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Abstract: In this paper, we investigate the usefulness of adding a box-constraint to the minimization
of functionals consisting of a data-fidelity term and a total variation regularization term. In particular,
we show that in certain applications an additional box-constraint does not effect the solution at all, i.e.,
the solution is the same whether a box-constraint is used or not. On the contrary, i.e., for applications
where a box-constraint may have influence on the solution, we investigate how much it effects
the quality of the restoration, especially when the regularization parameter, which weights the
importance of the data term and the regularizer, is chosen suitable. In particular, for such applications,
we consider the case of a squared L2 data-fidelity term. For computing a minimizer of the respective
box-constrained optimization problems a primal-dual semi-smooth Newton method is presented,
which guarantees superlinear convergence.

Keywords: box-constrained total variation minimization; semi-smooth Newton; image
reconstruction; automated parameter selection

1. Introduction

An observed image g, which contains additive Gaussian noise with zero mean and standard
deviation σ, may be modeled as

g = Kû + n

where û is the original image, K is a linear bounded operator and n represents the noise. With the aim
of preserving edges in images in [1] total variation regularization in image restoration was proposed.
Based on this approach and assuming that g ∈ L2(Ω) and K ∈ L(L2(Ω)), a good approximation of û
is usually obtained by solving

min
u∈BV(Ω)

∫
Ω
|Du| such that (s.t.) ‖Ku− g‖2

L2(Ω) ≤ σ2|Ω| (1)

where Ω ⊂ R2 is a simply connected domain with Lipschitz boundary and |Ω| its volume.
Here

∫
Ω |Du| denotes the total variation of u in Ω and BV(Ω) is the space of functions with bounded

variation, i.e., u ∈ BV(Ω) if and only if u ∈ L1(Ω) and
∫

Ω |Du| < ∞; see [2,3] for more details.
We recall, that BV(Ω) ⊂ L2(Ω), if Ω ⊂ R2.

Instead of considering (1), we may solve the penalized minimization problem

min
u∈BV(Ω)

‖Ku− g‖2
L2(Ω) + α

∫
Ω
|Du| (2)

for a given constant α > 0, which we refer to the L2-TV model. In particular, there exists a constant
α ≥ 0 such that the constrained problem (1) is equivalent to the penalized problem (2), if g ∈ K(BV(Ω))
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and K does not annihilate constant functions [4]. Moreover, under the latter condition also the existence
of a minimizer of problem (1) and (2) is guaranteed [4]. There exist many algorithms that solve problem
(1) or problem (2), see for example [5–23] and references therein.

If in problem (2) instead of the quadratic L2-norm an L1-norm is used, we refer to it as the L1-TV
model. The quadratic L2-norm is usually used when Gaussian noise is contained in the image, while
the L1-norm is more suitable for impulse noise [24–26].

If we additionally know (or assume) that the original image lies in the dynamic range [cmin, cmax],
i.e., cmin ≤ u(x) ≤ cmax for almost every (a.e.) x ∈ Ω, we incorporate this information into our
problems (1) and (2) leading to

min
u∈BV(Ω)

∫
Ω
|Du| s.t. ‖Ku− g‖2

L2(Ω) ≤ σ2|Ω| and u ∈ C (3)

and
min

u∈BV(Ω)∩C
‖Ku− g‖2

L2(Ω) + α
∫

Ω
|Du|, (4)

respectively, where C := {u ∈ L2(Ω) : cmin ≤ u(x) ≤ cmax for a.e. x ∈ Ω}. In order to guarantee the
existence of a minimizer of problems (3) and (4) we assume in the sequel that K does not annihilate
constant functions. By noting that the characteristic function χC is lower semicontinuous this follows
by the same arguments as in [4]. If additionally g ∈ K(BV(Ω) ∩ C), then by [4] (Prop. 2.1) it follows
that there exists a constant α ≥ 0 such that problem (3) is equivalent to problem (4).

For image restoration box-constraints have been considered for example in [5,27–29]. In [29] a
functional consisting of an L2-data term and a Tikhonov-like regularization term (i.e., L2-norm of
some derivative of u) in connection with box-constrained is presented together with a Newton-like
numerical scheme. For box-constrained total variation minimization in [5] a fast gradient-based
algorithm, called monoton fast iterative shrinkage/thresholding algorithm (MFISTA), is proposed and
a rate of convergence is proven. Based on the alternating direction method of multipliers (ADMM) [30]
in [27] a solver for the box-constrained L2-TV and L1-TV model is derived and shown to be faster than
MFISTA. In [28] a primal-dual algorithm for the box-constrained L1-TV model and for box-constrained
non-local total variation is presented. In order to achieve a constrained solution, which is positive and
bounded from above by some intensity value, in [31] an exponential type transform is applied to the
L2-TV model. Recently, in [32] a box-constraint is also incorporated in a total variation model with a
combined L1-L2 data fidelity, proposed in [33], for removing simultaneously Gaussian and impulse
noise in images.

Setting the upper bound in the set C to infinity and the lower bound to 0, i.e., cmin = 0 and
cmax = +∞, leads to a non-negativity constraint. Total variation minimization with a non-negativity
constraint is a well-known technique to improve the quality of reconstructions in image processing;
see for example [34,35] and references therein.

In this paper we are concerned with the problems (3) and (4) when the lower bound cmin and
the upper bound cmax in C are finite. However, the analysis and the presented algorithms are easily
adjustable to the situation when one of the bounds is set to −∞ or +∞ respectively. Note, that a
solution of problem (1) and problem (2) is in general not an element of the set C. However, since g
is an observation containing Gaussian noise with zero mean, a minimizer of problem (2) lies indeed
in C, if α in problem (2) is sufficiently large and the original image û ∈ C. This observation however
rises the question whether an optimal parameter α would lead to a minimizer that lies in C. If this
would be the case then incorporating the box-constraint into the minimization problem does not gain
any improvement of the solution. In particular, there are situations in which a box-constraint is not
effecting the solution at all (see Section 3 below). Additionally, we expect that the box-constrained
problems are more difficult to handle and numerically more costly to solve than problem (1) and
problem (2).
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In order to answer the above raised question, we numerically compute optimal values of α for the
box-constrained total variation and the non-box-constrained total variation and compare the resulting
reconstructions with respect to quality measures. By optimal values we mean here parameters α such
that the solutions of problem (1) and problem (2) or problem (3) and problem (4) coincide. Note,
that there exists several methods for computing the regularization parameter; see for example [36] for
an overview of parameter selection algorithms for image restoration. Here we use the pAPS-algorithm
proposed in [36] to compute reasonable α in problem (2) and problem (4). For minimizing problem
(4) we derive a semi-smooth Newton method, which should serve us as a good method for quickly
computing rather exact solutions. Second order methods have been already proposed and used in
image reconstruction; see [21,36–39]. However, to the best of our knowledge till now semi-smooth
Newton methods have not been presented for box-constrained total variation minimization. In this
setting, differently to the before mentioned approaches, the box-constraint adds some additional
difficulties in deriving the dual problems, which have to be calculated to obtain the desired method;
see Section 4 for more details. The superlinear convergence of our method is guaranteed by the
theory of semi-smooth Newton methods; see for example [21]. Note, that our approach differs
significantly from the Newton-like scheme presented in [29], where a smooth objective functional with
a box-constraint is considered. This allows in [29] to derive a Newton method without dualization.
Here, our Newton method is based on dualization and may be viewed as a primal-dual (Newton)
approach.

We remark, that a scalar regularization parameter might not be the best choice for every image
restoration problem, since images usually consist of large uniform areas and parts with fine details,
see for example [36,38]. It has been demonstrated, for example in [36,38,40,41] and references therein,
that with the help of spatially varying regularization parameters one might be able to restore images
visually better than with scalar parameters. In this vein we also consider

min
u∈BV(Ω)

‖Ku− g‖2
L2(Ω) +

∫
Ω

α|Du| (5)

and
min

u∈BV(Ω)∩C
‖Ku− g‖2

L2(Ω) +
∫

Ω
α|Du|, (6)

where α : Ω→ R+ is a bounded continuous function [42]. We adapt our semi-smooth Newton method
to approximately solve these two optimization problems and utilize the pLATV-algorithm of [36] to
compute a locally varying α.

Our numerical results show, see Section 6, that in a lot of applications the quality of the restoration
is more a question of how to choose the regularization parameter then including a box-constraint.
However, the solutions obtained by solving the box-constrained versions (3), (4) and (6) are improving
the restorations slightly, but not drastically. Nevertheless, we also report on a medical applications
where a non-negativity constraint significantly improves the restoration.

We realize that if the noise-level of the corrupted image is unknown, then we may use the
information of the image intensity range (if known) to calculate a suitable parameter for problem (2).
Note, that in this situation the optimization problems (1) and (3) cannot be considered since σ is not at
hand. We present a method which automatically computes the regularization parameter α in problem
(2) provided the information that the original image û ∈ [cmin, cmax].

Hence the contribution of the paper is three-sided: (i) We present a semi-smooth Newton method
for the box-constrained total variation minimization problems (3) and (6). (ii) We investigate the
influence of the box-constraint on the solution of the total variation minimization models with respect
to the regularization parameter. (iii) In case the noise-level is not at hand, we propose a new automatic
regularization parameter selection algorithm based on the box-constraint information.

The outline of the rest of the paper is organized as follows: In Section 2 we recall useful definitions
and the Fenchel-duality theorem which will be used later. Section 3 is devoted to the analysis of the
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box-constrained total variation minimization. In particular, we state that in certain cases adding a
box-constraint to the considered problem does not change the solution at all. The semi-smooth Newton
method for the box-constrained L2-TV model (4) and its multiscale version (6) is derived in Section 4
and its numerical implementation is presented in Section 5. Numerical experiments investigating the
usefulness of a box-constraint are shown in Section 6. In Section 7 we propose an automatic parameter
selection algorithm by using the box-constraint. Finally, in Section 8 conclusions are drawn.

2. Basic Terminology

Let X be a Banach space. Its topological dual is denoted by X∗ and 〈·, ·〉 describes the bilinear
canonical pairing over X × X∗. A convex functional J : X → R̄ is called proper, if {v ∈ X : J(v) 6=
+∞} 6= ∅ and J(v) > −∞ for all v ∈ X. A functional J : X → R̄ is called lower semicontinuous, if for
every weakly convergent sequence v(n) ⇀ v̂ we have

lim inf
v(n)⇀v̂

J(v(n)) ≥ J(v̂).

For a convex functional J : X → R̄ we define the subdifferential of J at v ∈ X as the set
valued function

∂J(v) :=

{
∅ if J(v) = ∞,

{v∗ ∈ X∗ : 〈v∗, u− v〉+ J(v) ≤ J(u) ∀u ∈ X} otherwise.

It is clear from this definition, that 0 ∈ ∂J(v) if and only if v is a minimizer of J.
The conjugate function (or Legendre transform) of a convex function J : X → R̄ is defined as

J∗ : X∗ → R̄ with
J∗(v∗) = sup

v∈X
{〈v, v∗〉 − J(v)}.

From this definition we see that J∗ is the pointwise supremum of continuous affine functions and thus,
according to [43] (Proposition 3.1, p. 14), convex, lower semicontinuous, and proper.

For an arbitrary set S we denote by χS its characteristic function defined by

χS(u) =

{
0 if u ∈ S,

∞ otherwise.

We recall the Fenchel duality theorem; see, e.g., [43] for details.

