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Abstract: The digitization of historical handwritten document images is important for
the preservation of cultural heritage. Moreover, the transcription of text images obtained from
digitization is necessary to provide efficient information access to the content of these documents.
Handwritten Text Recognition (HTR) has become an important research topic in the areas of image
and computational language processing that allows us to obtain transcriptions from text images.
State-of-the-art HTR systems are, however, far from perfect. One difficulty is that they have to cope
with image noise and handwriting variability. Another difficulty is the presence of a large amount
of Out-Of-Vocabulary (OOV) words in ancient historical texts. A solution to this problem is to use
external lexical resources, but such resources might be scarce or unavailable given the nature and
the age of such documents. This work proposes a solution to avoid this limitation. It consists of
associating a powerful optical recognition system that will cope with image noise and variability, with
a language model based on sub-lexical units that will model OOV words. Such a language modeling
approach reduces the size of the lexicon while increasing the lexicon coverage. Experiments are first
conducted on the publicly available Rodrigo dataset, which contains the digitization of an ancient
Spanish manuscript, with a recognizer based on Hidden Markov Models (HMMs). They show
that sub-lexical units outperform word units in terms of Word Error Rate (WER), Character Error
Rate (CER) and OOV word accuracy rate. This approach is then applied to deep net classifiers,
namely Bi-directional Long-Short Term Memory (BLSTMs) and Convolutional Recurrent Neural
Nets (CRNNs). Results show that CRNNs outperform HMMs and BLSTMs, reaching the lowest WER
and CER for this image dataset and significantly improving OOV recognition.

Keywords: historical handwritten transcription; out-of-vocabulary word recognition; character-level
language model; word structure retrieval

1. Introduction

The digitization of historical handwritten document images is important for the preservation of
cultural heritage. Moreover, the transcription of text images obtained from digitization is necessary
to provide efficient information access to the content of these documents. Automatic transcription
of these documents is performed by Handwriting Text Recognition (HTR) systems, which are
traditionally composed of an optical model, a dictionary and a Language Model (LM). However,
HTR systems face several challenges at both the image and language modeling levels. Historical
document images may include defects due to age, manipulation and bleed-through of ink. They may
also include calligraphic initial letters and long character strokes as ornaments. This is particularly
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true for Spanish documents from the 16th century as seen in Figure 1. Ancient texts also include rare
characters, grammatical forms, word spellings and named entities distinct from modern ones. Such
forms lead to Out-Of-Vocabulary (OOV) words, i.e., words that do not belong to the dictionary of
the HTR system. Improving HTR systems at both image and language levels is an important issue
for the recognition of such ancient historical documents. The main goal of this paper is to design
efficient HTR systems that process document images written in Spanish and that can cope with ancient
character forms and language.

Figure 1. Sample image of a Spanish document from the 16th century.

Several approaches have been proposed to build optical models for handwriting recognition.
Such approaches include Hidden Markov Models (HMMs) [1–4], Recurrent Neural Networks (RNNs)
such as Long Short-Term Memory (LSTMs) and their variants: Bi-directional LSTMs (BLSTMs) and
Multi-Dimensional LSTMs (MDLSTMs) [5]. HMMs enable embedded training and can be robust to
noise and linear distortions. However, RNNs and their variants are generative models that perform
better than HMMs in terms of accuracy. Nowadays, RNNs can be trained by using dedicated resources
such as Graphic Processor Units (GPUs) that considerably reduce training time. By using GPUs,
RNNs can be trained in a similar amount of time required to train HMMs with traditional Central
Processing Units (CPUs).

Usually, the inputs of HMMs and RNNs are sequences of handcrafted features or pixel columns.
However, deep learning approaches starting with convolutional layers as the first layers allow
extracting learning-based features instead of handcrafted ones [6–8].

Generally, in HTR systems, the optical models are associated with dictionaries (lexical models)
and Language Models (LMs), usually at the word level, in order to direct the recognition of real
words and plausible word sequences (see Figure 2). In order to build open vocabulary systems,
language models based on character units can be used [9]. Then, the dictionary is limited to the set
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of different characters, and the transition probabilities between the character models are given by
a character LM. Character-based LMs are also useful for related tasks such as word spotting [10].
In the previous character LM approach or even in general word LM approaches, the optical models
still model characters. However, in works such as [11,12], the optical models model strokes that are
concatenated to form words.

Optical Model

Language Model y pequeños

Lexical Model y p e q u e ñ o s y pequeños

Figure 2. Scheme of a handwritten text recognition system.

When a word-based dictionary helps the recognition process, the handwriting recognition system
can only transcribe a limited number of words. The size of the dictionary is a compromise between
a too large size yielding word confusions and a too small one yielding many unknown words. Words
of the test set that are not present in the HTR dictionary are denoted as Out-Of-Vocabulary (OOV)
words. Several types of OOV words exist, such as common words using a less common grammatical
form, misspellings, words attached to punctuation marks, hyphenated words or words containing rare
characters (abbreviations, special signs, etc.).

