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Abstract: The reconstruction of MRI data assumes a uniform radio-frequency field. However,
in practice, the radio-frequency field is inhomogeneous and leads to anatomically inconsequential
intensity non-uniformities across an image. An anatomic region can be imaged with multiple contrasts
reconstructed independently and be suffering from different non-uniformities. These artifacts can
complicate the further automated analysis of the images. A method is presented for the joint
intensity uniformity restoration of two such images. The effect of the intensity distortion on the
auto-co-occurrence statistics of each image as well as on the joint-co-occurrence statistics of the two
images is modeled and used for their non-stationary restoration followed by their back-projection
to the images. Several constraints that ensure a stable restoration are also imposed. Moreover,
the method considers the inevitable differences between the signal regions of the two images.
The method has been evaluated extensively with BrainWeb phantom brain data as well as with
brain anatomic data from the Human Connectome Project (HCP) and with data of Parkinson’s
disease patients. The performance of the proposed method has been compared with that of the N4ITK
tool. The proposed method increases tissues contrast at least 4.62 times more than the N4ITK tool for
the BrainWeb images. The dynamic range with the N4ITK method for the same images is increased
by up to +29.77%, whereas, for the proposed method, it has a corresponding limited decrease of
−1.15%, as expected. The validation has demonstrated the accuracy and stability of the proposed
method and hence its ability to reduce the requirements for additional calibration scans.

Keywords: bi-contrast MRI intensity restoration; MRI bias field correction; joint co-occurrence
statistics; non-stationary restoration; Bayesian coring; Van Cittert deconvolution
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1. Introduction

Structural MRI can provide high resolution three-dimensional data sets of organs and tissues
within the body [1]. The images can be used to examine tissue integrity as well as to diagnose a variety
of disorders [2,3]. The examination can be qualitative, but it can also be quantitative [3]. The extensive
quantification and analysis of the data requires further processing with automated methods such as
registration and segmentation [4]. This further processing is hampered by the presence of imaging
artifacts of non-biological origin, s.a. intensity non-uniformities across an image. This artifact mainly
stems from the inhomogeneity of the Radio-Frequency (RF) field due to the coil as well as due to
its interaction with the subject. The inhomogeneity is more pronounced in high field MRI, which is
≥3.0 Tesla, despite the higher contrast to noise ratio that it can potentially provide.

It is possible to calibrate for the non-uniformity of the radio-frequency field with prospective
methods that involve additional acquisitions. A prospective acquisition method uses the frequency
responses to parameterized acquisition sequences [5,6]. Another method involves the acquisition of a
series of proton density weighted images in advance to estimate the inhomogeneity [7]. The imaging of
physical and geometric phantoms has also been used to approximate the combined non-uniformities
of the transmission and the receiver coil(s). The physical correction methods typically involve
additional acquisitions that are valid only for particular MRI sequences as well as geometries. Thus,
prospective methods may not be sufficient and may reduce contrast. They also increase acquisition
time that renders them more vulnerable to increased heat deposition on tissues and to motion artifacts.
A general physical formulation for the complicated interaction between the radio-frequency field and
the anatomy of the human body is not currently tractable.

Several retrospective restoration methods have also been proposed. They often restore individual
images [8]. Some are based on a primarily data-driven criterion and assume a distinction between
lower spatial frequencies corresponding to the non-uniformities and higher ones corresponding to the
anatomy. A direct implementation of this uses a low-pass homomorphic filter [9]. In parallel imaging
reconstruction, polynomial fitting of the coil data effectively performs low pass filtering that provides
the respective sensitivity maps [10]. Another primarily data-driven approach represents an image
with its spatial intensity derivatives of significant magnitude that are assumed to correspond to tissues
boundaries [11,12]. The reintegration of the normalized intensity gradients gives piecewise constant
regions [11]. Piecewise constancy has also been implemented with the Total Variation (TV) [13].
However, the TV prior is a Laplacian distribution that is uni-modal and hence favors intensity
transitions of uniform magnitude throughout an image. The regions of the same tissue that are
spatially disconnected are restored independently. The spatial piecewise smoothness has also been
used together with intensity clustering, s.a. fuzzy C-means, over local image windows [14–16].
These formulations have been extended with level sets that can provide an explicit representation for
two [17] or more regions corresponding to tissues [18].

Retrospective restoration has also been performed based on the histogram. A global histogram
statistic, the entropy, has been maximized [19]. However, the entropy is optimized for aligned
mode distributions and that can be limiting [20]. Thus, the histogram has been combined with the
coring methodology [21] that was originally developed for noise removal [22,23]. In the context of
MRI inhomogeneity correction, coring has been combined with a spatial smoothness constraint for
the field [24,25]. However, the histogram methods are sensitive to the level of image noise [4,26].
The histogram based methods can also lead to instabilities in the dynamic range and in the image
domain [19,24,25].

The intensity correction has been addressed together with other image analysis steps for specific
applications. It has been combined with local image denoising for diffusion weighted images [27] and
with intensity standardization [4,28]. Intensity statistics and the histogram have also been combined
with constraints for tissue classification [14,16]. The latter have been implemented with tissue intensity
priors and with tissue spatial priors to perform simultaneously intensity restoration as well as explicit
tissue segmentation [29]. Patch-based priors have also been used for intensity correction [30].
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A patient imaging protocol typically includes multiple sequences, each of which is reconstructed
independently. The resulting images can suffer from different non-uniformities. A variety of
retrospective methods has been developed for their joint non-uniformity correction. A data dependent
method fuses an MRI image with a Positron Emission Tomography (PET) dataset and processes
the resulting image with a low-pass filter [31]. Another data dependent method uses a variational
formulation that enforces smoothness of the non-uniformity fields and also preserves the differential
structure of the images [32]. The joint restoration of two images has used the minimization of the
entropy of their joint intensity histogram [33]. A method for the simultaneous restoration of multiple
co-registered images minimizes the sum of the entropies of voxelwise stack vectors over the entire
image domain [34]. The bi-contrast and multi-contrast restoration methods assume that the valid
signal domains of all the images involved are identical.

A retrospective method has been developed in this study that performs a joint intensity
restoration of images of two contrasts representing a certain anatomic region of a subject. In general,
the retrospective methods can benefit from regularity properties of the anatomy and from the physical
properties of the non-uniformities that are valid for a range of MRI contrast mechanisms and geometries.
The proposed method uses the Bayesian coring methodology that involves implicit non-parametric
priors. The priors are based on the auto-co-occurrence statistics for each image [35,36] as well as on the
cross- or joint-co-occurrence statistics of the two images. The effect of the intensity distortions on the
co-occurrence statistics is modeled and the statistics are restored. Additional constraints have been
imposed to achieve a stable and robust restoration. These include the smoothness of the non-uniformity,
the co-occurrence representation, the standardization of the dynamic ranges, and the consideration of
the inevitable difference between the signal regions of the two images.