Theorem 1 (Fenchel duality theorem). Let X and Y be two Banach spaces with topological duals X∗ and
Y∗, respectively, and Λ : X → Y a bounded linear operator with adjoint Λ∗ ∈ L(Y∗, X∗). Further let
F : X → R ∪ {∞}, G : Y → R ∪ {∞} be convex, lower semicontinuous, and proper functionals. Assume
there exists u0 ∈ X such that F (u0) < ∞, G(Λu0) < ∞ and G is continuous at Λu0. Then we have

inf
u∈X
F (u) + G(Λu) = sup

p∈Y∗
−F ∗(Λ∗p)− G∗(−p) (7)

and the problem on the right hand side of (7) admits a solution p̄. Moreover, ū and p̄ are solutions of the two
optimization problems in (7), respectively, if and only if

Λ∗ p̄ ∈ ∂F (ū),
− p̄ ∈ ∂G(Λū).
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3. Limitation of Box-Constrained Total Variation Minimization

In this section we investigate the difference between the box-constrained problem (4) and the
non-box-constrained problem (1). For the case when the operator K is the identity I, which is the
relevant case in image denoising, we have the following obvious result:

Proposition 1. Let K = I and g ∈ C, then the minimizer u∗ ∈ BV(Ω) of problem (2) lies also in the dynamic
range [cmin, cmax], i.e., u∗ ∈ BV(Ω) ∩ C.

Proof of Proposition 1. Assume u∗ ∈ BV(Ω) \ C is a minimizer of problem (2). Define a function ũ
such that

ũ(x) :=


u∗(x) if cmin ≤ u∗(x) ≤ cmax,

cmax if u∗(x) > cmax,

cmin if u∗(x) < cmin,

for a.e. x ∈ Ω. Then we have that

‖u∗ − g‖L2(Ω) > ‖ũ− g‖L2(Ω), and
∫

Ω
|Du∗| >

∫
Ω
|Dũ|. (8)

This implies that u∗ is not a minimizer of problem (2), which is a contradiction and hence u∗ ∈
BV(Ω) ∩ C.

This result is easily extendable to optimization problems of the type

min
u∈BV(Ω)

α1‖u− g‖L1(Ω) + α2‖u− g‖2
L2(Ω) +

∫
Ω
|Du|, (9)

with α1, α2 ≥ 0 and α1 + α2 > 0, since for ũ, defined as in the above proof, and a minimizer
u∗ ∈ BV(Ω) ∩ C of problem (9) the inequalities in (8) hold as well as ‖u∗ − g‖L1(Ω) > ‖ũ− g‖L1(Ω).
Problem (9) has been already considered in [33,44,45] and can be viewed as a generalization of the
L2-TV model, since α1 = 0 in (9) yields the L2-TV model and α2 = 0 in (9) yields the L1-TV model.

Note, that if an image is only corrupted by impulse noise, then the observed image g is in the
dynamic range of the original image. For example, salt-and-pepper noise contained images may be
written as

g(x) =


cmin with probability s1 ∈ [0, 1),

cmax with probability s2 ∈ [0, 1),

û(x) with probability 1− s1 − s2,

with 1− s1 − s2 > 0 [46] and for random-valued impulse noise g is described as

g(x) =

{
d with probability s ∈ [0, 1),

û(x) with probability 1− s,

with d being a uniformly distributed random variable in the image intensity range [cmin, cmax]. Hence,
following Proposition 1, in such cases considering constrained total variation minimization would not
change the minimizer and no improvement in the restoration quality can be expected.

This is the reason why we restrict ourselves in the rest of the paper to Gaussian white noise
contaminated images and consider solely the L2-TV model.

It is clear that if a solution of the non box-constrained optimization problem already fulfills the
box-constraint, then it is of course equivalent to a minimizer of the box-constraint problem. However,
note that the minimizer is not unique in general.

In the following we compare the solution of the box-constrained optimization problem (4) with
the solution of the unconstrained minimization problem (2).
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Proposition 2. Let u ∈ C ∩ BV(Ω) be a minimizer of

JC(u) :=
1
2
‖u− g‖2

2 + α
∫

Ω
|Du|+ χC(u)

and w ∈ BV(Ω) be a minimizer of

J(w) :=
1
2
‖w− g‖2

2 + α|Dw|(Ω).

Then we have that

1. JC(w) ≥ JC(u) = J(u) ≥ J(w).
2. 1

2‖u− w‖2
2 ≤ J(u)− J(w) ≤ JC(w)− JC(u).

3. ‖u− w‖2
2 ≤ 4‖ξ − g‖2

2 + 8α|Dξ|(Ω) for any ξ ∈ C ∩ BV(Ω).

Proof of Proposition 2.

1. Follows directly from the optimality of u and w.
2. From [47] (Lemma 10.2) it follows that 1

2‖u− w‖2
2 ≤ J(u)− J(w). For the second inequality we

make the observation that

JC(w)− JC(u) =

{
∞ if w 6∈ C

0 if w ∈ C,

where we used the fact that w = u if w ∈ C. This implies, that J(u)− J(w) ≤ JC(w)− JC(u).
3. For all v ∈ C ∩ BV(Ω) we have that

‖u− w‖2
2 ≤ 2

(
‖u− v‖2

2 + ‖v− w‖2
2

)
≤ 4 (J(v)− J(u) + J(v)− J(w)) = 8J(v)− 4J(u)− 4J(w),

where we used 2. and that (a + b)2 ≤ 2(a2 + b2). For any arbitrary ξ ∈ C ∩ BV(Ω), let v = ξ and
since J(ξ) = 1

2‖ξ − g‖2
L2(Ω)

+ α|Dξ|(Ω) we get ‖u− w‖2
2 ≤ 4‖ξ − g‖2

2 + 8α|Dξ|(Ω).

If in Proposition 2 ξ ∈ C ∩ BV(Ω) is constant, then |Dξ|(Ω) = 0 which implies that
‖u− w‖2

2 ≤ 4‖ξ − g‖2
2.

4. A Semi-Smooth Newton Method

4.1. The Model Problem

In general K∗K is not invertible, which causes difficulties in deriving the dual problem of (4).
In order to overcome this difficulties we penalize the L2-TV model by considering the following
neighboring problem

min
u∈C∩H1

0 (Ω)

1
2
‖Ku− g‖2

L2(Ω) +
µ

2

∫
Ω
|∇u|2dx + α

∫
Ω
|∇u|`2 dx, (10)

where µ > 0 is a very small constant such that problem (10) is a close approximation of the total
variation regularized problem (4). Note, that for u ∈ H1

0(Ω) the total variation of u in Ω is equivalent
to
∫

Ω |∇u|`2 dx [3]. A typical example for which K∗K is indeed invertible is K = I, which is used
for image denoising. In this case, we may even set µ = 0, see Section 6. The objective functional in
problem (10) has been already considered for example in [21,48] for image restoration. In particular
in [21], a primal-dual semi-smooth Newton algorithm is introduced. Here, we actually adopt this
approach to our box-constrained problem (10).
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In the sequel we assume for simplicity that −cmin = cmax =: c > 0, which changes the set C
to C := {u ∈ L2(Ω) : |u| ≤ c}. Note, that any bounded image û, i.e., which lies in the dynamic
range [a, b], can be easily transformed to an image ũ ∈ [−c, c]. Since this transform and K are linear,
the observation g is also easily transformed to g̃ = Kũ + n.

Example 1. Let û such that a ≤ û(x) ≤ b for all x ∈ Ω. Then |û(x)− b+a
2 | ≤

b−a
2 =: c for all x ∈ Ω and

we set ũ = û− b+a
2 . Hence, g̃ = Kû− K b+a

2 + n = g− K b+a
2 .

Problem (10) can be equivalently written as

min
u∈H1

0 (Ω)

1
2
‖Ku− g‖2

L2(Ω) +
µ

2

∫
Ω
|∇u|2dx + α

∫
Ω
|∇u|`2 dx + χC(u). (11)

If u∗ ∈ H1
0(Ω) is a solution of problem (10) (and equivalently problem (11)), then there exists λ∗ ∈

H1
0(Ω)∗ and σ∗ ∈ ∂R(u), where R(u) :=

∫
Ω |∇u|`2 dx, such that

K∗Ku∗ − K∗g− µ∆u∗ + ασ∗ + λ∗ = 0

〈λ∗, u− u∗〉 ≤ 0

for all u ∈ C ∩ H1
0(Ω).

For implementation reasons (actually for obtaining a fast, second-order algorithm) we
approximate the non-smooth characteristic function χC by a smooth function in the following way

χC(u) ≈
η

2

(
‖max{u− cmax, 0}‖2

L2(Ω) + ‖max{cmin − u, 0}‖2
L2(Ω)

)
=

η

2

(
‖max{|u| − c, 0}‖2

L2(Ω)

)
,

where η > 0 is large. This leads to the following optimization problem

min
u∈H1

0 (Ω)

1
2
‖Ku− g‖2

L2(Ω) +
µ

2

∫
Ω
|∇u|2dx + α

∫
Ω
|∇u|`2 dx +

η

2

(
‖max{|u| − c, 0}‖2

L2(Ω)

)
. (12)

Remark 1. By the assumption −cmin = cmax we actually excluded the cases (i) cmin = 0, cmax = +∞ and
(ii) cmin = −∞, cmax = 0. In these situations we just need to approximate χC by (i) η

2

(
‖max{−u, 0}‖2

L2(Ω)

)
and (ii) η

2

(
‖max{u, 0}‖2

L2(Ω)

)
. By noting this, in a similar fashion as done below for problem (12),

a primal-dual semi-smooth Newton method can be derived for these two cases.

4.2. Dualization

By a standard calculation one obtains that the dual of problem (12) is given by

sup~p=(~p1,p2)∈L2(Ω)×L2(Ω)−
1
2 |||Λ∗~p + K∗g|||2B + 1

2‖g‖2
L2(Ω)

− χA(−~p1)− 1
2η ‖ − p2‖2

L2(Ω)
− ‖− cp2‖L1(Ω) (13)

with Λ∗~p = −div~p1 + p2 and A := {v ∈ L2(Ω) : |v|`2 ≤ α}. As the divergence operator does not
have a trivial kernel, the solution of the optimization problem (13) is not unique. In order to render the
problem (13) strictly concave we add an additional term yielding the following problem

min
~p∈L2(Ω)×L2(Ω)

1
2
|||Λ∗~p + K∗g|||2B −

1
2
‖g‖2

L2(Ω) + χA(−~p1) +
1

2η
‖ − p2‖2

L2(Ω)

+ ‖ − cp2‖L1(Ω) +
γ

2α
‖p1‖2

L2(Ω),
(14)

where γ > 0 is a fixed parameter.
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Proposition 3. The dual problem of problem (14) is given by

min
u∈H1

0 (Ω)

1
2
‖Ku− g‖2

L2(Ω) +
µ

2
‖∇u‖2

L2(Ω) + α
∫

Ω
φγ(∇u)(x)dx +

η

2
‖max{|u| − c, 0}‖2

L2(Ω) (15)

with

φγ(~q)(x) =

{
1

2γ |~q(x)|2
`2 if |~q(x)|`2 < γ

|~q(x)|`2 − γ
2 if |~q(x)|`2 ≥ γ.

The proof of this statement is a bit technical and therefore deferred to Appendix A.
Similar as in [21] one can show that the solution of problem (15) converges to the minimizer of

(12) as γ→ 0.
From the Fenchel duality theorem we obtain the following characterization of solutions u and ~p

of problem (15) and problem (14) (note that p = −q)

div~p1 − p2 = K∗Ku− K∗g− µ∆u in H−1(Ω) (16)

~p1 =
α

γ
∇u if |~p1|`2 < α in L2(Ω) (17)

~p1 = α
∇u
|∇u| if |~p1|`2 = α1 in L2(Ω) (18)

p2 = η max{|u| − c, 0} sign(u) in L2(Ω). (19)

This system can be solved efficiently by a semi-smooth Newton algorithm. Moreover,
equations (17) and (18) can be condensed into ~p1 = α∇u

max{γ,|∇u|
`2}

.