An approach to cope with OOV words consists of extending the dictionary with external lexical
resources, such as Wikipedia [13], or in the case of historical documents, with the transcription
of other documents from the same period and topic [14]. From these resources, the language
model can also be refined. However, in the general case, such resources may not be available,
and a proportion of words (such as named entities and rare words) still remains as OOV. Another
approach for coping with OOV words consists of modeling text at a sub-word level, as a sequence
of characters, syllables or multi-grams [15]. Hybrid approaches [16,17] consist of using word-based
language models for the most frequent words and character-based models for the less frequent ones.
In sub-word approaches, the dictionary is considerably reduced to the number of lexical units, as well
as the computational complexity. In addition, the language model can model unknown words by
combining such lexical units.

In this work, we compare several HTR systems, based on HMMs, RNNs and convolutional
RNNs (CRNNs). The CRNN is inspired from a very deep architecture presented in [18]. It consists
of stacking BLSTMs and associating them with convolutional layers. Features are thus automatically
extracted by the convolutional layers and processed by the BLSTM layers. We also model dictionaries
and language models of our HTR systems with sub-word units. We apply this approach to
the recognition of a publicly available Spanish historical documents dataset. We compare several HTR
systems based on different types of sub-word units, and we show that sub-word units are more efficient
than word units. We obtain, to our knowledge, the best recognition results on this Spanish dataset by
associating sub-word units with the deepest HTR optical system, namely the CRNN. We also obtain
high rates for the recognition of OOV words.

The rest of the paper is structured as follows: the Spanish historical manuscript used in
the experimentation is presented in the next section (Section 2); the HTR systems and the experimental
conditions are described in Section 3; our experiments and the obtained results are reported in Section 4;
the conclusions and future work are drawn in Section 5; finally, in Appendix A, several recognition
examples are shown.

2. The Rodrigo Dataset

The Rodrigo corpus [19] was obtained from the digitization of the book “Historia de España
del arçobispo Don Rodrigo”, written in ancient Spanish in 1545. It is a single writer book where
most pages consist of a single block of well-separated lines of calligraphical text, as the examples
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presented in Figures 1 and 3. It is composed of 853 pages that were automatically divided into lines,
giving a total number of 20,356 lines. In the standard training partition, the vocabulary size is of
about 11,000 words with a set of 106 characters (the 105 different characters that appear in the text
of the training partition and one extra character that appears in the text of the validation partition),
including 10 numbers, 72 upper and lower case letters with and without accents, 5 punctuation marks,
1 blank space and 18 special symbols. The first 15,010 lines are publicly available on the website of
the Pattern Recognition and Human Language Technology (PRHLT) research center [20]. In this work,
we used this publicly available partition. The first 9000 lines were used for training the optical and
language models, the next 1000 for validation and the last 5010 lines for testing.

Figure 3. Page 515 of the Rodrigo dataset.

In the Rodirgo corpus, there are many rare words and words in their archaic forms yielding a large
amount of OOV words. Moreover, this corpus contains scarce OOV characters (such as: \, ṕ, ḡ, } and w)
that do not belong to the training set. OOV words generally include words that appear in distinct form
in the training and test sets (e.g., portugal and portuḡl), abbreviations and words hyphenated differently
in the training and test sets.

Table 1 presents a summary of the information contained in the partitions of the Rodrigo corpus
used in this work at the three lexical units studied: words, sub-words and characters. This table
presents for each lexical unit the total amount, the vocabulary size (different units), the amount of
OOV units and the overlapping between the OOV contained in the validation and test partitions, i.e.,
the amount of OOV units contained in the test partition that are present in the validation partition.
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Table 1. Description of the partitions of the Rodrigo corpus used in this work.

Partition Lines Words Sub-Words Characters
Total / Diff./ OOV (over.) Total/Diff./OOV (over.) Total/Diff./OOV (over.)

Training 9000 98,232/12,650/- 148,070/3045/- 493,126/105/-
Validation 1000 10,899/3016/850 14,907/1074/7 54,936/82/1

Test 5010 55,195/7453/4918 (203) 73,660/1418/55 (11) 272,132/91/14 (1)

3. Handwritten Text Recognition Systems

This section presents our proposal, the feature extraction, the models used by the implemented
HTR systems and the evaluation metrics used in the experimentation.

3.1. Proposal

The HTR problem can be formulated as finding the most likely word sequence ŵ given a feature
vector sequence x = (x1, x2, . . . , x|x|) that represents a handwritten text line image [21], that is:

ŵ = arg max
w∈W

Pr(w | x) = arg max
w∈W

Pr(x | w)Pr(w)

Pr(x)
= arg max

w∈W
Pr(x | w)Pr(w) (1)

where W represents the set of all permissible word sequences, Pr(x) is the probability of observing x,
Pr(w) is the probability of the word sequence w = (w1, w2, . . . , w|w|) and Pr(x | w) is the probability
of observing x by assuming that w is the underlying word sequence for x. Pr(w) is approximated by
the Language Model (LM), whereas Pr(x | w) is modeled by the optical model, which trains character
models and concatenates them to build optical word or sub-word models.