The effectiveness of the method has been demonstrated extensively with BrainWeb brain
simulated images [37]. It has also been demonstrated with brain anatomic datasets of the Human
Connectome Project (HCP) (Data were provided (in part) by the Human Connectome Project, WU-Minn
Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded
by the 16 National Institutes of Health (NIH) Institutes and Centers that support the NIH Blueprint
for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington
University.) and with brain anatomic data sets of Parkinson’s disease patients. The performance of
the method has also been compared with the performance of the N4ITK tool [38,39]. The comparison
showed the superior performance of the proposed method. Thus, the method has been shown to
improve the accuracy, the efficiency, and the stability of the restoration. It also reduces the requirements
for additional acquisitions for calibration.

2. General Bayesian Formulation

The Bayesian formulation involves the model of the distortion that is used both directly to give
the likelihood and indirectly to give the prior. In this work, the distortion is multiplicative in image
domain and so the statistical distortion filter and the restoration are non-stationary. The prior is
represented non-parametrically. The Bayesian estimation is repeated iteratively, t.

2.1. Spatial and Statistical Image Representation

The general formulation is introduced for a single anatomic image v(x), with x = (x, y, z), which is
corrupted by a multiplicative spatial intensity non-uniformity b(x). This is due to the combined effect
of the transmit and the receive MRI radio-frequency inhomogeneities over an underlying latent
anatomic image u. The image is also corrupted with additive Rayleigh noise, n [40]. The noise is
independent and identically distributed. That is, the images model is:

v = b ◦ u + n, (1)
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where the multiplication ◦ is the voxelwise, Hadamard product. The probability distributions of
v, u, and b are defined over the entire image domain. The domain is discrete and the probability
distributions are computed voxelwise. The probability distributions of u(x) and b(x), Pu(u(x)) and
Pb(b(x); 1, σ2

b ), respectively, are assumed to be independent. It is shown in the Appendix A that they
give the probability distribution of Pv(v) as:

Pv(v) = P(v|u)(v|u) ∗ Pu(u) = Pu(u) ∗ Pb

(
v− u; 0, (σbu)2

)
, (2)

where ∗ is the convolution. That is, the latent density of u is convolved with a non-stationary distortion
filter over the dynamic range of u.

The image regions with b(x) > 1 become brighter and the image regions with b(x) < 1 become
darker. Each of these two ranges corresponds to a mode in the distribution of the non-uniformity
representing the distortion of the statistics. Thus, the Point Spread Function (PSF) of the distortion is a
bimodal distribution. It is taken to be

Pb(b; 1, σ2
b ) = k

G
(
b; 1, σ2

b
)

G2
(
b; 1, σ2

b
)
+ ε2

, (3)

where G(·) is a Gaussian distribution, ε2 is a regularization parameter, and k is a proportionality
constant. The proportionality constant k is computed numerically so that the area of the PSF, Pb is equal
to one. The bimodal shape of Pb is shown in Figure 1.

Figure 1. The bimodal shape of the PSF, Pb(·), of the distortion of the statistics.

2.2. Posterior Expectation for Voxelwise Intensity Restoration

An overview of the Bayesian framework is in Figure 2. It gives the estimate for the posterior
expectation of the assumed latent intensity, û = E(u|v) =

∫
P(u|v)(u|v)udu. The substitution of Bayes’

law expansion for P(u|v)(u|v) leads to:

û = E(u|v) =
∫

P(u|v)(u|v)udu =

∫
P(v|u)(v|u)Pu(u)udu∫
P(v|u)(v|u)Pu(u)du

. (4)

This expression involves the probability distribution for latent variable u, Pu(u). The latent
distribution is estimated from Pv(v) with the deconvolution of the distortion Pb(v − u|u) from
the actual intensity distribution Pv(v). The deconvolution provides the prior as a non-parametric
distribution, P̃u(u).
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The PSF for the distortion of the intensity co-occurrences, Pb, increases linearly with intensity
value. It is non-stationary in its direct domain that are the dynamic ranges. Thus, the deconvolution
has to be non-stationary in the direct domain. The deconvolution is performed with the regularized
Van Cittert method [41,42]. That is, the restoration is an iterative regularized algorithm formulated as

Pn+1
u = Pn

u + β(P0
v − Pb ∗ Pn

u ), (5)

where β is the regularization constant and P0
v is the probability of the initial image. The completion

of the iterations provides the estimate P̃u(u). The Van Cittert algorithm is formulated for stationary
deconvolution filters. In this work, it is extended to accommodate the non-stationary PSF of Pb.

Figure 2. Overview of the non-parametric Bayesian formulation for image restoration. The restoration
is repeated iteratively.

2.3. Back-Projection of Intensity Restoration to the Images

The restored statistics are estimated and enforced back to the image domain in a voxelwise manner.
The likelihood P(v|u)(v|u) in Equation (4) is equivalent to the non-stationary PSF in Equation (2) of the
intensity statistics. The prior Pu(u) in Equation (4) can be approximated by P̃u(u) = C̃u as estimated
from Equation (5) for the co-occurrence statistics of image u. These two terms are substituted in
Equation (4) to give

û = E(u|v) =
∫

Pb(v− u; 0, (σbu)2) · C̃u(u) · udu∫
Pb(v− u; 0, (σbu)2) · C̃u(u)du

. (6)

The density of Pb(v − u; 0, (σbu)2) for values of u that are far from v tends to zero. Thus,
the discretization of Equation (6) considers only a finite neighborhood ∆u ∈ Nv to give:

û = E(u|v) = ∑∆u∈Nv Pb(∆u; 0, (σbu)2) · C̃u(v + ∆u) · (v + ∆u)

∑∆u∈Nv Pb(∆u; 0, (σbu)2) · C̃u(v + ∆u)
. (7)

The size of the distortion filter Pb(∆u; 0, (σbu)2) and of the neighborhood Nv are non-stationary
and increase linearly with intensity v.
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The value of the initial restoration field, b−1, that is, the inverse of the distortion field, can be
derived from û as it is given from Equation (7). This is achieved with:

1
b(x)

= E
(

u(x)
v(x)

∣∣∣∣ v(x)
)
= E

(
u(x)|v(x)

v(x)

)
=

E (u(x)|v(x))
v(x)

=
û
v

. (8)

This provides the voxelwise restoraton expression. The restoration is iterative and the updated
estimates of the restoration are used at every iteration, t. At t, the estimate of vt provides an updated
estimate for ût. In turn, these two, vt and ût, provide

(
1

b(x)

)
t
.

The value of the restoration field for iteration t at location x depends only on the intensity of vt(x).
Thus, the restoration can be precomputed and stored in a one-dimensional array of size equal to that of
the dynamic range. It can then be indexed to expedite the back-projection of the voxelwise restoration
to the image at iteration t. The sequence of steps of the method are shown in Figure 3. The restoration
in the proposed methodology is joint for two images.

Figure 3. Overview of the series of steps in the implementation of the Bayesian formulation for image
restoration. The restoration is joint for two images and iterative.