4.3. Adaptation to Non-Scalar α

For locally adaptive α, i.e., α : Ω→ R+ is a function, the minimization problem (12) changes to

min
u∈H1

0 (Ω)

1
2
‖Ku− g‖2

L2(Ω) +
µ

2

∫
Ω
|∇u|2dx +

∫
Ω

α(x)|∇u|`2 dx +
η

2

(
‖max{|u| − c, 0}‖2

L2(Ω)

)
. (20)

Its dual problem is given by

min
~p∈L2(Ω)×L2(Ω)

1
2
|||Λ∗~p + K∗g|||2B −

1
2
‖g‖2

L2(Ω) + χÃ(−~p1) +
1

2η
‖ − p2‖2

L2(Ω) + ‖ − cp2‖L1(Ω),

where Ã := {v ∈ L2(Ω) : |v(x)|`2 ≤ α(x)}. Similarly but slightly different as above, cf. problem (14),
we penalize by

min
~p∈L2(Ω)×L2(Ω)

1
2
|||Λ∗p + K∗g|||2B −

1
2
‖g‖2

L2(Ω) + χA(−~p1) +
1

2η
‖ − p2‖2

L2(Ω)

+ ‖ − cp2‖L1(Ω) +
γ

2
‖p1‖2

L2(Ω).

Then the dual of this problem turns out to be

min
u∈H1

0 (Ω)

1
2
‖Ku− g‖2

L2(Ω) +
µ

2
‖∇u‖2

L2(Ω) +
∫

Ω
φγ,α(∇u)(x)dx +

η

2
‖max{|u| − c, 0}‖2

L2(Ω) (21)

with

φγ,α(~q)(x) =

{
1

2γ |~q(x)|2
`2 if |~q(x)|`2 < γα(x)

α(x)|~q(x)|`2 − γ
2 |α(x)|2 if |~q(x)|`2 ≥ γα(x).
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Denoting by u a solution of problem (21) and ~p the solution of the associated pre-dual problem,
the optimality conditions due to the Fenchel theorem [43] are given by

div~p1 − p2 = K∗Ku− K∗g− µ∆u

~p1 =
α∇u

max{γα, |∇u|}
p2 = η max{|u| − c, 0} sign(u).

5. Numerical Implementation

Similar as in the works [21,36–39], where semi-smooth Newton methods for non-smooth systems
emerging from image restoration models have been derived, we can solve the discrete version of the
system (16)–(19), using finite differences, efficiently by a primal-dual algorithm. Therefore let uh ∈ RN ,
ph

1 ∈ R2N , ph
2 ∈ RN , gh ∈ RN , denote the discrete image intensity, the dual variables, and the observed

data vector, respectively, where N ∈ N is the number of elements (pixels) in the discrete image Ωh.
Moreover, we denote by αh > 0 the regularization parameter. Correspondingly we define∇h ∈ R2N×N

as the discrete gradient operator, ∆h ∈ RN×N as the discrete Laplace operator, Kh ∈ RN×N as a discrete
operator, and (Kh)t its transpose. Moreover, divh = −(∇h)t. Here | · |, max{·, ·}, and sign(·) are
understood for vectors in a component-wise sense. Moreover, we use the function [| · |] : R2N → R2N

with [|vh|]i = [|vh|]i+N =
√
(vh

i )
2 + (vh

i+N)
2 for 1 ≤ i ≤ N.

5.1. Scalar α

The discrete version of (16)–(19) reads as

0 = −divh ph
1 + ηD(m0) + (Kh)tKhuh − (Kh)tgh − µ∆huh

0 = Dh(mγ)ph
1 − αh∇huh

(22)

where Dh(v) is a diagonal matrix with vector v in its diagonal, m0 := sign(u)max{|u| − c, 0},
and mγ := max{γ, [|∇huh|]}. We define

χAγ
= Dh(tγ) with (tγ)i =

{
0 if (mγ)i = γ,

1 else;

χAmax
c = Dh(tmax

c ) with (tmax
c )i =

{
0 if (mmax

c )i = 0,

1 else;

χAmin
c

= Dh(tmin
c ) with (tmin

c )i =

{
0 if (mmin

c )i = 0,

1 else,

where mmax
c := max{u− c, 0} and mmin

c := max{u + c, 0}. Further, we set

Mh(v) =

(
Dh(vx) Dh(vy)

Dh(vx) Dh(vy)

)
with v = (vx, vy)

t ∈ R2N .

Applying a generalized Newton step to solve (22) at (uh
k , ph

1,k) yields(
η(χAmax

c + χAmin
c

) + (Kh)tKh − µ∆h −divh

Ch
k∇ Dh(mγ)

)(
δu

δp1

)
=

(
−Fk

1
−Fk

2

)
(23)
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where

Ch
k = Dh(ph

1,k)χAγ
Dh(mγ)

−1Mh(∇uh
k)− αhDh(e2N)

Fk
1 = −divh ph

1,k + ηDh(m0) + (Kh)tKhuh
k − (Kh)tg− µ∆huh

k

Fk
2 = Dh(mγ)ph

1,k − αh∇huh
k

and eN ∈ RN is the identity vector. The diagonal matrix D(mγ) is invertible, i.e.,

δp1 = Dh(mγ)
−1(−Fk

2 − Ch
k∇δu)

and hence we can eliminate δp1 from the Newton system resulting in

Hkδu = fk (24)

where

Hk := η(χAmax
c + χAmin

c
) + (Kh)tKh − µ∆h + divh Dh(mγ)

−1Ch
k∇,

fk := −Fk
1 − divh Dh(mγ)

−1Fk
2.

If Hk is positive definite, then the solution δu of (24) exists and is a descent direction
of (15). However, in general we cannot expect the positive definiteness of Hk. In order to ensure
that Hk is positive definite, we project ph

1,k onto its feasible set by setting ((ph
1,k)i, (ph

1,k)i+N) to
αh max{αh, [|ph

1,k|]i}
−1((ph

1,k)i, (ph
1,k)i+N) for i = 1, . . . , N which guarantees

[|ph
1,k|]i ≤ αh (25)

for i = 1, . . . , 2N. The modified system matrix, denoted by H+
k , is then positive definite. Then our

semi-smooth Newton solver may be written as:

Primal-dual Newton method (pdN): Initialize (uh
0, ph

1,0) ∈ RN ×R2N and set k := 0.

1. Determine the active sets χAmax
c ∈ RN×N , χAmin

c
∈ RN×N , χAγ

∈ RN×N ,
2. If (25) is not satisfied, then compute H+

k ; otherwise set H+
k := Hk.

3. Solve H+
k δu = fk for δu.

4. Compute δp1 by using δu.
5. Update uh

k+1 := uh
k + δu and ph

1,k+1 := ph
1,k + δp1 .

6. Stop or set k := k + 1 and continue with step 1).

This algorithm converges at a superlinear rate, which follows from standard theory; see [20,21].
The Newton method is terminated as soon as the initial residual is reduced by a factor of 10−4.

Note, that, since η = 0 implies p2 = 0, in this case the proposed primal-dual Newton method
becomes the method in [21].

5.2. Non-Scalar α

A similar semi-smooth Newton method might be derived for the locally adaptive case by noting
that then αh ∈ RN , and hence the second equation in (22) changes to

0 = Dh(mγ)ph
1 − Dh((αh, αh)t)∇huh,

where mγ := max{γαh, [|∇huh|]} leading to (23) with

Ch
k = Dh(ph

1,k)χAγ
Dh(mγ)

−1Mh(∇uh
k)− Dh((αh, αh)t)



J. Imaging 2018, 4, 12 11 of 34

and
Fk

2 = Dh(mγ)ph
1,k − Dh((αh, αh)t)∇huh

k .

The positive definite modified matrix H+
k is then obtained by setting ((ph

1,k)i, (ph
1,k)i+N) to

αh
i max{αh

i , [|ph
1,k|]i}

−1((ph
1,k)i, (ph

1,k)i+N) for i = 1, . . . , N.

6. Numerical Experiments

For our numerical studies we consider the images shown in Figure 1 of size 256 × 256 pixels
and in Figure 2. The image intensity range of all original images considered in this paper is [0, 1],
i.e., cmin = 0 and cmax = 1. Our proposed algorithms automatically transform this images into the
dynamic range [−c, c], here with c = 1/2. That is, let û ∈ [0, 1] be the original image before any
corruption, then û(x)− 1

2 ∈ [− 1
2 , 1

2 ]. Moreover, the solution generated by the semi-smooth Newton
method is afterwards back-transformed, i.e., the generated solution ũ is transformed to ũ + 1

2 . Note
that maxx ũ(x) + 1

2 is not necessarily in [0, 1], except ũ ∈ [− 1
2 , 1

2 ].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Original images of size 256× 256. (a) Phantom; (b) Cameraman; (c) Barbara; (d) House;
(e) Lena; (f) Bones; (g) Cookies; (h) Numbers.

(a) (b) (c)

Figure 2. Original images (a) Shepp-Logan phantom of size 128× 128 pixels (b) knee of size 200× 200 pixels
(c) slice of a human brain of size 128× 128 pixels.

As a comparison for the different restoration qualities of the restored image we use the PSNR [49]
(peak signal-to-noise ratio) given by
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PSNR = 20 log
1

‖û− u∗‖ ,

where û denotes the original image before any corruption and u∗ the restored image, which is widely
used as an image quality assessment measure, and the MSSIM [50] (mean structural similarity),
which usually relates to perceived visual quality better than PSNR. In general, when comparing PSNR
and MSSIM, large values indicate better reconstruction than small values.

In our experiments we also report on the computational time (in seconds) and the number of
iterations (it) needed until the considered algorithms are terminated.

In all the following experiments the parameter µ is chosen to be 0 for image denoising (i.e., K = I),
since then no additional smoothing is needed, and µ = 10−6 if K 6= I (i.e., for image deblurring,
image inpainting, for reconstructing from partial Fourier-data, and for reconstructing from sampled
Radon-transform).

6.1. Dependency on the Parameter η

We start by investigating the influence of the parameter η on the behavior of the semi-smooth
Newton algorithm and its generated solution. Let us recall, that η is responsible how strictly the
box-constraint is adhered. In order to visualize how good the box-constraint is fulfilled for a chosen
η in Figure 3 we depict maxx u(x)− cmax and minx u(x)− cmin with cmax = 1, cmin = 0, and u being
the back-transformed solution, i.e., u = ũ + 1

2 , where ũ is obtained via the semi-smooth Newton
method. As long as maxx u(x)− cmax and minx u(x)− cmin are positive and negative, respectively,
the box-constraint is not perfectly adhered. From our experiments for image denoising and image
deblurring, see Figure 3, we clearly see that the larger η the more strictly the box-constraint is adhered.
In the rest of our experiments we choose η = 106, which seems sufficiently large to us and the
box-constraint seems to hold accurately enough.

η
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0

0.1

0.2

0.3

maxx u(x)− 1
minx u(x)

η

0 1 10 10
2

10
3

10
4

10
5

10
6

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

maxx u(x)− 1
minx u(x)

Figure 3. Reconstruction of the cameraman image corrupted by Gaussian white noise with σ = 0.1 (left),
corrupted by blurring and Gaussian white noise with σ = 0.1 (right) via the semi-smooth Newton
method with α = 0.01 for different values η.

