximum,
we also extract the time interval in which the eyes were closed and we check that this interval is larger
or equal to the minimum duration of an eye blink.
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The blink rate (BR) is computed as the number of detected blinks (i.e., local minima from the AR
sequence) per minute. This metric has implications in various important applications: deceit detection,
fatigue detection, understanding reading and learning patterns, just to name a few.

2.2. Gaze Direction

Another deception metric computed by the system is the gaze direction. The process of
determining this value implies two main two steps: iris center localization and gaze direction
estimation. The iris centers are detected using a shape-based eye detection method. The gaze direction
is determined by analyzing the geometrical relationship between the iris center and the eye corners.

2.2.1. Iris Center Localization

Iris centers are detected using a method similar to [23]: Fast Radial Symmetry transform
(FRST) [35] and anthropometric constraints are employed to localize them. FRST is a circular feature
detector which uses image derivatives to determine the weight that each pixel has to the symmetry of
the neighboring pixels, by accumulating the orientation and magnitude contributions in the direction
of the gradient. For each image pixel p, a positively affected pixel p+ and a negatively affected pixel
p− are computed (Figure 5); the positively affected pixel is defined as the pixel the gradient is pointing
to at a distance r from p, and the negatively affected pixel is the pixel the gradient is pointed away
from at a distance r from p (Figure 5).

Figure 5. Positive and negatively affected pixels: the positively affected pixel (p+) is the pixels the
gradient is pointing to at r distance away from p, while the negatively affected pixel (p−) is the pixel
the gradient is pointing away from at distance r.

The transform can be adapted to search only for dark or bright regions of symmetry: dark regions
can be found by considering only the negatively affected pixels, while bright regions are found by
considering only positively affected pixels.

One of the main issues of the method [23] is that in cases of degraded images or light eye colors,
the interior parts of the eyebrows give stronger symmetry responses than the actual iris centers,
and thus lead to an inaccurate localization. In order to address this problem, we modified the method
such that only the iris candidates located within the interior contour of the eye detected by the dlib
library are selected.

First, the FRST transform of the input image is computed; the search radii are estimated based on
facial proportions: the eye width is equal to approximately one fifth of the human face, while the ratio
between the iris radius and the eye width is 0.42 [23].

To determine the iris candidates, the area of the FRST image within the internal contour of the eye
is analyzed and the first three local minima are retained. In order to ensure that the detected minima
don’t correspond to the same circular object, after a minimum is detected, a circular area around it is
masked so that it will be ignored when searching for the next minimum.
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All the possible iris pairs are generated, and the pair with the best score is selected as the
problem’s solution. The score of a pair is computed as the weighted average of the pixels values from
the symmetry transform image S located at the coordinates of the left (clx, cly) and right iris candidates
(crx, cry), respectively:

scorepair =
S(clx ,cly) + S(crx ,cry)

2
. (2)

After this coarse approximation of the iris center, to ensure that the estimation is located within
the black pupil area, a small neighborhood equal to half the iris radius is traversed and the center of
set as the darkest pixel within that area.

2.2.2. Gaze Direction Estimation

NLP practitioners consider that the direction of the eyes can indicate whether a person is
constructing or remembering information. In addition, in the FACS methodology, the movements of
the eyes are encoded into the following AUs: AU61 and AU62—eyes positioned to the left and right
respectively, and AU63 and AU64, eyes up or eyes down.

The proposed system recognizes the four AUs which describe the eye movements: for each frame
of the video sequence, we compute the angle between the center of the eyes (computed as the centroid
of the inner eye contour detected by dlib) and the center of the iris:

θ = tan−1 ec.y− ic.y
ec.x− ic.y

, (3)

where ec and ic are the coordinates of the eye and iris center respectively, and θ is the angle between
these two points.

The next step is the consists in the quantization of these angles to determine the eye AU,
as illustrated in Figure 6.

AU 63

AU 64

AU 61 AU 62
0°

45°90°

180°

135°

270°
315°225°

Figure 6. Quantization of the angle between the iris center and the eye center into eye movement
action units.