3. Methods

The Bayesian formulation is extended in various ways to represent issues related to the specific
problem. An extension is for smooth spatial non-uniformities. Another extension is for the joint
restoration of bi-contrast data. The identification of the signal domains of the images allows the
restoration only over regions where the non-uniformity assumptions are valid. The numerical
implementation of the restoration is iterative and the dynamic ranges are enforced to be stable.

3.1. Spatial and Statistical Image Representation

The method involves images of two different constrasts, vi(x), where i = 0, 1. The two images
are in the same anatomic space and their domains have the same spatial sampling grid. They can
be corrupted by different multiplicative spatial intensity non-uniformities, bi, that represent the MRI
radio-frequency inhomogeneities over the underlying anatomic images ui, i = 0, 1. Each image is also
corrupted with additive Rayleigh noise, ni [40]. That is, the model becomes

vi = bi ◦ ui + ni, i = 0, 1 (9)
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and is identical for both images.
The Taylor series expansion of the non-uniformities, bi(x), around a voxel x0 gives

bi(x) = bi(x0) +∇bi(x)|x0(x− x0) + O(x2). (10)

The first order term provides a linear approximation of the non-uniformity within a spherical
neighborhoodNρ of radius ρ = |x− x0|. The effects of the second and higher order terms are neglected
within Nρ. The statistical representation of images v0 and v1 is based on intensities η0 and η1 within
neighborhood Nρ. Their counts give the co-occurrence statistics as [35,43]:

Cvivj(vi, vj, ηi, ηj) ≡ Cvivj(ηi, ηj) =
∫

v−1
i (ηi)

(∫
v−1

j (ηj)

(
‖x− x′‖2 ≤ ρ

)
dx′
)

dx. (11)

They give the auto-co-occurrences for i ≡ j and the joint-co-occurrences for i 6= j.
The auto-co-occurrences are dominated by their diagonal entries and thus they are weighted down
with the sigmoid 1/(1 + e−(k1|η0−η1|+k2)). The different tissues, or tissues interfaces, of the anatomic
images ui are assumed to correspond to distinct modes of the co-occurrence statistics. An example
of the co-occurrences of a pair of T1 and T2 BrainWeb phantom images [37] is in Figure 4. A median
filtering is applied to vi to remove the high frequency noise ni. The objective of the analysis is to
separate the remaining two products in vi, i = 0, 1 present in Equation (9) to obtain the factors bi and
ui, respectively.

Figure 4. The auto-co-occurrence statistics and the joint-co-occurrence statistics of a T1 and a T2 image
of the BrainWeb phantom without non-uniformity, b = 0%, and with noise of n = 5% [37]. The densities
in the statistics are displayed in logarithmic scale. The individual distributions of the Gray Mater (GM),
White Matter (WM), and Cerebrospinal Fluid (CSF) are apparent.

3.2. Statistical Representation of Intensity Non-Uniformities

The intensity distortions bi and the latent images ui are assumed to be generated by independent
random variables. As shown in the Appendix A, the statistics of the products bi ◦ ui correspond to the
convolutions of the co-occurrence statistics of the anatomic images Cuiui and Cu0u1 with the PSFs of
the corresponding distortions. The PSFs are non-stationary to account for the multiplications in the
spatial domain.
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The effect of the intensity distortion field bi in a neighborhoodNρ around x0 can be approximated
by the effect of the zero order term b(x0) and by the effect of the first order term ∇b(x)|x0 in
Equation (10) [35]. The zeroth order term scales the auto-co-occurrences radially around the origin
of Cuiui and the first order term rotates them around the origin. The point spread functions affecting
Cuiui can be more efficiently represented in polar coordinates (ri, φi). The standard deviation of the
radial scaling is linearly proportional to the radial coordinate σri ∝ ri. The standard deviation of the
rotation σφ increases with ρ and is largest along the diagonal and zero along the axes. The application
of the PSFs of the intensity distortions to the auto-co-occurrence statistics of the assumed underlying
anatomic images ui, Pui (ui) = Cuiui correspond to Pvi (vi) = Cvivi . They give the convolutions

Cvivi (ri, φi) = Cuiui (ri, φi) ∗ Pb(ri; 0, σ2
ri
) ∗ Pb(φi; 0, σ2

φi
), i = 0, 1, (12)

which represent the auto-co-occurrences of the distorted images.
The effects of the zero order terms of the non-uniformities bi of the two images on the

joint-co-occurrences Cu0u1 are also considered. The PSF affecting Cu0u1 is represented in Cartesian
coordinates. Its sizes are linearly proportional to their distances from the origin σηi ∝ ηi. The relation
between ηi and ri is ηi = ri/

√
2. The application of the PSF of the intensity distortion to the

joint-co-occurrence statistics of the assumed latent anatomic images u0 and u1 that correspond to
Pu0u1(u0, u1) = Cu0u1 , give Pv0v1(v0, v1) = Cv0v1 . The convolution is

Cv0v1(η0, η1) = Cu0u1(η0, η1) ∗ Pb(η0; σ2
η0
) ∗ Pb(η1; σ2

η1
) (13)

and represents the joint-co-occurrence statistics of the distorted images.

3.3. Non-Stationary Restoration of the Co-Occurrence Statistics

As elaborated in Section 3.2 and in the Appendix A, the PSFs of the non-uniformities are
non-stationary in co-occurrence space with their standard deviations being linearly proportional to the
intensity coordinates. They give the convolutions in Equations (12) and (13). Hence, the deconvolutions
of these PSF are also non-stationary. They are implemented with the non-stationary Van Cittert method
in Equation (5). The restoration of the co-occurrence statistics Cvivi , i = 0, 1, provide their corresponding
restored estimates, C̃uiui , i = 0, 1, respectively. The restoration of the joint co-occurrences Cv0v1 gives
the estimate C̃u0u1 .

3.4. Back-Projection of the Co-Occurrences Restoration to the Images

The general Equation (7) for the case of the auto-co-occurrence statistics gives the posterior
expectation of the intensities in polar coordinates in neighborhoods ∆ri ∈ Nri and ∆φi ∈ Nφi as

(r̂i, φ̂i) = E((ri, φi)|(r′i , φ′i)) =

∑Nri
∑Nφi

Pb((∆ri ,φi);0,(σb,ri
ri)

2,σ2
b,φi

)·C̃uiui (ri+∆ri ,φi+∆φi)·(ri+∆ri ,φi+∆φi)

∑Nri
∑Nφi

Pb((∆ri ,φi);0,(σb,ri
ri)2,σ2

b,φi
)·C̃uiui (ri+∆ri ,φi+∆φi)

, (14)

where Pb((∆ri, φi); 0, (σb,ri
ri)

2, σ2
b,φi

) is as given in Equation (12). This expression for the PSF, Pb,

also gives C̃uiui from Cvivi . The posterior expectation results from separable filtering.
Equation (7) for the case of the joint-co-occurrence statistics gives the posterior expectation of the

intensities in Cartesian coordinates in neighborhoods ∆η0 ∈ Nη0 and ∆η1 ∈ Nη1 as

(η̂0, η̂1) = E((η0, η1)|(η′0, η′1)) =

∑Nη0
∑Nη1

Pb((∆η0,∆η1);0,(σb,η0
η0)

2,(σb,η1
η1)

2)·C̃u0u1 (η0+∆η0,η1+∆η1)·(η0+∆η0,η1+∆η1)

∑Nη0
∑Nη1

Pb((∆η0,∆η1);0,(σb,η0
η0)2,(σb,η1

η1)2)·C̃u0u1 (η0+∆η0,η1+∆η1)
, (15)
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where Pb((∆η0, ∆η1); 0, (σb,η0 η0)
2, (σb,η1 η1)

2) is given in Equation (13) that also gives C̃u0u1(η0, η1) from
Cv0v1(η0, η1). The conditional restoration filtering is also separable.