6.2. Box-Constrained Versus Non-Box-Constrained

In the rest of this section we are going to investigate how much the solution (and its restoration
quality) depends on the box-constraint and if this is a matter on how the regularization parameter is
chosen. We start by comparing for different values of α the solutions obtained by the semi-smooth
Newton method without a box-constraint (i.e., η = 0) with the ones generated by the same algorithm
with η = 106 (i.e., a box-constraint is incorporated). Our obtained results are shown in Table 1 for
image denoising and in Table 2 for image deblurring. We obtain, that for small α we gain “much”
better results with respect to PSNR and MSSIM with a box-constraint than without. The reason for this
is that if no box-constraint is used and α is small then nearly no regularization is performed and hence
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noise, which is violating the box-constraint, is still present. Therefore incorporating a box-constraint
is reasonable for these choices of parameters. However, if α is sufficiently large then we numerically
observe that the solution of the box-constrained and non-box-constrained problem are the same. This is
not surprising, because there exists ᾱ > 0 such that for all α > ᾱ the solution of problem (2) is 1

|Ω|
∫

Ω g,
see [4] (Lemma 2.3). That is, for such α the minimizer of problem (2) is the average of the observation
which lies in the image intensity range of the original image, as long as the mean of Gaussian noise is
0 (or sufficiently small). This implies that in such a case the minimizer of problem (2) and problem
(4) are equivalent. Actually this equivalency already holds if α is sufficiently large such that the
respective solution of problem (2) lies in the dynamic range of the original image, which is the case
in our experiments for α = 0.4. Hence, whether it makes sense or not to incorporate a box-constraint
into the considered model depends on the choice of parameters. The third and fourth value of α in
Tables 1 and 2 refer to the ones which equalize problem (2) and problem (1), and respectively problem
(4) and problem (3). In the sequel we call such parameters optimal, since a solution of the penalized
problem also solves the related constrained problem. However, we note that these α-values are in
general not giving the best results with respect to PSNR and MSSIM, but they are usually close to
the results with the largest PSNR and MSSIM. For both type of applications, i.e., image denoising
and image deblurring, these optimal α-values are nearly the same for problem (2) and problem (1),
and respectively problem (4) and problem (3) and hence also the PSNR and MSSIM of the respective
results are nearly the same. Nevertheless, we mention that for image deblurring the largest PSNR and
MSSIM in these experiments is obtained for α = 0.01 with a box-constraint.

Table 1. Reconstruction of the cameraman-image corrupted by Gaussian white noise with σ = 0.1 for
different regularization parameters α.

α
pdN with η = 0 Box-Constrained pdN

PSNR MSSIM Time It PSNR MSSIM Time It

0.001 20.165 0.27649 183.29 365 20.635 0.28384 178.27 365
0.01 21.464 0.29712 55.598 117 21.905 0.30472 55.245 117

0.096029 27.134 0.35214 14.615 33 27.135 0.35221 14.465 33
0.096108 27.132 0.35201 14.91 33 27.133 0.35207 14.317 33

0.4 22.079 0.16816 14.779 34 22.079 0.16816 14.982 34
∅ 23.5947 0.28919 56.6388 116.4 23.7773 0.2922 55.4557 116.4

Table 2. Reconstruction of the cameraman-image corrupted by Gaussian blur and Gaussian white
noise with σ = 0.1 for different regularization parameters α.

α
pdN with η = 0 Box-Constrained pdN

PSNR MSSIM Time It PSNR MSSIM Time It

0.001 5.9375 0.039866 1197 143 11.568 0.083341 1946 145
0.01 21.908 0.18938 863 67 21.964 0.1946 2011 67

0.051871 21.815 0.18115 759 37 21.814 0.18113 1299 37
0.051868 21.814 0.18114 752 36 21.814 0.18114 1255 37

0.4 19.823 0.090709 1431 61 19.823 0.090709 1454 61
∅ 18.2593 0.13645 1000 68.8 19.3966 0.14618 1593 69.4

In Tables 3 and 4 we also report on an additional strategy. In this approach we threshold (or project)
the observation g such that the box-constraint holds in any pixel and use then the proposed Newton
method with η = 0. For large α this is an inferior approach, but for small α this seems to work similar
to incorporating a box-constraint, at least for image denoising. However, it is outperformed by the
other approaches.
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Table 3. Reconstruction of the cameraman-image corrupted by Gaussian white noise with σ = 0.1 for
different regularization parameters α using the pdN with thresholded g.

α PSNR MSSIM Time It

0.001 20.64 0.28388 107.05 349
0.01 21.949 0.30504 32.336 113

0.096029 26.528 0.33078 8.9479 33
0.096108 26.526 0.33066 8.8966 33

0.4 21.666 0.15794 9.4218 35
∅ 23.4617 0.28166 33.3304 112.6

Table 4. Reconstruction of the cameraman-image corrupted by Gaussian blur and Gaussian white
noise with σ = 0.1 for different regularization parameters α using the pdN with thresholded g.

α PSNR MSSIM Time It

0.001 6.6758 0.046454 1091 140
0.01 21.929 0.19231 743 65

0.051871 21.709 0.1722 659 35
0.051868 21.709 0.1722 651 35

0.4 19.683 0.087447 1438 61
∅ 18.3413 0.13412 916 67.2

6.3. Comparison with Optimal Regularization Parameters

In order to determine the optimal parameters α for a range of different examples we assume
that the noise-level σ is at hand and utilize the pAPS-algorithm presented in [36]. Alternatively,
instead of computing a suitable α, we may solve the constrained optimization problems (1) and (3)
directly by using the alternating direction methods of multipliers (ADMM). An implementation of
the ADMM for solving problem (1) is presented in [51], which we refer to as the ADMM in the sequel.
For solving problem (3) a possible implementation is suggested in [27]. However, for comparison
purposes we use a slightly different version, which uses the same succession of updates as the ADMM
in [51], see Appendix B for a description of this version. In the sequel we refer to this algorithm
as the box-contrained ADMM. We do not expect the same results for the pAPS-algorithm and the
(box-contrained) ADMM, since in the pAPS-algorithm we use the semi-smooth Newton method which
generates an approximate solution of problem (15), that is not equivalent to problem (1) and problem
(3). In all the experiments in the pAPS-algorithm we set the initial regularization parameter to be 10−3.

6.3.1. pdN versus ADMM

We start by comparing the performance of the proposed primal-dual semi-smooth Newton method
(pdN) and the ADMM. In these experiments we assume that we know the optimal parameters α,
which are then used in the pdN. Note, that a fair comparison of these two methods is difficult, since they
are solving different optimization problems, as already mentioned above. However, we still compare
them in order to understand better the performance of the algorithms in the sequel section.

The comparison is performed for image denoising and image deblurring and the respective
findings are collected in Tables 5 and 6. From there we clearly observe, that the proposed pdN
with η = 106 reaches in all experiments the desired reconstruction significantly faster than the
box-constrained ADMM. While the number of iterations for image denoising is approximately the same
for both methods, for image deblurring the box-constrained pdN needs significantly less iterations than
the other method. In particular, the pdN needs nearly the same amount of iterations independently of
the application. However, more iterations for small σ are needed. Note, that the pdN converges at a
superlinear rate and hence a faster convergence than the box-constrained ADMM is not surprising but
supports the theory.
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Table 5. Reconstruction of the cameraman-image corrupted by Gaussian white noise with standard
deviation σ.

σ α
Box-Constrained pdN Box-Constrained ADMM

PSNR MSSIM Time It PSNR MSSIM Time It
0.3 0.34586 22.485 0.18619 18.844 41 22.2 0.17829 897.82 127
0.2 0.21408 24.054 0.24497 14.847 33 23.852 0.23917 808.67 100
0.1 0.096108 27.132 0.35201 14.91 33 26.963 0.35118 716.37 70

0.05 0.043393 30.567 0.47437 22.902 51 30.488 0.47503 656.66 48
0.01 0.0071847 40.417 0.75235 59.533 133 40.542 0.75864 454.45 24
0.005 0.0032996 45.164 0.8686 89.674 199 45.423 0.87718 501.59 24
∅ 31.6363 0.47975 36.785 81.667 31.5781 0.47991 672.5961 65.5

Table 6. Reconstruction of the cameraman-image corrupted by Gaussian blur and Gaussian white
noise with standard deviation σ.

σ α
Box-Constrained pdN Box-Constrained ADMM

PSNR MSSIM Time It PSNR MSSIM Time It
0.3 0.2342 20.382 0.10678 1551.5 55 20.361 0.099691 2217.3 256
0.2 0.13169 20.981 0.13262 1434 41 20.978 0.12702 2593.1 265
0.1 0.051871 21.814 0.18113 1407.4 37 21.825 0.17536 3404.5 292

0.05 0.01951 22.484 0.22905 2691.4 51 22.501 0.22423 4065.4 305
0.01 0.0012674 24.293 0.34618 2440.5 126 24.237 0.34082 7185.3 358

0.005 0.00031869 25.451 0.40405 1903.4 149 25.377 0.3987 26,985 1081
∅ 22.5674 0.2333 1904.6943 76.5 22.5464 0.22764 7741.7188 426.17

6.3.2. Image Denoising

In Tables 7 and 8 we summarize our findings for image denoising. We observe that adding a
box-constraint to the considered optimization problem leads to a possibly slight improvement in PSNR
and MSSIM. While in some cases there is some improvement (see for example the image “numbers”)
in other examples no improvement is gained (see for example the image “barbara”). In order to
make the overall improvement more visible, in the last row of Tables 7 and 8 we add the average
PSNR and MSSIM of all computed restorations. It shows that on average we may expect a gain of
around 0.05 PSNR and around 0.001 MSSIM, which is nearly nothing. Moreover, we observe, that the
pAPS-algorithm computes the optimal α for the box-constrained problem on average faster than the
one for the non-box-constrained problem. We remark, that the box-constrained version needs less
(or at maximum the same amount of) iterations as the version with η = 0. The reason for this might be
that in each iterations, due to the thresholding of the approximation by the box-constraint, a longer
or better step towards the minimizer than by the non-box-constrained pAPS-algorithm is performed.
At the same time also the reconstructions of the box-constrained pAPS-algorithm yield higher PSNR
and MSSIM than the ones obtained by the pAPS-algorithm with η = 0. The situation seems to be
different for the ADMM. On average, the box-constrained ADMM and the (non-box-constrained)
ADMM need approximately the same run-time.
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Table 7. PSNR- and MSSIM-values of the reconstruction of different images corrupted by Gaussian
white noise via pAPS using the primal-dual Newton method.

Image σ
pAPS with pdN with η = 0 pAPS with Box-Constrained pdN

PSNR MSSIM Time α It PSNR MSSIM Time α It

phantom

0.3 19.274 0.30365 693.59 0.28721 40 19.302 0.30456 486.9 0.28544 20
0.2 22.024 0.37461 553.44 0.19055 37 22.06 0.37521 393.67 0.18921 17
0.1 27.471 0.44124 565.80 0.09621 37 27.518 0.4412 389.39 0.095365 17
0.05 33.173 0.46878 858.33 0.048744 37 33.228 0.46847 421.18 0.04827 16
0.01 46.409 0.50613 1605.4 0.010597 37 46.46 0.50559 791.34 0.010509 17

0.005 51.805 0.52587 2245.3 0.0057362 35 51.846 0.52522 925.46 0.0056958 15

cameraman

0.3 22.485 0.18619 1591 0.34586 102 22.485 0.18621 847.53 0.34579 50
0.2 24.054 0.24497 919.63 0.21408 66 24.056 0.24508 528.85 0.21398 32
0.1 27.132 0.35201 580.91 0.096108 39 27.135 0.35221 646.44 0.096029 41
0.05 30.567 0.47437 549.23 0.043393 24 30.571 0.47458 561.43 0.04336 25
0.01 40.417 0.75235 677.79 0.0071847 12 40.418 0.75238 645.32 0.0071837 12

0.005 45.164 0.8686 745.67 0.0032996 9 45.164 0.8686 701.1 0.0032995 9

barbara

0.3 20.618 0.30666 1419.7 0.34118 84 20.618 0.30666 735.83 0.34118 39
0.2 21.649 0.39964 788.49 0.20109 47 21.649 0.39971 358.6 0.20105 18
0.1 24.241 0.58555 336.17 0.089758 23 24.241 0.58564 319.09 0.089746 23
0.05 27.884 0.75178 326.59 0.04286 15 27.885 0.7518 286.61 0.042858 16
0.01 38.781 0.9322 345.64 0.0079133 9 38.781 0.9322 311.25 0.0079133 9