Written words can be decomposed into small sub-word units such as characters, but they can also
be decomposed into larger sub-word units such as graphemic syllables, hyphens or multigrams [15].
We choose here to compare character and hyphen word decompositions. In both cases, words are
represented as a sequence of sub-word units s = (s1, s2, . . . , s|s|). Then, the HTR problem can be
reformulated as finding the most likely sub-word sequence ŝ given a feature vector sequence x that
represents a handwritten text image. Therefore, Equation (1) becomes:

ŝ = arg max
s∈S

Pr(x | s)Pr(s) (2)

where Pr(s) is approximated by a sub-word LM, whereas Pr(x | s) can be modeled by the same
optical model.

It should be noted that RNN-based systems directly provide in their outputs posterior
distributions of character labels, at each time step, i.e., ot

k for k = 1, . . . , L and t = 1, . . . , T, T being
the length of the observation sequence x and L the alphabet size. From these posteriors, the decoding
can be constrained by a lexicon and a language model, in order to find the best output sequence ŝ.
This can be done through Weighted Finite State Transducers (WFST) decoding (see Section 3.5), which
can include several types of lexicon and language models (at word, hyphen or character levels).

Working at the sub-word level in HTR relaxes the restrictions imposed by the lexicon, allowing
for a faster decoding, and given that the language model describes the relation between sub-word
units, some OOV words can be decoded. Therefore, our proposal is to decode the handwritten text
line images at the sub-word level and, then, from the obtained decoding output, reconstruct the words
to build the final hypothesis.

First of all, the language model of sub-word units is trained using the transcription of the text
lines of the training partition after a minimum preprocessing. This preprocessing consists of
adding a new symbol (<SPACE>) for the separation between words and then splitting the words
into sub-word sequences. In this way, the information of the separation between words is maintained.

As an example, the following text line from the training set:
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Agora cuenta la historia

would be transformed into the following character sequence:

A g o r a~<SPACE> c u e n t a~<SPACE> l a~<SPACE> h i s t o r i a

or into the following sequence following the hyphenation rules for Spanish:

Ago ra <SPACE> cuen ta <SPACE> la <SPACE> his to ria

Then, these preprocessed transcriptions can be used to train the sub-word unit language model.
Usually, n-gram language models of sub-word units are trained with a large n (large context). On
the other side, the lexicon is reduced to match the list of sub-word units.

In the decoding process, the best hypothesis is processed to obtain the final hypothesis. This final
process consists of collapsing the sub-word unit sequence to form words and to substitute the symbol
used to mark the separation between words (<SPACE>) by a space. Figure 4 presents a text line example
from the test partition whose reference transcription is:

vio e recognoscio el Astragamiento que perdiera de su gente

In this example, the words recognoscio and Astragamiento are OOV words. It is interesting to
note their etymology. They are archaic forms from Early Modern Spanish (15th–17th century) that in
Modern Spanish correspond to the forms reconoció and Estragamiento. For that reason, we could not
find them in any external resource, not even in Google N-Grams [22].

Figure 4. Text line sample. “Recognoscio” and “Astragamiento” are rare words; recognoscio is an archaic
form of reconoció and Astragamiento an ancient form of Estragamiento.

The HMM decoding process with a traditional word-based approach offers the following
best hypothesis:

vno & rea gustio el Astragar mando que perdona de lugar

which represents a Character Error Rate (CER) equal to 35.6% with respect to the reference text-line
transcription. However, using a sub-word based approach, the following best hypothesis is obtained:

vio <SPACE> & <SPACE> re ca ges cio <SPACE> el <SPACE> As tra ga mien to
<SPACE> que <SPACE> per do na <SPACE> de <SPACE> lu gar <SPACE>

which is transformed into the improved hypothesis (CER = 22.0%):

vio & recagescio el Astragamiento que perdona de lugar

On the other hand, with a character-based approach, the following best hypothesis is obtained:

v i o <SPACE> & <SPACE> r e c e g e s c i o <SPACE> e l <SPACE> A s t r a~g a~m i e n t o
<SPACE> q u e <SPACE> p e r d i e r a~<SPACE> d e l <SPACE> s e g u n d o

which results in the next final best hypothesis (CER = 17.0%):

vio & recegescio el Astragamiento que perdiera del segundo

As can be observed, the final hypotheses obtained at sub-word levels (characters, hyphenation
sub-word units) in HTR are considerably better than those obtained with the word-based approach.
In addition, the OOV word Astragamiento has been fully recognized. The second OOV word is
recognized as recegescio or recagescio, which also improves the word-based recognition rea gustio.
In Section 4, word and sub-word language modeling approaches will be compared with several types
of optical HTR systems.
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3.2. Handcrafted Features

Features are computed in several steps from text line images. First, the image brightness is
normalized, and a median filter of size 3× 3 pixels is applied to the entire image. Next, slant correction
is performed by using the maximum variance method with a threshold of 92% [23]. Then, size
normalization is performed, and the final image is scaled to a height of 40 pixels. Finally, a sequence of
60-dimensional feature vectors is extracted by a sliding window, using the method described in [24].