The general Equation (8) provides the restoration values from the auto-co-occurrence statistics
in Equation (14) as Rs

i,t(r, φ) = r̂i
ri

, i = 0, 1. It also provides the restoration value from the

joint-co-occurrence statistics in Equation (15) as Rb
i,t =

η̂i
ηi

, i = 0, 1. The intensity restoration values are
used to construct rectangular restoration matrices with sizes equal to the respective dynamic ranges.
They are the auto-co-occurrence restoration matrices and the joint-co-occurrence restoration matrix.
The repeated indexing of these matrices in an iteration expedites the back-projection of the restoration
to the images.

3.5. Estimation of the Cumulative Intensity Restoration

At the first iteration, t = 0, the restoration field is initialized with Wi,t(x) = 1, ∀x, and
thus, equivalently, the image is initialized with the acquired data vi,t=0. At subsequent iterations,
the intensity co-occurrence statistics index the corresponding auto-restoration and joint-restoration
matrices to provide an initial incremental estimate of the restoration

b−1
i,inc,t(x) =

1
2

E∆x∈N

(
Rs

i,t (vi(x), vi(x + ∆x)) + Rb
i,t (v0(x), v1(x + ∆x))

)
. (16)

The estimates b−1
i,inc,t at iteration t multiply the estimate of the corresponding cumulative

restoration, Wi,t−1 of the previous iteration t− 1 to give W ′i,t = Wi,t−1 × b−1
i,inc,t. The estimates W ′(x)

are smoothed with a spatial Gaussian filter G
(

x; σ2
s,i

)
to give the restoration fields

Wi,t(x) = W ′i,t(x) ∗ G
(

x; σ2
s,i

)
, i = 0, 1. (17)

These are the estimates of the smoothed cumulative restoration fields. The estimates Wi,t, i = 0, 1,
at iteration t, are applied to vi,t to provide ui,t = vi,t+1 that are the updated estimates of the underlying
latent anatomic images.

The end condition of the iterations involves the standard deviation of Wi,t, σ(Wi,t) =
‖Wi,t−1‖2
‖Wi,t=0−1‖2

.
The standard deviation decreases with iterations. The iterations stop when the value of σi,t reaches
a minimum for at least one of the two images i. The field Wi,t that corresponds to the iteration
with the minimum value of σ gives tmin = argmint=0,...tmax σi,t, which provides the restoration field
Wrest

i = Wi,tmin . The restored images are given by urest
i = Wrest

i vi. A maximum number of iterations
tmax is also imposed.

3.6. Validity of Image Domains and Stability of the Images’ Dynamic Ranges

The dynamic range of an anatomic MRI imaging sequence can be variable. The range is typically
from a few hundred to a few thousand intensity levels. The dynamic range does not have a physical
significance and may not even have a statistical significance. It is also affected by artifacts. In an MRI
image, these can be regions of only noise, artifacts from blood flow, or artifacts resulting from tissues’
susceptibilities. The latter two can cause outlying intensities of very low or very high values.

The non-uniformity is a physical characteristic of the signal regions of an image. Thus, the dynamic
range of an image is pre-processed to identify its valid sub-range for which the non-uniformity
model holds. The limitation of the dynamic ranges result in distributions that are statistically
meaningful. The limitation of the intensity ranges also make the filtering for deconvolution more
efficient. This standardizes the dynamic ranges to normal values that correspond to the meaningful
tissues contrasts intended for by the imaging sequence. It also gives the Region of Interest (ROI)
in an image, IROI,i. The combined ROI of the two images is their union, IROI = (IROI,0 ∪ IROI,1).
The standardization of the dynamic ranges makes the magnitudes of the distortion PSFs meaningful.
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The upper parts of the image dynamic ranges are downsampled linearly. The resulting complete
dynamic ranges in MRI data may also be downsampled linearly.

The reference intensity η
re f
i to identify and standardize the valid range is the intensity value

giving a high cumulative percentage, the 90% of the dynamic range of the ROI that still corresponds
to tissues. The dynamic range of the noise delimited by the maximum intensity of the noise range or
minimum signal intensity, ηmin

i , is represented as a low fraction, 10%, of η
re f
i . The minimum signal

intensity ηmin
i = 0.1η0.9

i for an image depends on the standard deviation of the Rayleigh noise σNi .

The dynamic range is preserved exactly up to a large upper value, 150% of η
re f
i , to give η

upp
i = 1.5η

re f
i .

The intensity range beyond η
upp
i is downsampled linearly up to an intensity that corresponds to 300%

of η
re f
i to give the maximum intensity ηmax

i and the range (1.5× η0.9
i , 3.0× η0.9

i ]. The intensity ranges

of [ηmin
i , ηmax

i ] = [0.1× η
re f
i , 3.0× η

re f
i ] are back-projected to the respective images ROIs to give the

valid signal regions. The regions in image IROI with intensities in ranges [0, ηmin
i ] and with intensities

beyond ηmax
i are considered invalid.

The auto-co-occurrences Cii in Equation (11) and the joint-co-occurrences C01 are computed at least
over the valid joint ranges ([ηmin

i , ηmax
i ], [ηmin

j , ηmax
j ]), for i = j, and for i 6= j, respectively. The same

ranges are used for the Van Cittert restorations of these statistics that enable with Equation (14) the
computation of Rs

i and with Equation (15) the computation of Rb
i . The joint restoration Rb

i also considers
the complete dynamic range of the complementary image, i 6= j. The restoration gain factors in Rs

i and
Rb

i that correspond to entries out of the valid intensity ranges are set to unity.
The next step is the back-projection to the images to obtain the initial estimates of the restoration

fields b−1
i,inc that use a window Nx in Equation (16). The back-projection with Equation (16) for a rough

initial estimate is over the valid part of the ROI of image i and is set to unity outside. The resulting
estimate is smoothed as described in Equation (17) to give Wi using a window depending on σs.
The spatial smoothing considers a weight field that is equal to one in the valid region IROI,i = 1
and is much less than one in the remaining ROI. As a result, the smooth non-uniformity field from
Equation (17) in regions with opposite validity in the two images tends smoothly to unity farther from
the valid region and towards the invalid regions of the image with IROI,i(x) = 0.