0.005 44.056 0.9681 395.8 0.0037205 7 44.056 0.9681 330.97 0.0037205 7

house

0.3 23.827 0.1839 2750 0.41771 154 23.829 0.18392 1185.9 0.41763 75
0.2 25.611 0.23397 1460.6 0.26795 116 25.611 0.23397 610.2 0.26796 45
0.1 28.855 0.31916 690.33 0.11979 75 28.855 0.31916 348.92 0.11979 34
0.05 32.04 0.4074 574.34 0.050505 39 32.041 0.40741 563.92 0.050502 40
0.01 40.292 0.75174 493.84 0.0071206 11 40.292 0.75174 468.11 0.0071206 11

0.005 44.989 0.86648 527 0.0033035 8 44.989 0.86648 502.38 0.0033035 8

lena

0.3 21.905 0.29155 1925 0.41731 120 21.905 0.29155 953.83 0.41731 57
0.2 23.506 0.36317 1064.9 0.25937 85 23.506 0.36317 585.24 0.25937 39
0.1 26.37 0.49351 537.69 0.11246 46 26.369 0.49351 302.32 0.11246 21
0.05 29.615 0.62313 566.71 0.047771 27 29.615 0.62313 579.3 0.04777 28
0.01 39.261 0.91371 526.89 0.0068096 97 39.262 0.91371 546.75 0.0068091 10

0.005 44.672 0.97133 626.47 0.0032764 8 44.673 0.97133 652.97 0.0032762 8

bones

0.3 25.744 0.34395 5830.2 0.86048 310 25.743 0.34395 749.26 0.8605 35
0.2 27.637 0.39821 2949 0.56086 238 27.637 0.39821 747.28 0.56086 45
0.1 30.908 0.49398 1232.8 0.27216 141 30.908 0.49398 364.71 0.27216 32
0.05 34.284 0.58386 612.74 0.12735 87 34.284 0.58386 362.62 0.12735 41
0.01 43.174 0.7449 386.03 0.020815 33 43.174 0.7449 479.77 0.020814 33

0.005 47.493 0.80124 340.02 0.0091423 23 47.493 0.80124 470.83 0.0091423 23

cookies

0.3 21.466 0.31394 1117.4 0.38254 87 21.466 0.31396 857.99 0.38252 42
0.2 23.136 0.40787 709.8 0.25117 62 23.136 0.40787 320.84 0.25118 12
0.1 26.498 0.55614 398.59 0.12598 42 26.498 0.55614 290.67 0.12598 18
0.05 30.292 0.67741 382.29 0.06257 30 30.293 0.67741 523.47 0.06257 30
0.01 40.482 0.85926 414.09 0.011324 15 40.482 0.85926 567.65 0.011324 15

0.005 45.39 0.91128 470.54 0.0052653 12 45.39 0.91128 653.55 0.0052653 12

numbers

0.3 17.593 0.33171 520.53 0.27654 31 17.862 0.35167 358.5 0.26337 6
0.2 20.658 0.39035 415.03 0.18442 30 20.936 0.40758 375.14 0.17526 9
0.1 26.259 0.44549 365.01 0.092576 30 26.56 0.45925 318.58 0.087618 8
0.05 32.061 0.47618 466.24 0.046674 30 32.382 0.48698 321.63 0.044044 8
0.01 45.511 0.51733 1039 0.0099524 31 45.869 0.52176 467.07 0.0093273 7

0.005 51.036 0.53022 1474.9 0.0053171 30 51.44 0.53149 463.78 0.0049401 5
∅ 32.0368 0.5343 9,597,189 54.5833 32.0828 0.5357 534.877 23.75
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Table 8. PSNR- and MSSIM-values of the reconstruction of different images corrupted by Gaussian
white noise via the ADMM by solving the constrained versions.

Image σ
ADMM Box-Constrained ADMM

PSNR MSSIM Time It PSNR MSSIM Time It

phantom

0.3 18.956 0.29789 1245 118 18.922 0.29225 999.39 137
0.2 21.615 0.37299 1203.8 108 21.538 0.36632 1068.9 123
0.1 27.021 0.45439 868.12 79 26.941 0.44525 995.99 91
0.05 32.823 0.5007 576.35 47 32.731 0.4847 650.9 53
0.01 46.446 0.60023 444.34 23 47.36 0.54521 524.88 27

0.005 53.734 0.5907 566.53 24 53.59 0.51937 913.28 38

cameraman

0.3 22.33 0.18003 889.65 99 22.2 0.17829 897.82 127
0.2 23.895 0.23961 836.26 80 23.852 0.23917 808.67 100
0.1 27.002 0.35006 690.45 60 26.963 0.35118 716.37 70
0.05 30.513 0.47359 564.73 43 30.488 0.47503 656.66 48
0.01 40.486 0.75493 409.62 22 40.542 0.75864 454.45 24

0.005 45.329 0.8728 494.94 23 45.423 0.87718 501.59 24

barbara

0.3 20.6 0.30878 891.68 94 20.604 0.31256 683.92 112
0.2 21.655 0.40225 827.72 74 21.654 0.40468 628.45 91
0.1 24.224 0.5883 583.96 50 24.215 0.58921 547.54 61
0.05 27.889 0.75319 449.51 35 27.874 0.75405 470.8 41
0.01 38.921 0.9338 441.87 21 38.978 0.9341 374.69 24

0.005 44.413 0.97035 503.68 21 44.584 0.97166 425.92 23

house

0.3 23.761 0.19254 1072.7 108 23.689 0.19468 674.76 128
0.2 25.659 0.24287 949.97 85 25.609 0.24367 709.26 108
0.1 28.907 0.32034 678 54 28.875 0.32115 596.95 70
0.05 32.054 0.40609 532.99 35 32.029 0.40732 478.67 42
0.01 40.394 0.7555 422.07 19 40.438 0.75891 331.36 21

0.005 45.201 0.87241 492.11 20 45.278 0.8758 408.17 22

lena

0.3 21.834 0.29247 950.81 102 21.85 0.2995 570.59 115
0.2 23.455 0.36437 724 81 23.46 0.36828 670.96 97
0.1 26.349 0.49495 584.08 55 26.333 0.49605 641.47 67
0.05 29.604 0.62425 456.63 39 29.588 0.62541 554.51 44
0.01 39.422 0.91694 377.76 22 39.486 0.91822 438.7 25

0.005 45.021 0.97391 470.81 24 45.106 0.97436 517.97 26

bones

0.3 25.829 0.35686 750.12 110 25.051 0.36748 611.23 115
0.2 27.689 0.40363 734.13 90 27.486 0.41281 652.2 94
0.1 30.942 0.48823 624.02 58 31.02 0.49267 755.06 75
0.05 34.319 0.57951 343.83 35 34.37 0.57521 624.7 49
0.01 43.011 0.73032 193.87 14 42.9 0.72002 270.92 16

0.005 47.446 0.79549 204.98 12 47.432 0.78519 285.72 14

cookies

0.3 21.436 0.31503 789.78 102 21.461 0.32264 788.24 118
0.2 23.129 0.40742 713.25 82 23.128 0.41261 772.93 99
0.1 26.527 0.55478 554.95 55 26.506 0.55871 659.5 70
0.05 30.364 0.67447 422.84 37 30.338 0.67746 589.77 45
0.01 40.513 0.85593 234.35 15 40.589 0.85815 316.64 19

0.005 45.382 0.90918 255.79 14 45.307 0.90892 319.82 16

numbers

0.3 17.257 0.32157 1640.7 147 17.487 0.34599 1311.9 146
0.2 20.279 0.38382 1594 133 20.49 0.42 1215.8 134
0.1 25.901 0.44284 981.06 95 26.125 0.48656 874.87 85
0.05 31.847 0.47604 719.72 52 32.412 0.51241 532.91 46
0.01 45.726 0.52365 643.88 26 47.089 0.51102 1001.3 56

0.005 52.512 0.53468 641.43 29 52.859 0.51942 1756.9 83
∅ 32.0754 0.5386 671.7274 57.7292 32.1302 0.5389 671.9570 67.8958

For several examples (i.e., the images “phantom”, “cameraman”, “barbara”, “house”) the choice
of the regularization parameter by the box-constrained pAPS-algorithm with respect to the noise-level
is depicted in Figure 4. Clearly, the parameter is selected to be smaller the less noise is present in
the image.
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Figure 4. Regularization parameter versus noise-level for the box-constrained pAPS in image denoising.

We are now wondering whether a box-constraint is more important when the regularization
parameter is non-scalar, i.e., when α : Ω→ R+ is a function. For computing suitable locally varying α

we use the pLATV-algorithm proposed in [36], whereby we set in all considered examples the initial
(non-scalar) regularization parameter to be constant 10−2. Note, that the continuity assumption on α

in problem (5) and problem (6) is not needed in our discrete setting, since ∑x∈Ωh α(x)|∇huh(x)| is well
defined for any α ∈ RN . We approximate such α for problem (20) with η = 0 (unconstrained) and with
η = 106 (box-constrained) and obtain also here that the gain with respect to PSNR and MSSIM is of the
same order as in the scalar case, see Table 9.

Table 9. PSNR- and MSSIM-values of the reconstruction of different images corrupted by Gaussian
white noise via pLATV using the primal-dual Newton method.

Image σ
pLATV with pdN with η = 0 pLATV with Box-Constrained pdN

PSNR MSSIM Time It PSNR MSSIM Time It

phantom

0.3 19.629 0.31986 517.78 13 19.744 0.32143 710.59 16
0.2 22.405 0.38578 286.66 13 22.525 0.38706 607.27 15
0.1 27.802 0.44701 389.34 13 27.936 0.44762 552.49 14
0.05 33.48 0.47301 526.89 13 33.57 0.4733 571.06 14
0.01 46.546 0.50749 139.72 4 46.625 0.50646 98.973 3

0.005 52.038 0.52569 112.1 3 52.062 0.52512 105.89 3

cameraman

0.3 22.382 0.18185 775.5 15 22.393 0.18186 838.55 19
0.2 24.032 0.24038 605.56 13 24.029 0.23937 593.9 16
0.1 27.16 0.35301 304.83 12 27.175 0.35285 415.09 13
0.05 30.702 0.4745 310.03 10 30.696 0.47315 262.59 10
0.01 40.647 0.73386 135.88 4 40.647 0.73386 144.01 4

0.005 45.292 0.86678 365.19 7 45.292 0.86678 357.42 7

barbara

0.3 20.527 0.30278 572.44 16 20.516 0.3023 652.83 18
0.2 21.73 0.39872 411.5 13 21.729 0.39882 459.09 14
0.1 24.503 0.58885 285.8 9 24.486 0.58693 302.46 10
0.05 28.196 0.75135 309.53 7 28.198 0.75151 304.89 7
0.01 38.898 0.92794 424.8 18 38.898 0.92794 425.12 18

0.005 44.186 0.96871 147.57 5 44.186 0.96871 150.91 5

house

0.3 23.661 0.18529 593.22 18 23.704 0.18526 698.35 22
0.2 25.507 0.23789 478.33 17 25.51 0.23741 522.86 18
0.1 28.736 0.32695 304.43 13 28.741 0.32581 332.47 14
0.05 31.94 0.4217 184.75 11 31.943 0.42182 320.22 11
0.01 40.423 0.73752 451.47 13 40.423 0.73752 377.89 13

0.005 45.118 0.85458 286.48 7 45.118 0.85458 222.54 7
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Table 9. Cont.