We defined some simple rules based on which we recognize the eye movement action units.
For AU61, eye movement to the left, the distance between the iris center and the eye center must be
larger than THh and the angle (in degrees) between these two points must be between [135◦, 225◦].
For A62, eye movement to the right, the angle between the iris and the eye center must lie in one of the
intervals: [0◦, 45◦] or [315◦, 360◦). In addition, the distance between these to points must be larger than
THh. The value of THv was determined heuristically and expressed in terms of facial proportions:
0.075 ∗ ipd, where ipd is the inter-pupillary distance.
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3. Experimental Results

3.1. Blink Detection

The proposed eye blink detection algorithm was tested on three publicly available datasets.
The ZJU Eyeblink database [19] comprises 80 video (10876 frames) sequences which contain in

total 255 blinks, captured at 30 frames per second (FPS) and 320 × 240 image resolution. The subjects
were asked to blink naturally, in different experimental setups: without wearing eyeglasses: frontal
and upward view, and wearing glasses, either thin rim or black frame glasses. The average duration
of a video sequence is 5 s. The authors of [14] performed an independent manual annotation of the
dataset and reported 272 eye blinks. This difference could be caused by the fact that in some videos,
the subjects blink several times very fast and could be considered as multiple blinks.

The Eyeblink8 database was introduced in [18] and it poses more difficult challenges, as the
subjects were asked to perform (natural) face movements which can influence the performance of blink
detection algorithm. The database is comprised of eight video sequences (82,600) captured at a normal
frame rate and 640 × 480 image resolution; in total, 353 blinks were reported. Each frame is annotated
with the state of the eyes, which can have one of the following values: open, half-open or close.

The Silesian face database [36] is comprised of more than 1.1 million frames captured with a high
speed camera at 100 FPS and 640 × 480 image resolution. The main purpose of the database is to
provide the scientific community a benchmark of facial cues to deceit. The participants of the study
were third and fourth year students (101 subjects); they were told that they will help with assessing the
power of a person who claims to be a telepath; the experiment implied that they should tell the truth or
lie about some geometrical shapes displayed on the computer screen. Therefore, the participants were
not aware about the purpose of the study, so all the facial movements were genuine. Each frame from
the dataset was carefully annotated by three trained coders with different non-verbal cues which can
indicate deception: eye blinks (more specifically eye-closures), gaze aversion and micro-expressions
(facial distortions).

An important problem when evaluating the performance of a blink detection system is how to
compute the number of negatives (false negatives or true negatives) from a video sequence. We used
the same convention as in [18]: the number of non-eye blinks is computed by dividing the number of
frames with open eyes from the dataset with the average blink duration (expressed in video frames;
an average blink takes 150–300 ms, so between 5–10 frames at 30 fps).

We report the following metrics: precision Pr = TP
TP+FP , recall R = TP

TP+FN , the false positive rate
FPr = FP

FP+TN and the accuracy ACC = TP+TN
FP+FN+TP+TN .

Table 2 reports the performance of the blink detection module on three state of the art datasets.
As mentioned above, the original ZJU Eyeblink dataset does not contain the temporal annotations of
the blink intervals, as the authors only specify the number of blinks and the average blink duration.
We ran the proposed algorithm on the ZJU Eyeblink datasets and it detected 263 blinks.

Table 2. Blink detection algorithm performance.

Database Precision Recall FPr Accuracy

Eyeblink 8 94.75% 94.89% 0.38% 99.30%

Silesian 100% 96.68% 0% 99.41%

From Table 2, it can be noticed that the proposed eye blink detection algorithm attained 100%
precision on the Silesian dataset; in other words, there were no false positives reported. The recall rate
is also high, meaning that the proposed solution does not miss many blink intervals. A comparison of
the proposed eye blink detection method with the state of the art is reported in Table 3.
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Table 3. Iris center results compared to other methods.

Method Database Precision Recall

[37] Eyeblink8 94.69% 91.91%

Proposed solution Eyeblink8 94.75% 94.89%

The majority of other works presented in the literature report their results on the ZJU Eyeblink
dataset. However, the original version of this dataset is not annotated with the blink intervals. Some
works tried to manually annotate the ZJU Eyeblink dataset and obtained adifferent number of blinks.
For example, if the authors reported 255 blinks, in [14], the authors counter 272 blink intervals. It is
worth mentioning that the Eyeblink8 dataset poses more challenges than the ZJU dataset as the subjects
perform other facial expressions and head movements.

When evaluating on the Eyeblink8 dataset , compared to [37], we obtained a slightly higher
precision value (0.06%), and the recall metric is almost 3% higher. This increase in the recall value means
that the proposed solution achieves a lower number of false negatives; this could be a consequence of
the fact that we use more complex classifiers (CNN) which are able to spot the closed eyes in more
difficult scenarios. The precision metric is high 94.75%, but not very different from the one obtained
by [37]. This indicates that we obtain a similar number of false positives as [37]. We noticed that
our method detects false positives in image sequences in which the subjects perform other facial
expressions in which the eyes are almost closed, such as smiling or laughing. We argue that this
problem could be addressed by increasing the training set of the CNN with periocular images in which
the subjects laugh or smile, as now the training set contains only images from the CEW dataset in
which the participants have an almost neutral facial expression.