The stability of the dynamic ranges along the iterations is imposed with two constraints. The first
is in the spatial domain for the outputs of Equation (16). The pixel-wise average of gains in the
restoration is set to unity with the normalization b−1

i,inc,t(x) ← b−1
i,inc,t(x)/‖b

−1
i,inc,t(x)‖1. The second

constraint is in the statistics and uses the restoration field from Equation (17). The reference intensity
η

re f
i,t along the iterations is constrained to be equal to that of the original image η

re f
i,t=0. To achieve this,

the final restoration fields are rescaled with Wi,t ←Wi,t× (η
re f
i,t=0/η

re f
i,t ). That is, the reference intensities

of vi,t = Wi,tvi,0 are the same as those of vi,0.

4. Results

The method was tested with BrainWeb brain images of the phantom simulator. It was also tested
with real brain datasets of the Human Connectome Project (HCP) and with images of Parkinson’s
disease patients.

4.1. Implementation and Efficiency

The method was implemented in C++ as a command line program. It accepts a configuration file
containing the filenames of the two images to be restored and the filenames of the images with the
regions of interest that in this case are the corresponding brain masks. The program also accepts two
significant command line arguments. These are the standard deviations of the size of the deconvolution
filters, σri , and the standard deviation of the spatial smoothing filter of the restoration fields, σsi ,
i = 0, 1. The remaining parameters of the program are optional. The program was compiled with gcc
(version 5.3.0). The gcc compiler was part of a Cygwin environment interfacing Microsoft Windows
10 (Microsoft, Redmond, WA, USA). The Operating System (OS) was installed and the program was
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executed on an Intel Core i7 processor of 2.60 GHz and 64 bits. This processor has four cores and can
accommodate eight threads. The processor is also combined with 8.00 GB of RAM. The C++ program
can be used with appropriate compilers in other OSs as well as on different processors to be converted
into binary. It is thus a multi-platform implementation.

The parameters were identical for all datasets of the phantom as well as the volunteer image
groups. The co-occurrence statistics are of 3D neighborhoodsNx of size ρ = 6 pixels with subsampling
at regular intervals ∆ρ = 2 pixels along all axes. The dynamic range is limited to restrict the size of the
co-occurrence matrices and the cost of their restoration filtering. The low value for the neighborhood
size, ρ, allows the setting of a low value for the angular distortion, σφi = 4◦. The first variable
parameters of the method are σr0 = σr1 . The parameters σri , i = 0, 1 are expressed as a fraction

of the dynamic ranges and set to 0.02, also σui =
(

1/
√

2
)

σri . The constants of the sigmoid are
k1 = 6/15 and k2 = −6. These parameters are used for the deconvolution filters with regularization
ε2 = 0.01. The parameters of the Van Cittert deconvolution filtering are β = 0.3 with a total of
four iterations. The second variable parameters are the standard deviations of the spatial Gaussian
filters σs0 = σs1 that are set to 140 pixels. The Gaussian smoothing filtering is performed separably.
The iterative optimization allows using a value of σri that is an under-estimate and a value of σsi that is
an over-estimate in each iteration. The parameter controlling the iterations is tmax = 20 for all datasets.

4.2. Description of the Phantom BrainWeb Brain Images

The first set was from the 1.5 Tesla BrainWeb brain MR simulator. The images were of the most
commonly used anatomic brain MRI contrast mechanisms, T1 weighted, T1w, and T2 weighted, T2w.
It consists of eight representative pairs of T1w and T2w images of the BrainWeb simulator [37]. Both images
in a pair have a resolution of 1.0× 1.0× 1.0 mm3 and a matrix of size 181× 181× 217. They are
corrupted with simulated non-uniformities of levels b = 0% −20% −40% −60% −80% −100% and
a noise of n = 5% as well as an image with b = 40% and a noise of n = 3%. Only the brain region
from the entire available head region was used. The brain region of the BrainWeb images is available
through the union of the tissue type classification images.

4.3. Validation Measures for the Phantom BrainWeb Brain Images

The restorations of all the BrainWeb phantom brain images were evaluated with a measure of the
contrast between the intensity statistics of the gray matter and of the white matter tissues. The contrast
was quantified with the Coefficient of Joint Variation (CJV) [35,44,45]:

CJV(GM, WM) =
σGM + σWM
‖µGM − µWM‖2

, (18)

where µGM and µWM are the mean values of the two tissues intensities, and σGM and σWM are their
standard deviations. This measure represents the contrast between the intensity distributions of the
GM and of the WM tissue regions. The statistics and CJV in Equation (18) are considered separately
for each of the single contrast images T1w and T2w to give CJVT1 and CJVT2 , respectively. The ratio of
the CJV of the restored CJVvt,i to the one of the corresponding original CJVv0,i image is also computed

to give CJVratio
vt,i

=
CJVvt,i
CJVv0,i

, for i = T1, T2. A low value for the CJVvt is desired and thus a value for the

ratio CJVratio
vt below unity indicates effective restoration.

The BrainWeb brain phantom also makes available the original undistorted templates ui both for
the tissue types and for the intensity values. The validation for these datasets is also performed by
considering the absolute value of the difference between the restored images and the corresponding
underlying undistorted templates di f fvt,i = ‖vt,i − ui‖. This difference is desired to be kept at a low
value. The ratio of the difference from the restored ‖vt,i − ui‖ to the difference from the original

‖v0,i − ui‖ to give di f f ratio
vt,i

=
‖vt,i−ui‖
‖v0,i−ui‖

is also computed. It is desired to have a low value below unity
for improved effectiveness.
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4.4. Experiments with the Phantom BrainWeb Brain Images

The restorations of the brain part in the BrainWeb phantom images was evaluated with the
intensity statistics of the GM and of the WM regions using the CJV given in Equation (18). The ground
truth value of the CJV was computed from the regions occupied by each of the two tissues available
from the BrainWeb MR simulator [37,46]. The CJV was computed for the T1w images to give CJVT1

and for the T2w images to give CJVT2 . Their values are given in Table 1. The Table shows the values for
the original corrupted image pairs and the values for the intensity restored images. In parentheses is
the ratio CJVratio

t,i , i = T1, T2. The performance of the original and of the co-occurrence restored images
for non-uniformities of very low levels, 0–20%, is comparable. The improvements resulting from the
restoration methods are more apparent for higher intensity non-uniformity levels. The image noise
increases the CJV.

Table 1. Validation for BrainWeb phantom T1w and T2w images with CJVi of GM and WM tissue
regions. A low value indicates improved performance. In parentheses is the ratio of the restored to the
original, CJVratio

i . Low values and less than unity indicate improved performance.