Image σ
pLATV with pdN with η = 0 pLATV with Box-Constrained pdN

PSNR MSSIM Time It PSNR MSSIM Time It

lena

0.3 21.829 0.29245 624.96 19 21.828 0.29232 727.69 21
0.2 23.442 0.3634 471.91 16 23.445 0.36326 538.81 17
0.1 26.403 0.49438 347.04 13 26.406 0.49419 374.1 14

0.05 29.703 0.62778 396.43 8 29.704 0.62784 403.49 8
0.01 39.324 0.91256 652.2 16 39.324 0.91256 659.92 16
0.005 44.736 0.97081 244.61 5 44.737 0.97081 237.28 5

bones

0.3 25.633 0.36194 869.22 37 25.518 0.35855 1122.8 38
0.2 27.6 0.41895 665.85 33 27.506 0.41674 823.95 33
0.1 30.964 0.51162 419.72 26 30.862 0.51085 435.6 24
0.05 34.413 0.59991 291.13 19 34.408 0.59947 374.07 19
0.01 43.521 0.76261 98.45 6 43.521 0.76261 93.765 6

0.005 47.564 0.7997 103.29 6 47.564 0.7997 95.637 6

cookies

0.3 21.415 0.31722 597.85 17 21.371 0.3164 653.83 18
0.2 23.126 0.40895 500.29 16 23.107 0.4087 485.2 15
0.1 26.487 0.55758 237.87 12 26.501 0.55811 332.12 12

0.05 30.301 0.68332 413.36 12 30.295 0.68292 175.11 9
0.01 40.525 0.86052 261.76 8 40.525 0.86052 236.96 8
0.005 45.499 0.90364 229.85 5 45.499 0.90364 174.58 5

numbers

0.3 17.627 0.33232 421.86 11 17.821 0.34957 654.22 20
0.2 20.7 0.39072 313.32 10 20.888 0.40559 556.07 19
0.1 26.296 0.4455 258.05 10 26.528 0.45766 440.13 17
0.05 32.104 0.47624 339.03 10 32.369 0.48578 501.47 15
0.01 45.527 0.51735 92.644 2 45.938 0.52169 59.513 2

0.005 51.265 0.53078 207.86 5 51.536 0.53125 257.45 6
∅ 32.1155 0.5365 374.5490 12.2708 32.1531 0.5375 425.8590 13.4167

For σ = 0.1 and the image “barbara” we show in Figure 5 the reconstructions generated by the
considered algorithms. As indicated by the quality measures, all the reconstructions look nearly alike,
whereby in the reconstructions produced by the pLATV-algorithm details, like the pattern of the scarf,
are (slightly) better preserved. The spatially varying α of the pLATV-algorithm is depicted in Figure 6.
There we clearly see, that at the scarf around the neck and shoulder the values of α are small, allowing
to preserve the details better.

(a) (b) (c) (d) (e)

(f) (g)

Figure 5. Reconstruction from blurry and noisy data. (a) Noisy observation; (b) pAPS with pdN
with η = 0 (PSNR: 24.241; MSSIM: 0.58555); (c) pAPS with box-constrained pdN (PSNR: 24.241;
MSSIM: 0.58564); (d) ADMM (PSNR: 24.224; MSSIM: 0.5883); (e) Box-constrained ADMM (PSNR:
24.215; MSSIM: 0.58921); (f) pLATV with pdN with η = 0 (PSNR: 24.503; MSSIM: 0.58885); (g) pLATV
with box-constrained pdN (PSNR: 24.486; MSSIM: 0.58693).
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(a) (b)

Figure 6. Spatially varying regularization parameter generated by the respective pLATV-algorithm.
(a) pLATV with pdN with η = 0; (b) pLATV with box-constrained pdN.

6.3.3. Image Deblurring

Now we consider the images in Figure 1a–c, convolve them first with a Gaussian kernel of
size 9× 9 and standard deviation 3 and then add some Gaussian noise with mean 0 and standard
deviation σ. Here we again compare the results obtained by the pAPS-algorithm, the ADMM, and
the pLATV-algorithm for the box-constrained and non-box-constrained problems. Our findings are
summarized in Table 10. Also here we observe a slight improvement with a box-constraint with
respect to PSNR and MSSIM. The choice of the regularization parameters by the box-constrained
pAPS-algorithm is depicted in Figure 7. In Figure 8 we present for the image “cameraman” and
σ = 0.01 the reconstructions produced by the respective methods. Also here, as indicated by the
quality measures, all the restorations look nearly the same. The locally varying α generated by the
pLATV-algorithm are depicted in Figure 9.

Table 10. PSNR- and MSSIM-values of the reconstruction of different images corrupted by Gaussian
blur and Gaussian white noise via pAPS or pLATV using the primal-dual Newton method or via the
ADMM by solving the constrained versions.

Image σ
pAPS with pdN with η = 0 pAPS with Box-Constrained pdN

PSNR MSSIM Time It PSNR MSSIM Time It

phantom
0.05 16.41 0.21695 11,603 11 16.801 0.23085 33,002 11
0.01 18.624 0.30997 12,663 10 18.861 0.32574 18,744 8
0.005 20.554 0.36713 5892.9 6 21.01 0.38225 17,245 9

cameraman
0.05 22.482 0.2288 8328.5 11 22.484 0.22905 24,162 11
0.01 24.281 0.34554 4799.8 5 24.293 0.34618 13,102 5
0.005 25.436 0.4035 5611.4 8 25.451 0.40405 12,033 7

barbara
0.05 21.363 0.37833 5422.8 8 21.363 0.37832 10,657 8
0.01 22.052 0.49312 2820.6 5 22.052 0.49311 6188.1 5
0.005 23.084 0.57223 4275.5 13 23.084 0.57223 11,121 13

∅ 21.5874 0.3684 6824 8.5556 21.7108 0.37353 16,250 8.5556
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Table 10. Cont.

Image σ
ADMM Box-Constrained ADMM

PSNR MSSIM Time It PSNR MSSIM Time It

phantom
0.05 16.427 0.2691 6243.1 465 16.811 0.27613 8186.6 581
0.01 18.581 0.3094 34,683 1424 18.809 0.32544 33,141 1327

0.005 20.505 0.3677 40,801 1426 20.906 0.38285 43,753 1485

cameraman
0.05 22.51 0.2242 2870.1 214 22.501 0.22423 4065.4 305
0.01 24.236 0.34073 8268.2 428 24.237 0.34082 7185.3 358

0.005 25.373 0.3986 30,944 1200 25.377 0.3987 26985 1081

barbara
0.05 21.417 0.38039 1996.6 169 21.421 0.38113 2807.4 237
0.01 22.036 0.48965 13,282 678 22.038 0.48964 12,012 627

0.005 23.043 0.56871 40,949 1527 23.038 0.56841 37,430 1423
∅ 21.5699 0.37205 20,004 836.78 21.6821 0.37637 19,507 824.89

Image σ
pLATV with pdN with η = 0 pLATV with Box-Constrained pdN

PSNR MSSIM Time It PSNR MSSIM Time It

phantom
0.05 16.43 0.21966 14,732 12 16.824 0.23305 29,567 10
0.01 18.967 0.31788 39,014 49 19.602 0.33679 11,950 52

0.005 20.729 0.36861 49,658 67 22.041 0.39052 11,940 71

cameraman
0.05 22.533 0.22964 26,380 22 22.534 0.22973 70,208 22
0.01 24.599 0.34708 57,513 47 24.622 0.34769 113,175 47

0.005 25.77 0.40389 39,662 60 25.796 0.40451 110,646 60

barbara
0.05 21.377 0.3808 26,779 24 21.377 0.3808 49,808 24
0.01 22.432 0.50565 22,433 51 22.448 0.50625 78,720 52

0.005 23.652 0.59532 16,168 61 23.658 0.59545 53,559 61
∅ 21.8319 0.37428 32,482 43.667 22.1003 0.38053 81,893 44.333

σ

0.05 0.01 0.005

α

0

0.005

0.01

0.015

0.02

0.025

phantom

cameraman

barbara

Figure 7. Regularization parameter versus noise-level for the box-constrained pAPS in
image deblurring.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 8. Reconstruction from blurry and noisy data. (a) Blurry and noisy observation; (b) pAPS with
pdN with η = 0 (PSNR: 24.281; MSSIM: 0.34554); (c) pAPS with box-constrained pdN (PSNR: 24.293;
MSSIM: 0.34618); (d) ADMM (PSNR: 24.236; MSSIM: 0.34073); (e) Box-constrained ADMM (PSNR:
24.237; MSSIM: 0.34082); (f) pLATV with pdN with η = 0 (PSNR: 24.599; MSSIM: 0.34708); (g) pLATV
with box-constrained pdN (PSNR: 24.622; MSSIM: 0.34769).

(a) (b)

Figure 9. Spatially varying regularization parameter generated by the respective pLATV-algorithm.
(a) pLATV with pdN with η = 0; (b) pLATV-algorithm with box-constrained pdN.

6.3.4. Image Inpainting

The problem of filling in and recovering missing parts in an image is called image inpainting.
We call the missing parts inpainting domain and denote it by D ⊂ Ω. The linear bounded operator K is
then a multiplier, i.e., Ku = 1Ω\D · u, where 1Ω\D is the indicator function of Ω \ D. Note, that K is not
injective and hence K∗K is not invertible. Hence in this experiment we need to set µ > 0 so that we
can use the proposed primal-dual semismooth Newton method. In particular, as mentioned above,
we choose µ = 10−6.

In the considered experiments the inpainting domain are gray bars as shown in Figure 10a, where
additionally additive white Gaussian noise with σ = 0.1 is present. In particular, we consider examples
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with σ ∈ {0.3, 0.2, 0.1, 0.05, 0.01, 0.005}. The performance of the pAPS- and pLATV-algorithm with and
without a box-constraint reconstructing the considered examples are summarized in Tables 11 and 12.
We observe, that adding a box-constraint does not seem to change the restoration considerably.
However, as in the case of image denoising, the pAPS-algorithm with box-constrained pdN needs less
iterations and hence less time than the same algorithm without a box-constraint to reach the stopping
criterion. Figure 10 shows a particular example for image inpainting and denoising with σ = 0.1.
It demonstrates that visually there is nearly no difference between the restoration obtained by the
considered approaches. Moreover, we observe that the pLATV-algorithm seems to be not suited to
the task of image inpainting. A reason for this might be, that the pLATV-algorithm does not take the
inpainting domain correctly into account. This is visible in Figure 11 where the spatially varying α

seems to be chosen small in the inpainting domain, which not necessarily seems to be a suitable choice.

(a) (b) (c)

(d) (e)

Figure 10. Simultaneous image inpainting and denoising with σ = 0.1. (a) Observation; (b) pAPS with
pdN with η = 0 (PSNR: 24.922; MSSIM: 0.44992); (c) pAPS with box-constrained pdN (PSNR: 24.922;
MSSIM: 0.44992); (d) pLATV with pdN with η = 0 (PSNR: 24.893; MSSIM: 0.4498); (e) pLATV with
box-constrained pdN (PSNR: 24.868; MSSIM: 0.45004).

Table 11. PSNR- and MSSIM-values for the application inpainting via pAPS.

Image σ
pAPS with pdN with η = 0 pAPS with Box-Constrained pdN

PSNR MSSIM Time α It PSNR MSSIM Time α It

lena

0.3 21.151 0.26378 1709.9 0.37358 105 21.151 0.26378 958.59 0.37358 50
0.2 22.555 0.33033 1075.8 0.23336 72 22.555 0.33032 578.35 0.23336 32
0.1 24.922 0.44992 578.34 0.10369 41 24.922 0.44992 370.42 0.10369 18
0.05 27.005 0.56734 513.1 0.044922 25 27.005 0.56735 507.37 0.044919 25
0.01 29.618 0.82318 524.73 0.006614 9 29.618 0.82319 516.86 0.0066133 9

0.005 29.912 0.87427 569.85 0.00319 8 29.912 0.87427 674.02 0.0031896 8

cookies

0.3 20.761 0.27956 1189.8 0.34456 74 20.763 0.27963 806.65 0.34448 35
0.2 22.138 0.36599 761.34 0.22529 55 22.138 0.36599 228.76 0.22529 10
0.1 24.624 0.50595 419.34 0.11088 36 24.624 0.50595 283.69 0.11088 15
0.05 26.967 0.62721 359.67 0.05467 26 26.967 0.62721 409.44 0.05467 26
0.01 30.05 0.80847 481.89 0.01008 14 30.05 0.80847 547.4 0.01008 14

0.005 30.438 0.85701 491.23 0.0047745 11 30.438 0.85701 590.77 0.0047745 11
∅ 25.83 0.57403 617.22 36 25.83 0.57404 477.78 18.5
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Table 12. PSNR- and MSSIM-values for the application inpainting via pLATV.