3.2. Iris Center Localization: Gaze Direction

The BIO-ID face database [38] is often used as a benchmark for iris center localization by the
research community. It contains 1521 gray-scale images of 23 subjects captured under different
illumination settings and with various eye occlusions (eyeglasses, light reflexions, eyes closed). Each
image contains manual annotations of the eye positions.

In [39], the authors proposed an iris center localization evaluation metric which can be interpreted
independently of the image size: the maximum distance to the ground truth eye location obtained by
the worst of both eye estimators, normalized with the interpupillary distance wec—worst eye center
approximation:

wec =
max(||C̃l − Cl ||, ||C̃r − Cr||)

||Cl − Cr||
, (4)

where Cl , Cr are the ground truth positions of the left and right iris center, and C̃l , C̃r are their
respective estimates.

This metric can be interpreted in the following manner: if wec ≤ 0.25, the error is less than or
equal to the distance between the eye center and the eye corners, if wec ≤ 0.10, the localization error is
less than or equal to the diameter of the iris, and, finally, if wec ≤ 0.05, the error is less than or equal to
the diameter of the pupil.

Two other metrics be simply derived from wec: bec (best eye center approximation) and aec
(average eye center approximation) which define the lower and the averaged error, respectively:

bec =
min(||C̃l − Cl ||, ||C̃r − Cr||)

||Cl − Cr||
, (5)

aec =
avg(||C̃l − Cl ||, ||C̃r − Cr||)

||Cl − Cr||
, (6)
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where avg and min are the average and minimum operators.
The Talking Face video [40] was designed as a benchmark for face analysis methods developed

to analyze facial movements in natural conversational scenarios. It contains 5000 video frames
corresponding to approximately three and a half minutes of conversation. Each frame from the image
sequence is annotated in a semi-automatic manner with the positions of 68 facial landmarks, including
the iris centers.

The results obtained by the proposed method on the BIO-ID and Talking Face databases are
reported in Table 4.

Table 4. Performance of the proposed iris center localization method on the BIO-ID and Talking
Facedatabases.

Dataset
Error ≤ 0.05(%) Error ≤ 0.10(%) Error ≤ 0.25(%)

bec aec wec bec aec wec bec aec wec

BIO-ID 91.47 86.92 80.96 94.26 92.79 91.47 99.92 99.70 99.19

Talking face 96.90 94.97 89.59 98.09 97.81 97.60 99.97 99.97 99.95

From Table 4, it can be noticed that, in more than 86% (BIO-ID face database) and 94%
(Talking facedatabase) of the cases, the average iris center approximation falls within the iris area.
The results are better on the Talking Face database; this is as expected as the image resolution is higher
(720× 576 vs. 384× 286 in the BIO-ID database) and also the face fills a higher area in the images of
the Talking Face dataset. In addition, the frames from the BIO-ID dataset contain more occlusions:
eye semi-closed, high specular refection on glasses, etc. However, both datasets were captured in
unconstrained scenarios. In the Talking Face dataset, the subject was allowed to move his head freely
and express his emotion.

Figures 7 and 8 illustrate the cumulative error distribution plots for the worst, average and best
eye approximations on the datasets.

Figure 7. Cumulative error distribution on the BIO-ID face database.
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Figure 8. Cumulative error distribution on the Talking Face database.

A comparison of the proposed method with other iris center detection methods is reported in
Table 5. For the methods marked with an *, the accuracy that was read the from the performance
curves as a numerical value was not provided in the manuscript.

Table 5. Iris center localization results compared to other methods.

Method wec ≤ 0.05(%) wec ≤ 0.10(%) wec ≤ 0.25(%)

[26] 82.5% 93.4% 98.0%
[39] 38.0%* 78.8%* 91.8%
[28] 57%* 96% 97.1%
[23] 74.65% 79.15% 98.09%

Proposed Solution 91.47% 94.26% 99.19%

Our iris localization method is based on [23], but it uses a smaller input space by including
information about the eye corners and eyelid apexes provided by the dlib library. The performance of
the worst eye approximation (wec) surpasses [23] by more than 6% for the case wec ≤ 0.05 (i.e., the iris
center is detected within the pupil area). As expected, the case wec ≤ 0.25 (the iris center approximation
is within the eye area) is close to 100% (99.92%), as the search area includes only the internal eye
contour. In conclusion, the proposed iris localization algorithm exceeds the other methods in all the
experimental setups: within pupil localization (wec ≤ 0.05), within iris localization (wec ≤ 0.10) and
within eye localization (wec ≤ 0.25). Our method obtained better results mainly because the region of
interest for the iris centers is restricted only to the interior of the eye. One problem of [23] was that in
cases of light colored irises, the interior corners of the eyebrows gave stronger circular response than
the irises; by setting a smaller search region, we filtered out these false positives.