BrainWeb\Method
Original Joint Co–Occurrences

T1 T2 T1 T2

n = 0, RF = 0 0.581369 0.770175 0.581369 (1) 0.770175 (1)
n = 3, RF = 40 0.765254 1.1697 0.660506 (0.86312) 1.02978 (0.880374)
n = 5, RF = 0 0.720008 1.13181 0.720008 (1) 1.13181 (1)

n = 5, RF = 20 0.735217 1.21963 0.762611 (1.03726) 1.24902 (1.02409)
n = 5, RF = 40 0.815382 1.37113 0.758738 (0.930531) 1.26971 (0.926038)
n = 5, RF = 60 1.29703 2.33456 0.843404 (0.650259) 1.39622 (0.598069)
n = 5, RF = 80 1.29703 2.33456 0.847001 (0.653031) 1.39361 (0.59695)

n = 5, RF = 100 1.29703 2.33456 0.861492 (0.664204) 1.39666 (0.598253)

The difference between the corresponding original noise free and non-uniformity free phantom
image and the restored ones di f ft,i are also computed and shown in Table 2. In parentheses is the ratio
di f f ratio

t,i , i = T1, T2. In all cases, its value is equal to or less than unity that shows that the restoration is
effective. The duration of the restoration for a BrainWeb image pair lasts on average approximately
2 h 13 min.

Table 2. Validation for BrainWeb phantom T1w and T2w images with difference to underlying anatomic
images di f ft,i. A low value indicates improved performance. In parentheses is the ratio of after to
before the restoration, di f f ratio

i . Low values and less than unity indicate improved performance.

BrainWeb\Method
Original Joint Co–Occurrences

T1 T2 T1 T2

n = 0, RF = 0 0.0203729 0.0397313 0.0203729 (1) 0.0397313 (1)
n = 3, RF = 40 0.0453967 0.0604082 0.0253967 (0.55944) 0.0502752 (0.832258)
n = 5, RF = 0 0.0331167 0.0591677 0.0331167 (1) 0.0591677 (1)
n = 5, RF = 20 0.0385987 0.0610285 0.0325415 (0.843074) 0.0582324 (0.954184)
n = 5, RF = 40 0.0494876 0.0681559 0.0326034 (0.658818) 0.0584461 (0.857535)
n = 5, RF = 60 0.116259 0.105483 0.0503919 (0.433445) 0.0655376 (0.621312)
n = 5, RF = 80 0.116255 0.105479 0.0506253 (0.435466) 0.0651502 (0.617661)

n = 5, RF = 100 0.116252 0.105476 0.0523669 (0.450459) 0.0655749 (0.621706)

The restorations of the Brainweb phantom images with noise n = 5% and with the highest level
of non-uniformity, bRF = 100%, are shown in Figure 5. This figure contains sections from the original
and from the restored images as well as the co-occurrence statistics. In this example, the cerebellum in
both the T1w and the T2w images becomes brighter and thus its statistics become closer to those of the
corresponding mean tissue statistics over the remaining image regions.
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The proposed restoration method has been compared with the N4ITK tool provided through
Slicer3D (version 4.6.2) [38,39]. The default N4ITK parameters in Slicer3D were used to restore the
BrainWeb images. Similarly to the proposed method, the brain regions were provided to N4ITK.
The N4ITK restoration is very weak for all images. The restoration for low levels of non-uniformity,
0–60%, leads to a significant loss of contrast for both the T1 weighted images and the T2 weighted
images. This leads to an increase in the CJV and to CJVratio > 1.

Original

T1w T2w T1w/T2w

(a) Image
I0,t=0

(b) Auto-
co-occurrences

C00,t=0

(c)Image
I1,t=0

(d) Auto-
co-occurrences

C11,t=0

(e) Joint
co-occurrences

C01,t=0

Diagonal of auto-co-occurrence Diagonal of auto-co-occurrence

Histogram Histogram
Restored

T1w T2w T1w/T2w

(f) Image
I0,tmin

(g) Auto-
co-occurrences

C00,tmin

(h) Image
I1,tmin

(i) Auto-
co-occurrences

C11,tmin

(j) Joint
co-occurrences

C01,tmin

Diagonal of auto-co-occurrence Diagonal of auto-co-occurrence

Histogram Histogram

Figure 5. The restoration of a T1w and a T2w BrainWeb image pair with non-uniformity of 100% and
noise of 5%. The restoration makes the cerebellum brighter and the statistics sharper.

In high levels of non-uniformity, 80% and 100%, the restoration method with the N4ITK
methodology for the T1 weighted images decreases contrast less based on the CJV. The restoration
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of the T1w BrainWeb image with non-uniformity of 100% with the proposed method gives
CJVratio

i=T1,Co−oc. = 0.63 as shown in Table 1, whereas N4ITK gives CJVratio
i=T1,N4ITK = 2.91. That is,

the performance of the proposed method is 4.62 times better than that of N4ITK. The restoration of the
T2 weighted images also remains weak for high levels of non-uniformity. The restoration of the T2w
BrainWeb image with non-uniformity of 100% with the proposed method gives CJVratio

i=T2,Co−oc. = 0.65
as shown in Table 1, whereas N4ITK gives CJVratio

i=T2,N4ITK = 7.67. That is, the performance of the
proposed method for this image is 11.8 times better than that of N4ITK. Thus, the restoration of the T2

weighted images with the N4ITK tool performs poorly for all levels of non-uniformity. This is due to
the low contrast between the distributions of the GM and of the WM in the T2 weighted BrainWeb
images. The results based on di f f show a similar poor performance for N4ITK. Thus, in all cases, the
proposed method performs significantly better than N4ITK.

The effects of the restoration methods on the extent of the occupied dynamic ranges of the images
are also measured. The percentage of change of the size of the dynamic ranges is measured for every
image restoration and for both methods. The average value over the eight images for each contrast
and for each method is computed. The value of the average with the proposed method for the T1w
images is −1.15%, and, for the T2w images, it is −9.78%. The non-zero changes are due to the noise
removal from the images prior to the standardization of the dynamic ranges. The decrease is also due
to the sharpening of the distributions at the high intensity parts of the dynamic ranges. The decrease
for the T2w images is greater than for the T1w images. This is because, in the T2w images, the tissues
distributions correspond to higher intensity ranges. The above values are expected and demonstrate
the stability of the proposed method. The average changes in the dynamic ranges with the N4ITK tool
were also measured. The average change with N4ITK for the T1w images is +29.77%, and, for the T2w
images, it is −9.75%. The significant positive increase in the size of the dynamic range for the T1w
images demonstrates an instability for the N4ITK method.

4.5. Description of the Real Images

Anatomic datasets from two studies of the Human Connectome Project (HCP) [47–50] were used.
The first was anatomic data from the Lifespan (LS) pilot study and the second was anatomic data
from the Retest study. The data of the HCP LS study was from 27 volunteers from six age groups
4–6, 8–9, 14–15, 25–35, 45–55, and 65–75 years old. The second was data from the HCP Retest study.
It was data from 45 aged volunteers, 31 women and 14 men. The volunteers were imaged at 3.0 Tesla
(Siemens, Connectom and Prisma). A T1 weighted 3D structural MPRAGE sequence was acquired
sagittally with TR/TE/TI = 2400/2.14/1000 ms. A T2 weighted 3D structural SPACE sequence was
acquired sagittally with TR/TE = 3200/565 ms. The voxel resolution of both the T1w and the T2w
images is 0.8× 0.8× 0.8 mm3. The matrix size of both the T1w and the T2w images is 208× 300× 320.
The youngest group of age range 4–6 years old of the HCP LS pilot project was scanned using a
customized pediatric head coil and an optimized protocol for that age range.