3.3. Lexicon and Language Models

The lexicon and language models at the sub-word level were obtained by hyphenating
the vocabulary words following the rules for modern Spanish by using the testhyphens package [25]
for LATEX. Lexicon models were in HTK lexicon format, where vocabulary words and sub-word
units were modeled as a concatenation of symbols; however, characters were modeled as just
the corresponding symbol.

Language Models (LM) were estimated as n-grams with Kneser–Ney back-off smoothing [26]
by using the SRILM toolkit [27]. Different LMs were used in the experiments at word, sub-word
and character levels. For the word-based system and the open-vocabulary case, the LM is
trained directly from the text-line transcriptions of the training set. In the closed-vocabulary
case, the LM is trained with the same transcriptions, plus the OOV words included as unigrams.
For the character-based system, the closed-vocabulary case indicates that the character sequences that
represent the OOV words are used for building the n-gram character LM. For both systems, word
or character-based, “with validation” means that training and validation transcriptions are used for
building the LM.

3.4. Optical Models

In this paper, three different approaches for optical modeling for HTR are used: traditional hidden
Markov models and two deep network classifiers. The first one is based on recurrent neural networks
with bi-directional long-short term memory, and the other one is based on convolutional recurrent
neural networks.

3.4.1. Hidden Markov Models

The Hidden Markov Models (HMM) for optical modeling were trained with HTK [28]. The trained
models are left-to-right character models including four states. The observation probabilities in each
state are described by a mixture distribution of 64 Gaussians. The number of character models is 106,
and words and sub-words are modeled by the concatenation of compound character HMMs. The
HMM system uses as input sequences of handcrafted features. HMM HTR systems were implemented
by using the iATROS recognizer [29].

3.4.2. Deep Models Based on BLSTMs

In this approach, we use an RNN to estimate the posterior probabilities of the characters at
the frame level (features vector). Therefore, the size of the input layer corresponds to the size of
the handcrafted feature vectors and the size of the output layer to the number of different characters.
The frame-level labeling required to train this neural network was generated from a forced alignment
decoding by a previously trained HMM recognition system [30]. This forced alignment decoding and
the model training were repeated several times until the convergence of the assignment of the frame
labels to the optical model.

Then, as presented in Figure 5, our RNN is formed by 60 neurones at the input layer, 500 BLSTM
neurones at the hidden layer with a hyperbolic tangent activation function and 106 neurones at
the output layer with a softmax function. The training was performed by using RNNLIB [31],
and the main parameters (such as the size of the hidden layer) were tuned by using the validation
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partition. The Weighted Finite State Transducers (WFST) decoding (see Section 3.5) can be designed to
output word, sub-word or character sequences. For each output type, the lexicon and language model
have to be modified accordingly, and no additional modification is necessary in the system.

Preprocessing
and feature
extraction

Recurrent Neural Network

x Word Lexicon
and

Language Model

WFST decoding

o

muerte e peor merescia el por quanto passara el mandami

x1

x2

. . .

x60

BLSTM layer

o1

. . .

o106

Figure 5. Bi-directional Long-Short Term Memory (BLSTM) system architecture. The BLSTM RNN
outputs posterior distributions o at each time step. The decoding is performed with Weighted Finite
State Transducers (WFST) using a lexicon and a language model at word level.

3.4.3. Deep Models Based on Convolutional Recurrent Neural Networks

The Convolutional Recurrent Neural Network (CRNN) [32] is inspired by the VGG16
architecture [33] that was developed for image recognition. We use a stack of 13 convolutional
(3 × 3 filters, 1 × 1 stride) layers followed by three bi-directional LSTM layers with 256 units per
layer (see Figure 6). Each LSTM unit has one cell with enabled peephole connections. Spatial pooling
(max) is employed after some convolutional layers. To introduce non-linearity, the Rectified Linear
Unit (ReLU) activation function was used after each convolution. It has the advantage of being
resistant to the vanishing gradient problem while being simple in terms of computation and was
shown to work better than sigmoid and hyperbolic tangent activation functions [34]. A square-shaped
sliding window is used to scan the text-line image in the direction of the writing. The height of
the window is equal to the height of the text-line image, which has been normalized to 64 pixels.
The window overlap is equal to two pixels to allow continuous transition of the convolution filters.
For each analysis window of 64 × 64 pixels in size, 16 feature vectors are extracted from the feature
maps produced by the last convolutional layer and fed into the observation sequence. For each of
the 16 columns of the last 512 feature maps, the columns of a height of two pixels are concatenated
into a feature vector of size 1024 (512 × 2). Thanks to the CTCtranscription layer [35], the system is
end-to-end trainable. The convolutional filters and the LSTM units weights are thus jointly learned
using the back-propagation procedure. We combined the forward and backward outputs at the end
of the BLSTM stack [36] rather than after each BLSTM layer, in order to decrease the number of
parameters. We also chose not to add additional fully-connected layers since, by adding such layers,
the network had more parameters, converged more slowly and performed worse. Hyper parameters
such as the number of convolution layers and the number of BLSTM layers were set up on a validation
set. The LSTM unit weights were initialized as per the method of [37], which proved to work well
and helps the network to converge faster. This allows the network to maintain a constant variance
across the network layers, which keeps the signal from exploding to a high value or vanishing to zero.
The weight matrices were initialized with a uniform distribution.
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Figure 6. CRNN system architecture.