Image σ
pLATV with pdN with η = 0 pLATV with Box-Constrained pdN

PSNR MSSIM Time It PSNR MSSIM Time It

lena

0.3 21.027 0.26266 684.18 14 21.036 0.26239 836.18 16
0.2 22.45 0.32986 555.66 11 22.457 0.32939 584.66 12
0.1 24.893 0.4498 446.84 12 24.868 0.45004 400.3 9
0.05 26.982 0.56904 474.61 9 26.983 0.56912 460.22 9
0.01 29.621 0.82242 796.53 16 29.621 0.82242 775.88 16

0.005 29.987 0.87461 285.24 5 29.987 0.87461 284.79 5

cookies

0.3 20.546 0.27499 660.05 11 20.548 0.27574 753.89 13
0.2 21.965 0.36179 458.1 10 21.975 0.36259 578.94 11
0.1 24.538 0.50627 193.2 10 24.547 0.50651 251.68 11
0.05 26.862 0.63007 322.75 7 26.863 0.6301 381.66 7
0.01 30.047 0.80869 83.563 2 30.047 0.80869 99.415 2

0.005 30.254 0.84914 181.44 5 30.254 0.84914 213.15 5

∅ 25.7643 0.56161 428.51 9.3333 25.765 0.56173 468.3961 9.6667

(a) (b)

Figure 11. Spatially varying regularization parameter generated by the respective pLATV-algorithm.
(a) pLATV with pdN with η = 0; (b) pLATV-algorithm with box-constrained pdN.

6.3.5. Reconstruction from Partial Fourier-Data

In magnetic resonance imaging one wishes to reconstruct an image which is only given by partial
Fourier data and additionally distorted by some additive Gaussian noise with zero mean and standard
deviation σ. Hence, the linear bounded operator is K = S ◦ F , where F is the 2D Fourier matrix and S
is a downsampling operator which selects only a few output frequencies. The frequencies are usually
sampled along radial lines in the frequency domain, in particular in our experiments along 32 radial
lines, as visualized in Figure 12.

Figure 12. Sampling domain in the frequency plane, i.e., sampling operator S.
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In our experiments we consider the images of Figure 2, transformed to its Fourier frequencies.
As already mentioned, we sample the frequencies along 32 radial lines and add some Gaussian
noise with zero mean and standard deviation σ. In particular, we consider different noise-levels,
i.e., σ = {0.3, 0.2, 0.1, 0.05, 0.01, 0.005}. We reconstruct the obtained data via the pAPS- and
pLATV-algorithm by using the semi-smooth Newton method first with η = 0 (no box-constraint) and
then with η = 106 (with box-constraint). In Table 13 we collect our findings. We observe that the
pLATV-algorithm seems not to be suitable for this task, since it is generating inferior results. For scalar
α we observe as before, that a slight improvement with respect to PSNR and MSSIM is expectable
when a box-constraint is used. In Figure 13 we present the reconstructions generated by the considered
algorithms for a particular example, demonstrating the visual behavior of the methods.

Table 13. PSNR- and MSSIM-values of the reconstruction of sampled Fourier data corrupted by
Gaussian white noise via the pAPS- and pLATV-algorithm using the primal-dual Newton method.

Image σ
pAPS with pdN with η = 0 pAPS with Box-Constrained pdN

PSNR MSSIM CPU-Time PSNR MSSIM CPU-Time

Shepp- 0.3 18.888 0.16233 3787.2 19.000 0.1685 5509.2
Logan 0.2 20.524 0.21302 2844.9 20.696 0.22086 3673.5

phantom 0.1 24.256 0.2905 1884.7 24.496 0.29896 2582.3
0.05 28.639 0.34972 2008.5 28.948 0.35833 2115
0.01 40.168 0.42734 1993.3 40.711 0.43325 1349.5

0.005 45.263 0.44714 2225.4 45.933 0.45199 951.49

knee

0.3 21.606 0.26553 22,466 21.606 0.26553 36,054
0.2 22.985 0.30965 15,705 22.985 0.30965 31,072
0.1 25.017 0.37061 11,561 25.017 0.37056 24,994
0.05 26.443 0.41652 8803.4 26.445 0.41661 21,056
0.01 27.912 0.47141 4996.9 27.959 0.47267 11,707

0.005 28.035 0.47683 6076.9 28.089 0.47843 13,116
∅ 27.4781 0.35005 7029.4365 27.657 0.35378 12,848.2064

Image σ
pLATV with pdN with η = 0 pLATV with Box-Constrained pdN

PSNR MSSIM CPU-Time PSNR MSSIM CPU-Time

Shepp- 0.3 18.99 0.16078 5445.3 17.148 0.11219 15,500
Logan 0.2 20.567 0.21006 3179.1 19.324 0.17395 11,719

phantom 0.1 24.376 0.29028 2491.5 23.51 0.27083 4623.8
0.05 28.569 0.34645 1926.1 28.303 0.34392 7125.8
0.01 39.475 0.41775 266.7 39.579 0.42053 695.74

0.005 43.782 0.43085 465.09 43.627 0.43096 1373.9

knee

0.3 15.583 0.18089 17,413 16.011 0.186 17,750
0.2 18.87 0.24419 11,640 19.227 0.25069 14,414
0.1 23.525 0.34652 3663.5 23.64 0.34945 9220.4
0.05 26.307 0.41393 1545.6 26.341 0.4159 4165.6
0.01 27.044 0.46069 4091.1 27.055 0.4612 12,059

0.005 24.773 0.41841 10,499 24.639 0.4172 34,409
∅ 25.9885 0.3267 5218.8 25.7003 0.3194 11,088

(a) (b) (c) (d)

Figure 13. Reconstruction from sampled Fourier data. (a) pAPS with pdN with η = 0 (PSNR: 25.017;
MSSIM: 0.37061); (b) pAPS with box-constrained pdN (PSNR: 25.017; MSSIM: 0.37056); (c) pLATV with
box-constrained pdN (PSNR: 23.64; MSSIM: 0.34945); (d) pLATV with pdN with η = 0 (PSNR: 23.525;
MSSIM: 0.34652).
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6.3.6. Reconstruction from Sampled Radon-Data

In computerized tomography instead of a Fourier-transform a Radon-transform is used in order
to obtain a visual image from the measured physical data. Also here the data is obtained along
radial lines. Here we consider the Shepp-Logan phantom, see Figure 14a, and a slice of a body, see
Figure 15a. The sinogram in Figures 14a and 15b are obtained by sampling along 30 and 60 radial
lines, respectively, Note, that the sinogram is in general noisy. Here the data is corrupted by Gaussian
white noise with standard deviation σ, whereby σ = 0.1 for the data of the Shepp-Logan phantom and
σ = 0.05 for the data of the slice of the head. Using the inverse Radon-transform we obtain Figure 16a,b,
which is obviously a suboptimal reconstruction. A more sophisticated approach utilizes the L2-TV
model which yields the reconstruction depicted in Figure 16b,e, where we use the pAPS-algorithm
and the proposed primal-dual algorithm with η = 0. However, since an image can be assumed to
have non-negative values, we may incorporate a non-negativity constraint via the box-constrained
L2-TV model yielding the result in Figure 16c,f, which is a much better reconstruction. Also here
the parameter α is automatically computed by the pAPS-algorithm and the non-negativity constraint
is incorporated by setting η = 106 in the semi-smooth Newton method. In order to compute the
Radon-matrix in our experiments we used the FlexBox [52].

(a) (b)

Figure 14. The Shepp-Logan phantom image of size 64 × 64 pixels and its measured sinogram.
(a) Original image; (b) Sinogram.

(a) (b)

Figure 15. Slice of a human head and its measured sinogram. (a) Original image; (b) Sinogram.

(a) (b) (c)

Figure 16. Cont.
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(d) (e) (f)

Figure 16. Reconstruction from noisy data. (a) Inverse Radon-transform (PSNR: 29.08; MSSIM: 0.3906);
(b) L2-TV (PSNR: 29.14; MSSIM: 0.4051); (c) Box-constrained L2-TV (PSNR: 33.31; MSSIM: 0.6128);
(d) Inverse Radon-transform (PSNR: 31.75; MSSIM: 0.3699); (e) L2-TV (PSNR: 32.16; MSSIM: 0.3682);
(f) Box-constrained L2-TV (PSNR: 36.08; MSSIM: 0.5856).

Other applications where a box-constraint, and in particular a non-negativity improves the image
reconstruction quality significantly include for example magnetic particle imaging, see for example [53]
and references therein.

7. Automated Parameter Selection

We recall, that if the noise-level σ is not known, then the problems (1) and (3) cannot be
considered. Moreover, the selection of the parameter α in problem (2) cannot be achieved by using the
pAPS-algorithm, since this algorithm is based on problem (1). Note, that also other methods, like the
unbiased predictive risk estimator method (UPRE) [54,55] and approaches based on the Stein unbiased
risk estimator method (SURE) [56–60] use knowledge of the noise-level and hence cannot be used for
selecting a suitable parameter if σ is unknown.

If we assume that σ is unknown but the image intensity range of the original image û is known,
i.e., û ∈ [cmin, cmax], then we may use this information for choosing the parameter α in problem (2).
This may be performed by applying the following algorithm:

Box-constrained automatic parameter selection (bcAPS): Initialize α0 > 0 (sufficiently small) and
set n := 0

1. Solve un ∈ arg minu∈BV(Ω) ‖Ku− g‖2
L2(Ω)

+ αn
∫

Ω |Du|.
2. If un 6∈ [cmin, cmax] increase αn (i.e., αn+1 := ταn with τ > 1), else STOP.
3. Set n := n + 1 and continue with step 1.

Here τ > 1 is an arbitrary parameter chosen manually such that the generated restoration u is not
over-smoothed, i.e., there exist x ∈ Ω such that u(x) ≈ cmin and/or u(x) ≈ cmax. In our experiments
it turned out that τ = 1.05 seems to be a reasonable choice, so that the generated solution has the
wished property.

Numerical Examples

In our experiments the minimization problem in step 1 of the bcAPS algorithm is approximately
solved by the proposed primal-dual semi-smooth Newton method with η = 0. We set the initial
regularization parameter α0 = 10−4 for image denoising and α0 = 10−3 for image deblurring.
Moreover, we set τ = 1.05 in the bcAPS-algorithm to increase the regularization parameter.

Experiments for image denoising, see Table 14, show that the bcAPS-algorithm finds suitable
parameters in the sense that the PSNR and MSSIM of these reconstructions is similar to the
ones obtained with the pAPS-algorithm (when σ is known); also compare with Tables 7 and 10.
This is explained by the observation that also the regularization parameters α calculated by the
bcAPS-algorithm do not differ much from the ones obtained via the pAPS-algorithm. For image
deblurring, see Table 15, the situation is not so persuasive. In particular, the obtained regularization
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parameter of the two considered methods differ more significantly than before, resulting in different
PSNR and MSSIM. However, in the case σ = 0.05 the considered quality measures of the generated
reconstructions are nearly the same.

Table 14. PSNR- and MSSIM-values of the reconstruction of the cameraman-image corrupted by
Gaussian white noise with standard deviation σ via the bcAPS algorithm using the primal-dual
Newton method with η = 0.