4. Discussion

In this section, we provide a short discussion on how the proposed method could be used in
deceit detection applications.

The blink rate has applications in multiple domains: driver monitoring systems,
attention assessment.
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The Silesian face database was developed in order to help researchers investigate how eye
movements, blinks and other facial expressions could be used as cues to deceit detection. It includes
annotations about the blink intervals, small eye movements and micro-tensions. A description of how
the Silesian database was captured is provided in Section 3.

As some studies suggest that there is a correlation between the blink rate and the difficulty of the
task performed by the subject, we searched to see if there are any differences between the blink rates
based on the number of questions answered wrong by the participants from the Silesian face database.
We assumed that the subjects that performed multiple mistakes found the experiment more complex.

On average, the participants answered incorrectly (made mistakes on) 0.762 from the 10 questions.
The histogram of the mistakes made by the participants depicted in Figures 9 and 10 shows the average
blink rate based on the number of mistakes made by the participants.

The subjects that correctly answered all the questions and those who made 1, 2 and 3
mistakes have approximately the same blink rates. The subject who got 4 out of 10 questions
wrong had a significantly higher blink rate. Strangely, the subject who made the most mistakes
(7 of the10 questions were not answered correctly) had a lower blink rate. Of course this isn’t
necessarily statistically relevant because of the low number of subjects (one person got four questions
wrong and another one got seven questions wrong). We also analyzed the correlation between the blink
rate and deceitful behavior. In [36], the authors report the average blink rate per question, without
taking into consideration the differences that might occur due to inter-subject differences. Based on
this metric, there wasn’t any clear correlation between the blink rate and the questions in which the
subject lie about the shape displayed to them on the computer screen.

Figure 9. Histogram of the mistakes made by the participants.
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Figure 10. Average blink rate related to the number of mistakes made by the participants.

We propose another metric that takes into consideration the inter-subject variability: the
normalized blink rate deviation NBRD. As there are less questions in which the subjects tell the
truth (three truthful answers vs. seven deceptive answers), we compute for each subject a reference
blink rate brre f as the average of the blink rates in the first four deceitful answers. For the remaining
six questions, we compute the NBRD metric as follows:

NBRDq =
abs(brq − brr)

brr
, (7)

where brq is the blink rate for the current question and brr is the reference blink rate computed for the
subject as the average blink rate on the four deceitful answers. This methodology is somewhat similar
to the Control Question Technique [2], as for each new question we analyze the absolute blink rate
difference to a set of “control” questions. Are the italics necessary?

The next step is to apply a simple classifier (a Decision Stump in our case) and to see if the
deceitful answers could be differentiated from the truthful ones. We randomly selected nt f = 49
subjects to train the decision stump and we kept the other nt = 52 to test the accuracy of the decision
stump. For each subject, we have three truthful questions, three deceitful questions (the other four
deceitful questions are kept as a normalization reference factor), so the test data is balanced.

The performance of the simple classifier is reported in Table 6 and the corresponding confusion
matrix is reported in Table 7.

Table 6. Deceitful behavior detection based on the blink rate.

Classifier Precision Recall Accuracy F1-Score

Decision stump 96.75% 95.51% 96.15% 96.12%
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Table 7. Confusion matrix for deceitful behavior detection based on blink rates.

Ground truth/Detected Deception Truth

Deception 151 5

Truth 7 149

Therefore, from Table 6, we can conclude that a simple classifier was able to differentiate between
the truthful and the deceitful questions based on the proposed NBRD metric.

Regarding the gaze direction in the deceit detection, to our knowledge, there isn’t any database
annotated with the gaze direction in the context of a deceit detection experiment. The Silesian
face database provides annotation with the subtle movements of the gaze (saccades); the following
dictionary of eye movement is defined: EyeLeft, EyeRight, EyeUp, EyeDown, Neutral, EyeLeftUp,
EyeLeftDown, EyeRightUp, EyeRightDown. However, this movements are short, low-amplitude,
ballistic eye movements, and differ a lot from “macro” eye movements.