The Adam optimizer [38] was used to train the network with the initial learning rate of 0.001.
This algorithm could be thought of as an upgrade for RMSProp [39], offering bias correction and
momentum [40]. It provides adaptive learning rates for the stochastic gradient descent update
computed from the first and second moments of the gradients. It also stores an exponentially decaying
average of the past squared gradients (similar to Adadelta [41] and RMSprop) and the past gradients
(similar to momentum). Batch normalization, as described in [42], was added after each convolutional
layer in order to accelerate the training process. It basically works by normalizing each batch by
both the mean and variance. The network was trained in an end-to-end fashion with the CTC
loss function [35].
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3.5. Decoding with Deep Optical Models

Decoding for both deep net systems was performed with Weighted Finite State Transducers
(WFST). Our decoder is based on the CTC-specific implementation proposed by [43] for speech
recognition. A “token” WFST was designed to handle all possible label sequences at the frame level,
so as to allow for the occurrence of the blank label along with the repetition of non-blank labels. It can
map a sequence of frame-level CTC labels to a single character. A search graph is built with three
WFSTs (T, L and G) compiled independently and combined as follows:

S = T ◦min(det(L ◦ G)) (3)

T, L and G are the token, lexicon and grammar WFSTs respectively, whereas ◦, det and min denote
composition, determination and minimization, respectively. The determination and minimization
operations are needed to compress the search space, yielding a faster decoding.

3.6. Evaluation Metrics

The quality of the obtained transcriptions was assessed using the edit distance [44] with respect
to the reference text, at the word and at the character level. The Word Error Rate (WER) is this edit
distance at the word level and can be calculated as the minimum number of substitutions, deletions
and insertions needed to transform the transcription into the reference, divided by the number of
words of the reference:

WER =
s + d + i

n
· 100 (4)

where s is the number of substitutions, d the number of deletions, i the number of insertions and n
the total number of words in the reference.

Similarly, this edit distance can be calculated at the character level, giving the Character Error
Rate (CER). In this framework, the CER value is especially interesting, since transcription errors are
usually corrected at the character level. The OOV Word Accuracy Rate (OOV WAR) was measured as
the amount of recognized OOV words over the total amount of OOV words. The statistical significance
of experimental results can be estimated by means of confidence intervals. Generally, when comparing
two experimental results, it is always true that if the confidence intervals do not overlap, we can say
that the difference is statistically significant [45]. In this work, confidence intervals of probability 95%
(α = 0.025) were calculated by using the bootstrapping method with 10,000 repetitions [46] for these
rate measures.

Finally, as language models are probability distributions over entire sentences or texts,
perplexity [47] can be used to evaluate their performance over a reference text. In this work, we use
the perplexity presented by a character LM over the OOV words (as sequences of characters), to assess
the differences between the recognized and unrecognized OOV words.

4. Experimental Results

In the test experiments, we compared the performance on the test partition of the Rodrigo
corpus. Different systems were compared, the first one based on HMMs, the second one based
on RNN and the third one on CRNN. For the three systems, experiments were performed at word,
sub-word, and character levels. We first explore the influence of the size of the LM context (n-gram
degree). Then, we develop an analysis of the difference between the structure of recognized and
unrecognized OOV words. The last experiment compares the results obtained in three different cases:
open vocabulary, closed vocabulary and when using the validation samples for training the LM.

We observed that in the training partition of Rodrigo, usually there are no spaces between words
and punctuation marks, so we decided to remove those spaces from the hypotheses offered by
the word-based systems. Therefore, in the word-based cases, the recognized OOV words correspond
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to words attached to punctuation marks, which were correctly recognized after removing the space
between them (see Figure A2).

4.1. Study of the Context Size Influence

Figure 7 presents the results obtained for the word-based HMM system (in terms of WER and
CER) by using n-gram LM with different context sizes n = {1, . . . , 6}. As can be observed in this figure,
the best result was obtained by using a three-gram LM; concretely, a WER equal to 43.3%± 0.5, a CER
equal to 21.1%± 0.3 and an OOV WAR equal to 2.3%± 0.4.

 0%

10%

20%

30%

40%

50%

60%

 1  2  3  4  5  6

WER=43.3%

CER=21.1%

OOV WAR=2.3%

n-gram size

Word Error Rate
Character Error Rate

OOV Word Accuracy Rate

Figure 7. Results obtained by the HMM word-based system using n-gram language models with size
n = {1, . . . , 6}.

Then, the performance of the HMM system at the sub-word level was tested. Figure 8 presents
the results obtained using sub-word n-gram LM with different sizes n = {1, . . . , 6} in terms of WER,
CER and recognition accuracy of the OOV words. The best result was obtained with a sub-word
language model of size n = 4 (a WER equal to 43.2%± 0.5 and a CER equal to 20.0%± 0.3). Regarding
the recognition of OOV words, the sub-word approach was able to recognize correctly 9.3%± 0.7 of
the OOV words.