σ
bcAPS pAPS

PSNR MSSIM Time α PSNR MSSIM Time α

0.3 22.230 0.17478 1065.8 0.381058 22.485 0.18619 1591 0.34586
0.2 23.637 0.22552 1084.9 0.245634 24.054 0.24497 919.63 0.21408
0.1 26.621 0.32588 840.2 0.112528 27.132 0.35201 580.91 0.096108

0.05 29.388 0.41062 817.9 0.059676 30.567 0.47437 549.23 0.043393
0.01 39.332 0.70321 552.4 0.009346 40.417 0.75235 677.79 0.0071847
0.005 44.508 0.84591 415.6 0.003883 45.164 0.8686 745.67 0.0032996

Table 15. PSNR- and MSSIM-values of the reconstruction of the cameraman-image corrupted Gaussian
blur and Gaussian white noise with standard deviation σ via the bcAPS algorithm using the primal-dual
Newton method with η = 0.

σ
bcAPS pAPS

PSNR MSSIM Time α PSNR MSSIM Time α

0.05 22.304 0.21524 76,216.3 0.027598 22.482 0.2288 8328.5 0.019529
0.01 22.956 0.26523 86,068.9 0.010401 24.281 0.34554 4799.8 0.0012714
0.005 23.024 0.27018 96,837.0 0.009434 25.436 0.4035 5611.4 0.00031872

We also remark, that in all the experiments the pAPS-algorithm generated reconstructions, which
have larger PSNR and MSSIM than the ones obtained by the bcAPS-algorithm. From this observation it
seems more useful to know the noise-level than the image intensity range. However, if the noise-level
is unknown but the image intensity is known, then the bcAPS-algorithm may be a suitable choice.

8. Conclusions

In this work we investigated the quality of restored images when the image intensity range of the
original image is additionally incorporated into the L2-TV model as a box-constraint. We observe that
this box-constraint may indeed improve the quality of reconstructions. However, if the observation
already fulfills the box-constraint, then it clearly does not change the solution at all. Moreover, in a lot
of applications the proper choice of the regularization parameter seems much more important than
an additional box-constraint. Nevertheless, also then a box-constraint may improve the quality of
the restored image, although the improvement is then only very little. On the contrary the additional
box-constraint may improve the computational time significantly. In particular, for image deblurring
and in magnetic resonance imaging using the pAPS-algorithm the computational time is about
doubled, while the quality of the restoration is basically not improved. This suggests, that for these
applications an additional box-constraint may not be reasonable. Note, that the run-time of the ADMM
is independent whether a box-constraint is used or not.

For certain applications, as in computerized tomography, a box-constraint (in particular a
non-negativity constraint) improves the reconstruction considerably. Hence, the question rises under
which conditions an additional box-constraint indeed has significant influence on the reconstruction
when the present parameters are chosen in a nearly optimal way.

If the noise-level of an corrupted image is unknown but the image intensity range of the original
image is at hand, then the image intensity range may be used to calculate a suitable regularization



J. Imaging 2018, 4, 12 29 of 34

parameter α. This can be done as explained in Section 7. Potential future research may consider
different approaches, as for example in an optimal control setting. Then one may want to solve

min
u,α
‖max{u− cmax, 0}‖2

L2(Ω) + ‖max{cmin − u, 0}‖2
L2(Ω) + κ J(α)

s.t. u ∈ arg min
u
‖Ku− g‖2

L2(Ω) + α
∫

Ω
|Du|,

where κ > 0 and J is a suitable functional, cf. [61–63] for other optimal control approaches in
image reconstruction.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Proof of Proposition 3

In order to compute the Fenchel dual of problem (14) we set q = −p,

F (~q) := χA(~q1) +
γ

2α
‖~q1‖2

2 +
1

2η
‖q2‖2

2 + ‖cq2‖1

G(Λ~q) :=
1
2
|||K∗g−Λ~q|||2B −

1
2
‖g‖2

2, Λ~q := q2 − div~q1,

with X = L2(Ω)× L2(Ω) and Y = H1
0(Ω)∗ = H−1(Ω).

By the definition of conjugate we have

G∗(u∗) = sup
u∈Y
{〈u, u∗〉 − 1

2
〈B(K∗g− u), K∗g− u〉+ 1

2
‖g‖2

2}.

Then u is a supremum if

∂u{〈u, u∗〉 − G(u)} = u∗ + B(K∗g− u) = 0,

which implies u = B−1u∗ + 2α2T∗2 g2. Hence

G∗(u∗) = 〈B−1u∗ + K∗g, u∗〉 − 1
2
〈BB−1u∗, B−1u∗〉+ 1

2
‖g‖2

2

= 〈u∗, B−1u∗〉+ 〈u∗, K∗g〉 − 1
2
〈u∗, B−1u∗〉+ 1

2
‖g‖2

2

=
1
2
〈u∗, (K∗K + µ∇∗∇)u∗〉+ 〈u∗, K∗g〉+ 1

2
‖g‖2

2

=
1
2
〈Ku∗, Ku∗〉+ µ

2
〈∇u∗,∇u∗〉+ 〈Ku∗, g〉+ 1

2
‖g‖2

2

=
1
2
‖Ku∗ + g‖2

2 +
µ

2
‖∇u∗‖2

2.

In order to compute the conjugate F ∗ we split F into two functionals F1 and F2 defined as

F1(~q1) := χA(~q1) +
γ

2α
‖~q1‖2

2, F2(q2) :=
1

2η
‖q2‖2

2 + ‖cq2‖1,

whereas F ∗(~q∗) = F ∗1 (~q∗1) +F ∗2 (q∗2). We have, that

F1(~q∗1) = sup
~q1∈L2(Ω)

{〈~q1,~q∗1〉 − χA(~q1)−
γ

2α
‖~q1‖2

2}.
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A function~q1 is a supremum of this set if

~q∗1 −
γ

α
~q1 = 0

with |~q1|`2 ≤ α. The equality implies~q1 = α
γ~q
∗
1 from which we deduce

F ∗1 (~q∗1)(x) =

{
α

2γ |~q∗1(x)|2
`2 if |~q∗1(x)|`2 < γ,

α|~q∗1(x)|`2 − αγ
2 if |q∗1(x)|`2 ≥ γ.

For the conjugate F ∗2 of F2 we get

F ∗2 (q∗2) = sup
q2∈L2(Ω)

{〈q2, q∗2〉 −
1

2η
‖q2‖2

2 − ‖cq2‖1}.

Hence q2 is a supremum if

q∗2 −
1
η

q2 − cσ‖·‖1
= 0 with σ‖·‖1

∈ ∂‖cq2‖1. (A1)

Thus

F ∗2 (~q∗2) = 〈ηq∗2 − ηcσ‖·‖1
, q∗2〉 −

1
2η
‖ηq∗2 − ηcσ‖·‖1

‖2
2 − ‖cηq∗2 − c2ησ‖·‖1

‖1

= η〈q∗2 − ηcσ‖·‖1
, q∗2 − ηcσ‖·‖1

〉+ η〈q∗2 − ηcσ‖·‖1
, ηcσ‖·‖1

〉 − η

2
‖ηq∗2 − ηcσ‖·‖1

‖2
2

− ‖cηq∗2 − c2ησ‖·‖1
‖1

=
η

2
‖q∗2 − cσ‖·‖1

‖2
2 + η

∫
{q2≥0}

(q∗2 − c)c− |cq∗2 − c2|dx

+ η
∫
{q2<0}

(q∗2 + c)(−c)− |cq∗2 + c2|dx.

From (A1) we obtain that

if q2 = 0 then q∗2 = cσ‖·‖1
,

if q2 > 0 then q∗2 > c,

if q2 < 0 then q∗2 < c.

Using this observation yields

F ∗2 (q∗2) =
η

2
‖q∗2 − cσ‖·‖1

‖2
2 =

η

2

∫
{q2≥0}

|q∗2 − c|2dx +
∫
{q2<0}

|q∗2 + c|2dx

=
η

2
‖max{|q∗2 | − c, 0}‖2

2.

By the Fenchel duality theorem the assertion follows.

Appendix B. Box-Constrained ADMM

In [51] an ADMM for solving the constrained problem (1) in a finite dimensional setting is
presented. In a similar way we may solve the discrete version of problem (3), i.e.,

min
uh∈RN

‖∇uh‖1 s.t. uh ∈ Ch, 1
N ‖S

hHhuh − gh‖2
2 ≤ σ2, (A2)
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where we use the notation of Section 5 and Kh = Sh Hh with Hh ∈ RN×N being a circular matrix and
Sh ∈ RN×N as in [51]. Moreover, Ch := {uh ∈ RN : cmin ≤ uh

i ≤ cmax for all i ∈ {1, . . . , N}}, ‖ · ‖i

refers to the standard definition of the `i-norm, i.e, ‖u‖i :=
(

∑N
j=1 |uj|i

) 1
i , and 〈·, ·〉 denotes the `2

inner product.
In order to apply the ADMM to problem (A2) we rewrite it as follows:

min
wh∈RN×RN

‖wh‖1 s.t. wh = ∇hu, yh = Hhu, 1
N ‖S

hyh − gh‖2
2 ≤ ν, zh = uh,

zh ∈ Ch

which is equivalent to

min
wh∈RN×RN ,yh ,zh∈RN

‖w‖1 + χYh(yh) + χCh(zh) s.t. wh = ∇huh, yh = Hhuh,

zh = uh,

where Yh := {yh ∈ RN : 1
N ‖Shyh − gh‖2

2 ≤ σ2}.
The augmented Lagrangian of this problem is

L(uh, vh, λh) = f (vh) + 〈λh, Bhuh − vh〉+ β

2
‖Bhuh − vh‖2

2,

with vh =

wh

yh

zh

 ∈ R4N , f (vh) = ‖wh‖1 + χYh(y) + χCh(zh), Bh =

 ∇h

Hh

Dh(eN)

 ∈ R4N×N , and β > 0

denoting the penalty parameter. Hence the ADM for solving problem (A2) runs as follows:

Box-constrained ADMM: Initialize vh
0 ∈ R4N , λh

0 ∈ R4N and set n = 0;

(1) Compute uh
n+1 ∈ arg minuh〈λh

n, Bhuh − vh
n〉+

β
2 ‖Bhuh − vh

n‖2
2

(2) Compute vh
n+1 = arg minvh f (vh) + 〈λh

n, Bhuh
n+1 − vh〉+ β

2 ‖Bhuh
n+1 − vh‖2

2
(3) Update λh

n+1 = λh
n + β(Bhuh

n+1 − vh
n+1)

(4) Stop or set n = n + 1 and continue with step 1).

In order to obtain uh
n+1 in step (1) a linear system that may be diagonalized by the DFT is to

solve. The solution of the minimization problem in step (2) might be computed as described in [51]
(Section 4.2). More precisely, we have

vh
n+1 = arg min

vh
f (vh) + 〈λh

n, Bhuh
n+1 − vh〉+ β

2
‖Bhuh

n+1 − vh‖2
2

= arg min
vh

f (vh) +
β

2
‖vh − (Bhuh

n+1 +
λh

n
β
)‖2

2 =: prox f /β

(
Bhuh

n+1 +
λh

n
β

)
,

where prox f is called proximal operator of f . If we write vh
n = uh

n+1 +
λh

n
β , we can decompose

prox f /β(·) as

prox f /β

wh

yh

zh

 =


prox‖·‖1/β(w

h)

proxχYh /β(y
h)

proxχCh /β(z
h)

 .
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From [51] we know, that

prox‖·‖1/β(w
h) =

wh if [|wh|] = 0,

wh −min{ 1
β , [|wh|]} wh

[|wh |] otherwise,

and proxχYh /β(y
h) is a projection onto a weighted `2-ball, which might be implemented as described

in [64]. From the definition of the proximal operator we see that

proxχCh /β(z
h) = arg min

z̃h∈Ch
‖z̃h − zh‖

is just the simple orthogonal projection of zh onto Ch.
We recall that the ADMM converges for any β > 0, see for example [30,65,66]. In our numerical

experiments we set β = 100 and we use the same stopping criterion as suggested in [51].
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