Another real dataset was of brain images of patients at an advanced stage of Parkinson’s disease.
The datasets were retrieved retrospectively from the clinical database of University Hospital Goettingen
for pre-operative assessment before implantation of electrodes for deep brain stimulation. The use
of the patient data was retrospective, fully anonymized, and according to the guidelines of the local
ethical committee for clinical research. The patients gave informed consent for all imaging procedures.
All pre-operative images were acquired under anaesthesia to reduce motion artifacts and increase
anatomical precision. The quality of the images was evaluated by observation and images with artifacts
were removed. The data were from 60 patients, 41 men of average age 59.91± 7.51 years and 19 women
of average age 65.86± 7.40 years.

The Parkinson’s disease patients were imaged at 3.0 Tesla (Siemens, TrioTim). A standard T1

weighted 3D structural MPRAGE sequence was acquired sagittally with TR/TE/TI = 2000/2.98/900 ms
that gave an in-plane resolution of 1.0× 1.0 mm2 and a slice thickness of 1.1 mm. The matrix size
of the T1w images is sufficient to cover the entire head region and of size at least 240× 256× 160.
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A high-resolution 3D SPACE structural T2 weighted imaging that was axially planned was also
acquired with TR/TE = 1500/355 ms that gave an in-plane resolution of 0.63× 0.63 mm2 and a slice
thickness of 1.80 mm. The size of the images was 308× 384× 80. In the high resolution T2w, the caudal
cerebellum is not always depicted, depending on the skull size and “brain fitting” in a standard
protocol for all Parkinson’s disease patients. The primary target in Parkinson’s disease diagnostic is
the high resolution imaging of the mesencephalon and of the basal ganglia. The in-plane orientation of
the two sequences are complementary to enable a more complete clinical evaluation.

The brain regions for the real images were used by the method and were extracted with the BET
tool [51]. The two brain datasets were placed in the same resolution and in the same sampling grid.
The reference was the T1w image and the T2w image was resampled with a closest neighbor filter [38].
The images were smoothed with a median filter of size 3× 3× 3 mm3 along the axes.

4.6. Validation Measure for the Real Brain Images

The validation measure uses the entropy of the histogram of the original image, Horig, and the
entropy of the histogram of the restored image, Hrest. The actual measure is the ratio

Hratio
exp =

eHrest − eHorig

eHorig
. (19)

The entropies are expected values of exponents of densities of intensities. Thus, in Equation (19),
they are used as exponents of e. A successful restoration decreases the value of the entropy of an image.
Thus, both the value of the numerator in Equation (19) and the entire ratio, Hratio

exp , become negative.
The successful restoration also means improved tissues contrasts.

4.7. Experiments with Brain Images of the Human Connectome Project

Table 3 gives the statistics for measure Hratio
exp for the T1w and for the T2w images for all

27 volunteers of the Human Connectome Project (HCP) Lifespan (LS) dataset. Table 4 gives the
statistics for measure Hratio

exp for the T1w and for the T2w images for all 45 volunteers of the Human
Connectome Project (HCP) Retest dataset. The tables show that Hratio

exp are indeed negative in all cases.
Thus, the restorations are successful for all images. The duration of the restoration for an HCP image
pair lasts on average approximately 6 h 53 min.

Table 3. Statistics of Hratio
exp for the T1w and the T2w images for the 27 HCP LS volunteers. The Hratio

exp
are significantly negative for all images and hence all the restorations are successful.

Mean Stand. Dev. Median Minimum Maximum

Hratio for T1 −0.2346099 0.03155122 −0.233064 −0.289283 −0.168966
Hratio for T2 −0.1566847 0.07183654 −0.13836 −0.37288 −0.0605923

Table 4. Statistics of Hratio
exp for the T1w and the T2w images for the 45 HCP Retest volunteers. The Hratio

exp
are significantly negative for all images and hence all the restorations are successful.

Mean Stand. Dev. Median Minimum Maximum

Hratio for T1 −0.251255 0.03185837 −0.254848 −0.316611 −0.182293
Hratio for T2 −0.1476605 0.04146889 −0.145265 −0.261554 −0.0680923

The restoration of representative T1w and T2w images of an HCP volunteer are shown in Figure 6.
The GM tissues in the cortex, subcortical regions, and the cerebellum become of more uniform intensity
in both images. The intensities of the WM also become more uniform. The statistics of both the T1w
and the T2w images in Figure 6 show different distributions corresponding to the three tissues, even
along the diagonal of the auto-co-occurrences that are minimally involved in the restoration. In the T1w
statistics, there are separate distributions corresponding to the WM and to the GM. The distribution
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corresponding to the CSF appears. They also show a sharper distribution corresponding to the border
between the WM and the GM. In the T2w image, the different distributions of the WM and of the CSF
become apparent. The consideration of both images shows their successful restoration.
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(b) Auto-
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Figure 6. Example restoration of a T1w and a T2w image pair for the HCP LS dataset. The intensities
of the white matter and the gray matter in both the T1w image and in the T2w image become more
uniform. The statistical distributions become sharper.
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The statistics of the initial T2w image have a heavy tail at the high intensity part of the dynamic
range from contributions of the GM and of the CSF. Thus, the standardization of that part of the
dynamic range to a limited range results in its compression. That compression causes a shift of
densities from the lower intensity range to a higher intensity range.

4.8. Experiments with the Brain Images of Parkinson’s Disease Patients

Table 5 gives the statistics for measure Hratio
exp for the T1w and the T2w images for all 60 patients.

The table shows that Hratio
exp is negative in all cases. Thus, the restorations are successful for all images.

The duration of the restoration for an image pair of a Parkinson’s disease patient lasts on average
approximately 2 h 12 min.

Table 5. Statistics of Hratio
exp for the T1w and the T2w images for the 60 Parkinson’s disease patients.

The Hratio
exp are significantly negative for all images and hence all the restorations are successful.

Mean Stand. Dev. Median Minimum Maximum

Hratio for T1 −0.1381152 0.01930447 −0.138554 −0.183722 −0.0961817
Hratio for T2 −0.224674 0.06584581 −0.2302005 −0.337128 −0.0176404

The restoration of representative T1w and T2w images with extensive non-uniformities of a
Parkinson’s disease patient are shown in Figure 7. The GM tissues in the cortex, subcortical regions,
and the cerebellum become of more uniform intensity both in the T1w and in the T2w images.
The intensity of the WM also becomes more uniform. The statistics of the T1w image in Figure 7 show
three different distributions corresponding to the three tissues. The diagonal auto-co-occurrences,
even though they are minimally involved in the restoration, still consist of three separate distributions.
The statistics of the T2w image also show distinct distributions for the WM and the GM even though
they have a low contrast. They also show a sharper distribution corresponding to the border between
the WM and the GM regions. The distribution corresponding to the CSF regions appears. This shows
the successful restoration of the T2w image. The presence of separate tissues distributions in the
statistics of the restored real images gives the entropy based measure a semantic meaning in terms of
tissues intensity uniformities and tissues contrasts.