Figure 9 presents the results obtained for the HMM system using character n-gram LM with
different degrees n = {1, . . . , 15} in terms of WER, CER and recognition accuracy of the OOV words.
Although similar results are obtained for n ≥ 6, the overall best result was obtained with a character
language model of degree n = 10 (a WER equal to 39.8%± 0.5 and a CER equal to 17.6%± 0.3).
Regarding the recognition of OOV words, this character-based approach was able to recognize correctly
18.3%± 0.9 of the OOV words using no external resource or dictionary, but a character language
model only.

Table 2 presents a summary of the obtained best results for the test experiments for the HMM
system. As can be observed, the improvement offered by the sub-word approach is not statistically
significant at the WER level compared to the results obtained from the word-based system.
Nevertheless, the character-based approach offers 9.3% of statistically-significant relative improvement
over the baseline in terms of WER and 17.0% of statistically-significant relative improvement
over the baseline in terms of CER. Thus, using a dictionary and LM at the word level performs
worse than using a single character-based n-gram LM, with n large enough. This demonstrates
the interest in working at the character level for transcribing historical manuscripts. We study in
the following the structure of the OOV words in comparison with the training words (Section 4.2).
We also study the effect of reducing the OOV rate, either by using the validation set or by closing
the vocabulary (Section 4.3).
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Figure 8. Results obtained by decoding at the HMM sub-word level by using n-gram language models
with size n = {1, . . . , 6}.
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Figure 9. Results obtained by decoding at the HMM character level by using n-gram language models
with size n = {1, . . . , 15}.

Table 2. Overall best results on the Rodrigo test set in terms of WER, CER and OOV WAR for
the HMM system.

Measure Word Sub-Word Character
3-gram 4-gram 10-gram

WER 43.9%± 0.5 43.2%± 0.5 39.8%± 0.5
CER 21.2%± 0.3 20.0%± 0.3 17.6%± 0.3

OOV WAR 2.3%± 0.3 9.3%± 0.7 18.3%± 0.9

4.2. Study of the Relation between the Structure of the OOV Words and the Training Words

The character-based approach is able to recognize some OOV words given that the character-based
LM learns the structure of the words contained in the training set. In order to verify this hypothesis,
we measured the perplexity presented by the best character-based LM (10-gram) for decoding each one
of the 4918 OOV words as their corresponding character sequences. Figure 10 presents the obtained
perplexity per OOV word separated into two distributions, recognized and unrecognized OOV words.
Table 3 summarizes the main features of these distributions. As expected, the recognized OOV words
present lower perplexity than the unrecognized OOV words. The overlap of both distributions makes
us think that there is still room for improvement given that more OOV words could be recognized.
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Figure 10. Distribution of the perplexity presented by the 10-gram character Language Model (LM) per
recognized and unrecognized OOV words (decomposed into character sequences) by the HMM system.

Table 3. Features of the perplexity per OOV word recognized and unrecognized distributions
for the HMM character-based 10-gram LM. Q1, Q2 and Q3 are respectively the 1th, 2nd and 3rd
quartile, IQR the interquartile range, Min. and Max. the minimum and maximum values and SD
the standard deviation.

Distribution Q1 Q2 Q3 IQR Min. Max. SD

Recognized 6.64 9.22 12.57 5.94 3.26 46.05 5.37
Unrecognized 8.70 12.21 17.75 9.05 3.06 367.07 16.25

4.3. Study of the Effect of Closing the Vocabulary and Adding the Transcription of the Validation Set for
Training the LM

After the adjustment of the decoding parameters with the validation set, the transcription of
the text lines contained in this partition can be used to train an improved LM that, hopefully, will reduce
the amount of OOV words. Moreover, the OOV words can be included in the vocabulary as unigrams
(closed vocabulary experiments) to verify their influence on the recognition. These conditions were
experimented for the best language models at word and character levels (3-gram for the word based
system and 10-gram for the character-based system). Given that the sub-word approach presented
no significative difference in terms of WER, compared to the word-based system (see Table 2),
this approach was not tested in this experiment.

Figures 11–13 allow comparing the obtained results for the word-based system and
the character-based approach with open and closed vocabulary, with and without the use of
the validation samples when training the LM (see Section 3.4). On the one hand, as can be seen
in Figures 11 and 13, the use of the validation set does not significantly improve the word-based
recognition in terms of WER or CER. However, this additional information is very useful in
the character-based approach. As can be observed in Figure 11, a statistically-significant improvement
in terms of CER is achieved (16.9% ± 0.3 instead of 17.6% ± 0.3). This improvement allows
increasing the OOV word recognition accuracy (see Figure 12). On the other side, although
closing the vocabulary significantly improves the recognition performance, it is interesting to note
the beneficial effect of the use of the validation samples in the character-based approach. It is also
interesting to note in Figures 11 and 13 that the character-based system, even in the more difficult
case (“open-vocabulary”), outperforms, in terms of CER, the word-based system in the best case
(“closed-vocabulary”). In the closed vocabulary conditions, the word-based system recognizes more
OOV words than the character-based system, 34.7% ± 1.2 instead of 29.6% ± 1.1 (see Figure 12).
However, in the real-world case, i.e., the open-vocabulary conditions, the character-based system
performs better.
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Figure 11. CER results obtained by the best word-based HMM system and the best character-based
HMM system with open and closed vocabulary, with and without using the validation samples for
training the LM.
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Figure 12. Recognition accuracy rate for OOV words by the best word-based HMM system and the best
character-based HMM system with open and closed vocabulary, with and without using the validation
samples for training the LM.
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training the LM.
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4.4. Study of the Context Size Influence Using Deep Optical Models

This last part of the experimentation studies the influence of the different language units
and the context size of the language model, on the HTR system based on deep neural networks
(see Sections 3.4.2 and 3.4.3).