In the experiment, the subjects are asked to respond to the questions of a person that they believe
is a telepath, according to some instructions displayed on the screen. Therefore, the experimental
setup is more controlled and the subjects don’t need to access their memory (they need to provide
a predefined answer), so it is normal that “macro” movements do not occur. The participants were
instructed to tell the truth for questions 1, 2 and 9 and to lie for all the other questions.

However, we analysed the provided saccadic data in order to determine if there is any connection
between direction of the saccades and deceitful behavior. However, as opposed to [36], we don’t
analyze the number of gaze aversions, but we split the gaze aversion into four classes corresponding
to the eye movements defined in the FACS methodology: eyes up, eyes down, eyes left and eyes right.
NLP theories claim that these movements could indicate deceit.

Figure 11 illustrates the average lateral eye movements (left—annotations EyeLeft, EyeLeftUp,
EyeLeftDown—vs. right—annotations EyeRight, EyeRightUp, EyeRightDown), while Figure 12
illustrates the vertical eye movements (up and down, annotations EyeUp vs. EyeDown, respectively) .

Figure 11. Average lateral saccadic gaze shifts on the Silesian face database. The subjects told the truth
on questions 1, 2, and 9 and lied for the other ones.
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Figure 12. Average vertical saccadic gaze shifts on the Silesian face database. The subjects told the
truth on questions 1, 2, and 9 and lied for the other ones.

There doesn’t seem to be any distinguishable pattern in saccadic eye movements which could
indicate deceit. We also applied the proposed deceit detection metric NBRD and a simple decision
stump to try to detect the deceitful detection based on eye movements. The results were not so
satisfying: we obtained classification rates worse than average on both left eye movements and
right eye movements. However, it is worth mentioning that the saccades from this database are not
necessarily non-visual saccades (the type of saccades that has been correlated to deceit), but visual
saccades (the student needs to read a predefined answer from a computer screen).

5. Conclusions

In this manuscript, we presented an automatic facial analysis system that is able to extract various
features about the eyes: the iris centers, the approximative gaze direction, the blink intervals and the
blink rate.

The iris centers are extracted using a shape based method which exploits the circular (darker)
symmetry of the iris area and facial proportions to extract to locate the irises. Next, the relative
orientation angle between the eye center and the detected iris center is analyzed in order to determine
the gaze direction. This metric can be used as a cue to deception: the interlocutor not making eye
contact and often shifting his gaze point could indicate that he feels uncomfortable or has something
to hide. In addition, some theories in the field of NLP suggests that the gaze direction indicates if a
person remembers or imagines facts.

The proposed system also includes a blink detection algorithm that combines the response
of two classifiers to detect blink intervals. The first classifier relies on the eye’s aspect ratio
(eye height divided by eye width), while the latter is a light-weight CNN that detects the eye state
from peri-ocular images. The blink rate is extracted as the number of detected blinks per minute.

The proposed solution was evaluated on multiple publicly available datasets. On the iris center
detection task, the proposed method surpasses other state-of-the-art works. Although this method
uses the same image feature as [23] to find the circular iris area, its performance was boosted with more
than 6% by selecting the input search space based on the position of the facial landmarks extracted
with the dlib library.
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We also proposed a new deceit detection metric—NBRD—the normalized blink rate deviation,
which defined the absolute difference between the blink rate from new situations normalized with
the subject’s average blink rate. Based on this metric, a simple decision stump classifier was able to
differentiate between the truthful and the deceitful questions with an accuracy of 96%.

As a future work, we plan to capture a database intended for deceit detection; our main goal is
to let the subjects interact and talk freely in an interrogation-like scenario. For example, the subjects
will be asked to randomly select a note which contains a question and an indication to whether they
should answer that question truthfully or not. Next, they will read the question out loud and discuss it
with an interviewer; the interviewer—who is not aware if the subject is lying or not—will engage in an
active conversation with the participant. In addition, we intend to develop robust motion descriptors
based on optical flow that could capture and detect the saccadic eye movements. We plan to detect
the saccadic eye movements using a high speed camera by analyzing the velocity of the detected
eye movements.
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Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy
CNN Convolutional neural network
FACS Facial action coding system
FP False positives
FPS Frames per second
FRST Fast radial symmetry transform
NBRD normalized blink rate deviation
NLP Neuro-linguistic programming
Pr Precision
R Recall
TP True positives
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