The HCP LS images in Figure 6 and the Parkinson’s disease images in Figure 7 show that the
sub-cortical regions can have a variable intensity non-uniformity effect. The restoration removes these
non-uniformities. The mesencephalon and sub-cortical regions called basal ganglia and substantia
nigra are implicated in Parkinson’s disease. The restoration of the uniformity in these brain regions
can improve the analysis to characterize the appearance of Parkinson’s disease in MRI data [52,53].
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Figure 7. Example restoration of a T1w and a T2w image pair of a Parkinson’s disease patient.
The intensities of the white matter in both the T1w image and in the T2w image become more uniform.
The statistical distributions become sharper.

5. Discussion

The Bayesian coring formulation is general and non-parametric. In this method, it is used with
the auto- and the joint-co-occurrence statistics. These are higher order statistics that favor the dominant
distributions of the data and decrease their spread compared to those of the intensity histogram.
A sigmoid applied to the auto-co-occurrence statistics removes the dominance of their diagonal and
hence increases the sensitivity to the statistics corresponding to the borders between regions. Thus,
the statistics improve the discriminability between the distributions of the dominant tissues. In brain
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images, the extensive interface between the gray matter and the white matter tissues gives rise to one
of the dominant joint distributions.

The effect of the spatial non-uniformity field on the co-occurrence statistics is modeled as a
bimodal point spread function. One of the modes corresponds to multiplicative factors above unity for
the regions that become brighter and the other mode corresponds to multiplicative factors below unity
for the regions that become darker. The distortion filter is assumed to be non-stationary. It is used in
the Bayesian formulation as both the likelihood and to compute the prior. The bimodal distribution for
the distortion can be more robust to the presence of even higher field intensity non-uniformities.

The method also standardizes and preserves the valid dynamic ranges along the iterations. Thus,
it offers stability and efficiency. The statistics are global over the entire ROI and this enables the
uniform restoration of spatially loosely connected or even disconnected regions of the same tissue such
as of the different brain gray matter centers. The method also accommodates the inevitable difference
between the signal regions of the two images of different contrasts.

The restoration of MRI images for artifacts similar to the one in this work typically involve the
iterative optimization of a parametric energy function. Such methods involve the computation of the
histogram, its back-projection to image space, and the smoothing of the entire spatial restoration field.
These steps are typically repeated in every iteration for the smoothing coefficient of each spatial basis
function such as a b-spline basis. This is very intensive computationally. The method developed in
this work is also iterative. However, the histogram computation and the smoothing of the entire 3D
spatial field is only done once per iteration. This is significantly more efficient computationally.

The efficiency of the implementation of the methodology can be improved by taking advantage
of parallelization within and between its various steps. This can be achieved by combining the C++
implementation with multi-threading. The duration of the restoration also depends on the magnitude
of the non-uniformities present in the images of the pair.

The method was tested with images of the BrainWeb brain simulator. It was also tested with
brain data from the Human Connectome Project (HCP) as well as data from a database of brain images
of elderly patients with advanced Parkinson’s disease. Image pairs of T1w and T2w images have
been restored jointly for intensity uniformity. The method restores the images successfully, despite
the high intensity distortions that are present in most of them. The Parkinson’s disease patients
images have a lower tissue contrast and some also contain lesions. The effectiveness of the method
for this data demonstrates its efficiency. The joint restoration is mutually beneficial for both images.
The proposed restoration method has been compared with the N4ITK tool. The N4ITK showed a very
poor performance. The co-occurrence method performs significantly better than N4ITK. In addition,
this method preserves and restores the dynamic ranges of the images. The N4ITK tool can expand the
dynamic ranges of the T1w images that shows its instability.

A simplified model of the physical effects of the non-uniformities is assumed to design this
methodology. This can lead to limitations in specific contexts. The method smooths the spatial
non-uniformity field with a filter of a finite size. This allows a spatial non-uniformity of a certain
magnitude. In images where the spatial non-uniformity has a lower magnitude than that of the
allowed non-uniformity, the restoration may result in a loss of contrast between the tissues statistics.
A complication is that the MRI physical non-uniformity also depends on the signal properties of
the tissues. This is effectively ignored in this non-parametric methodology. Thus, the physical
non-uniformity cannot be fully recovered [19]. An MRI artifact that is currently ignored is the effect of
the radio-frequency non-uniformity on stimulated echoes that can result in non-uniformities of the
contrast, such as in the T2w images. However, the restoration method in this study, as it emphasizes
the intensity transitions, is more robust to the latter artifact.

The design of the methodology also makes several assumptions to improve efficiency.
The restoration assumes that the removal of the noise is independent from the removal of the
non-uniformity. However, the regions that become darker as a result of the restoration have lower
contrast to noise ratio. Thus, the joint consideration of non-uniformity and noise may lead to an
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improved restoration. The method also requires the field of view for the two images to be provided.
This may be more challenging for images with complicated pathology such as brain tumors. In these
cases, the restoration methodology may have to be combined with other methods such as segmentation.
The imaging of a brain tumor pathology may also benefit from specific imaging sequences beyond
only T1w and T2w.

6. Conclusions

In conclusion, a method has been developed that uses local intensity co-occurrences across
regions for an effective joint restoration of two anatomic MRI images from intensity non-uniformities.
The restoration is efficient and robust with respect to contrast mechanisms as well as subject geometries.
Thus, it decreases the need for calibration scans and can reduce acquisition time. The method can be
used to improve subsequent processing steps such as image segmentation.
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Appendix A. Derivation of the PSF, Pb, of the Statistical Distortion

The voxelwise probability distribution of u(x) and b(x), Pu(u(x)) and Pb(b(x); 1, σ2
b ), respectively,

are assumed to be independent. The noise in Equation (1) is ignored to obtain v = b ◦ u = u + (b−
1) ◦ u. The probability distribution of (b(x)− 1) is Pb(b(x)− 1; 0, σ2

b ).
The next step is to consider the product of (b − 1) with given intensity u. The probability

distribution of the product (b− 1) ◦ u is Pb((b− 1) ◦ u|u) = Pb(v− u|u) = Pb((b− 1) ◦ u; 0, (σbu)2).
The multiplication by given u preserves the mean of Pb(·) to zero and scales the standard deviation
σb of Pb(·) linearly with u. The probability of the distortion gives Pb(v− u|u) = P(v|u)(v|u) [21–23,54].
The non-stationary distribution that models the distortion of the joint intensity statistics is:

P(v|u)(v|u) = Pb (v− u|u) = Pb

(
v− u; 0, (σbu)2

)
. (A1)

Thus, the probability distribution of Pv(v) can be analyzed into:

Pv(v) = P(v|u)(v|u) ∗ Pu(u) = Pu(u) ∗ Pb

(
v− u; 0, (σbu)2

)
, (A2)

where ∗ is convolution. That is, the densities in the dynamic range of u are convolved with a
non-stationary distortion filter.
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