4.4.1. Results for Deep Models Based on Recurrent Neural Networks with BLSTMs

In Figure 14, the recognition results obtained for the word-based RNN system are presented.
As explained before, in this case, the recognized OOV words correspond to words attached to
punctuation marks, which were correctly recognized after removing the space between them (see the
example presented in Figure A2). Compared with the word-based HMM system, the obtained results
are significantly worse in terms of WER; however, in terms of CER and OOV word recognition
accuracy, the obtained results are significantly better. Concretely, the best result was obtained by using
a two-gram LM, and it presents a WER equal to 52.5%± 0.8, a CER equal to 17.2%± 0.3 and an OOV
WAR equal to 16.3%± 0.9.

Figure 15 shows the results obtained using sub-word n-gram LM. As can be observed, the WFST
approach has no context information about the separation between words when sub-word unigrams
LM are used; therefore, it is unable to reconstruct words correctly in spite of obtaining a good CER.
We will see this effect in the next experiments with the sub-word and character-based deep net systems.
In this case, the best result was obtained with a five-gram language model (a WER equal to 38.6%± 0.5,
a CER equal to 17.3%± 0.3 and an OOV WAR equal to 27.4%± 1.1).
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Figure 14. Results obtained by the RNN word-based system using n-gram language models.
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Figure 15. Results obtained by the RNN sub-word-based system using n-gram language models.
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The results obtained with the RNN system using character n-gram LM are presented in Figure 16.
As in the character-based HMM experiments, similar results are obtained for n ≥ 6, and the overall
best result was obtained with a 10-gram character language model: a WER equal to 37.7%± 0.5, a CER
equal to 14.3%± 0.3 and an OOV WAR equal to 37.8%± 1.1.
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Figure 16. Results obtained by the RNN character-based system using n-gram language models.

A summary of the obtained best results for the test experiments for the RNN system is presented
in Table 4. As can be observed, generally, the RNN approach performs better than the traditional
HMM approach. Although the use of the word-based RNN system obtains a statistically-significant
relative deterioration of 19.6% over the HMM system (43.9% ± 0.5) in terms of WER, 18.9%
statistically-significant relative improvement in terms of CER (21.2% ± 0.3) can be considered.
Moreover, 16.3% of OOV words, which correspond to words followed by punctuation marks,
are well recognized.

Table 4. Summary of the best results in terms of WER, CER and OOV WAR for the RNN system.

Measure Word Sub-Word Character
2-gram 5-gram 10-gram

WER 52.5%± 0.8 38.6%± 0.5 37.7%± 0.5
CER 17.2%± 0.3 17.3%± 0.3 14.3%± 0.3

OOV WAR 16.3%± 0.9 27.4%± 1.1 37.8%± 1.1

The use of sub-word units offers better results than using words, allowing one to obtain significant
improvements in terms of WER and CER over the HMM system. In this case, the use of a five-gram LM
trained with hyphenated words allowed obtaining statistically-significant improvements at the WER
level over the use of a two-gram LM of full words. However, as for the HMM system, the overall best
results are obtained by using the character-based approach: a WER equal to 37.7%± 0.5, a CER equal
to 14.3%± 0.3 and an OOV WAR equal to 37.8%± 1.1.

4.4.2. Results for Deep Models Based on Convolutional Recurrent Neural Networks

Figure 17 presents the recognition results obtained for the word-based CRNN system. As in
the previous word-based systems, the recognized OOV words correspond to words attached to
punctuation marks, which were correctly recognized after removing the space between them
(see the example presented in Figure A2). The best result, obtained by using a three-gram LM,
presents a WER equal to 17.9%± 0.4, a CER equal to 4.0%± 0.1 and an OOV WAR equal to 21.5%± 1.0.

The results obtained using sub-word n-gram LM are shown in Figure 18. The best result was
obtained with a four-gram language model (a WER equal to 14.8%± 0.3 and a CER equal to 3.4%± 0.1).
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Regarding the recognition of OOV words, the sub-word approach allowed correctly recognizing
42.4%± 1.5 of the OOV words.
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Figure 17. Results obtained by the CRNN word-based system using n-gram language models with
size n = {1, . . . , 6}.
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Figure 18. Results obtained by the CRNN sub-word-based system using n-gram language models with
size n = {1, . . . , 6}.

Figure 19 presents the results obtained with the CRNN system using character n-gram LM. As in
the previous character-based experiments, similar results are obtained for n ≥ 6, and the overall best
result was obtained with a 10-gram character language model (a WER equal to 14.0%± 0.3 and a CER
equal to 3.0%± 0.1). Regarding the recognition of OOV words, this approach was able to recognize
correctly 69.2%± 1.1 of the OOV words using no external resource or dictionary, but a character
language model only.

Table 5 presents a summary of the obtained best results for the test experiments for
the CRNN system. As can be observed, the use of deep optical models allows one to obtain
a statistically-significant relative improvement of 59.2% over the HMM system (43.9%± 0.5) in terms of
WER and 81.1% statistically-significant relative improvement over the HMM system in terms of CER.
Regarding OOV words, 21.5% of OOV words, which correspond to words followed by punctuation
marks, are well recognized. It should be noted that these results are also significantly better than those
obtained by the HMM system in the closed vocabulary experiments (Figures 11–13).

The use of sub-word units performs better than using words. In this case, the use of a four-gram
LM trained with hyphenated words allowed obtaining statistically-significant improvements over
the use of a three-gram LM of full words. However, the overall best results are obtained by using
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the character-based approach: a WER equal to 14.0%± 0.3, a CER equal to 3.0%± 0.1 and an OOV
WAR equal to 69.2%± 1.1. These results confirm the interest of working at the character level for
transcribing historical manuscripts.
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Figure 19. Results obtained by the CRNN character-based system using n-gram language models with
size n = {1, . . . , 15}.

Table 5. Overall best results on the Rodrigo test set in terms of WER, CER and OOV WAR for
the CRNN system.

Measure Word Sub-Word Character
3-gram 4-gram 10-gram

WER 17.9%± 0.4 14.8%± 0.3 14.0%± 0.3
CER 4.0%± 0.1 3.4%± 0.1 3.0%± 0.1

OOV WAR 21.5%± 1.0 42.4%± 1.5 69.2%± 1.1

5. Conclusions

In this paper, we deal with the transcription of historical documents, for which no external
linguistic resources are available. We have developed various HTR systems that model language at
word and sub-lexical levels. We have shown that character-based language modeling performs best.

The strengths of the proposed work are:

• comparing several types of HTR systems (HMM-based, RNN-based).
• proposing a state-of-the-art HTR system for the transcription of ancient Spanish documents whose

optical part is based on very deep nets (CRNNs).
• proposing to associate the optical HTR system with a dictionary and a language model based on

sub-lexical units. These units are shown to be efficient in order to cope with OOV words.
• reaching with such optical and LM HTR components the best overall recognition results on

a publicly available Spanish historical dataset of document images.

In future work, we would like to extend this work using other kinds of language models, such as
models based on RNN.
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Appendix A. Some Recognition Examples

This Appendix presents some recognition examples. Figures A1–A3 present the best hypothesis
obtained for several lines of the Rodrigo corpus in the open vocabulary experiments, by using a 3-gram
word-based LM, a 4-gram sub-word-based LM and a 10-gram character-based LM.

Text Image

Text Reference muerte e peor merescia el por quanto passara el mandami
Word-based 1-best me & peor matara el por quanto pagana el manda

Sub-word-based 1-best mun do <SPACE> & <SPACE> por <SPACE> ma ta ra <SPACE> el <SPACE> por <SPACE>
quan to <SPACE> pa ga na <SPACE> el <SPACE> man da <SPACE>
mundo & por matara el por quanto pagana el manda

Character-based 1-best
m u c h o <SPACE> & <SPACE> p o r <SPACE> m e r e s c i a <SPACE> e l <SPACE>
p o r <SPACE> q u a n t o <SPACE> p a g a u a <SPACE> e l <SPACE> m a n d a m i
mucho & por merescia el por quanto pagaua el mandami

Figure A1. Example of the best hypotheses obtained for the 12th line of page 500 of Rodrigo.

Text Image

Text Reference portugal.

Word-based 1-best portugal.
portugal.

Sub-word-based 1-best pe tu gal zo
petugalzo

Character-based 1-best p o r t u g a z
portugaz

Figure A2. Example of the best hypotheses obtained for the 9th line of page 619 of Rodrigo.

Text Image

Text Reference maron lo cauallero e seyendo Cauallero enfermo muy mal
Word-based 1-best non lo Cauallero & seyendo Cauallero enfermo muy dia

Sub-word-based 1-best na ron <SPACE> la <SPACE> Caua lle ro <SPACE> & <SPACE> se yen do <SPACE>
Caua lle ro <SPACE> en fer mo <SPACE> muy <SPACE> dia <SPACE>
naron la Cauallero & seyendo Cauallero enfermo muy dia

Character-based 1-best
m a r o n <SPACE> l a <SPACE> c a u a l l e r o <SPACE> & <SPACE> s e y e n d o
<SPACE> C a u a l l e r o <SPACE> e n f e r m o <SPACE> m u y <SPACE> m a l
maron la cauallero & seyendo Cauallero enfermo muy mal

Figure A3. Example of the best hypotheses obtained for the 4th line of page 514 of Rodrigo.
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