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Abstract: Segmentation is one of the most important parts of medical image analysis. Manual
segmentation is very cumbersome, time-consuming, and prone to inter-observer variability. Fully
automatic segmentation approaches require a large amount of labeled training data and may fail in
difficult or abnormal cases. In this work, we propose a new method for 2D segmentation of individual
slices and 3D interpolation of the segmented slices. The Smart Brush functionality quickly segments
the region of interest in a few 2D slices. Given these annotated slices, our adapted formulation of
Hermite radial basis functions reconstructs the 3D surface. Effective interactions with less number
of equations accelerate the performance and, therefore, a real-time and an intuitive, interactive
segmentation of 3D objects can be supported effectively. The proposed method is evaluated on
12 clinical 3D magnetic resonance imaging data sets and are compared to gold standard annotations
of the left ventricle from a clinical expert. The automatic evaluation of the 2D Smart Brush resulted
in an average Dice coefficient of 0.88 ± 0.09 for the individual slices. For the 3D interpolation using
Hermite radial basis functions, an average Dice coefficient of 0.94 ± 0.02 is achieved.

Keywords: smart brush, segmentation, 3D interpolation, Hermite radial basis function

1. Introduction

Segmentation is a common task in the processing of medical images. It is often a pre-requisite
for the further image analysis and can be used for therapy planning and guidance [1]. The spectrum
of segmentation techniques available to the clinical applications is broad, ranging from manual slice
by slice outlining to fully automatic segmentation. Manual segmentation is still widely used for
complex segmentation tasks. For example, in structural heart disease, as every heart has a different
structure, no learning based approach can be applied. However, manual annotation of every image
slice can be very cumbersome and time-consuming, considering the high resolution of the 3D image
volumes [2]. A great deal of effort has gone into interactive segmentation tools for 2D segmentations
as well as 3D interpolations. Many segmentation techniques have been developed such as Intelligent
Scissors, Graph Cuts, and Random Walker [3–5]. There are two important applications that these
techniques can speed up. First, manual segmentation, which is still widespread in clinical routine.
Second, the generation of ground truth annotations that have to be generated manually, in order to
train machine learning algorithms. In particular, deep learning is known to require huge amounts of
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annotated data. Furthermore, there are only a view interactive deep learning approaches [6]. Therefore,
the challenge is to design a fast, generic, and easy segmentation tool that allows for generating clinical
segmentations as well as fast ground truth annotations, in both 2D and 3D medical images and
all modalities. The most related 2D segmentation technique is a Smart Brush tool [7,8]. However,
the drawback of these methods is that they do not control the boundary smoothness [9].

In surface reconstruction, there is a vast literature that is mainly grouped into direct meshing
and implicit approaches. Nowadays, methods based on implicit surface reconstruction are gaining
more and more attention. For this approach, first a signed scalar field f (·) is obtained. The value
of this scalar field is zero at all control points p, f (p) = 0, and negative/positive for inside/outside
of the surface [10]. Then, the desired surface is reconstructed by extracting the zero-level set of
the mentioned field. The radial basis function (RBF) interpolation guarantees having a smooth
field, from non-uniformly distributed data points [11–14]. In previous related work [14], this field
f (·) is computed in a bilateral domain where the spatial and intensity range domain are joined.
The interpolation is done using RBFs with Hermite data, which incorporates normals and gradients of
the scalar field directly, ∇ f (p) = n.

In this work, we propose a new formulation of surface reconstruction that is independent of
the 3D intensity gradient information and can make use of both 2D and 3D normal vectors obtained
from segmented 2D slices. Therefore, the user input is the interactive segmentation of 2D slices.
Hence, a Smart Brush formulation is introduced that can handle medical acquisitions with higher
noise level and ambiguous boundaries using adaptive thresholding. From the extracted contour of the
segmentation mask, control points are obtained and their normal vectors are estimated based on the
curvature of the contour. Furthermore, control points at the intersections of annotated planes from
different orientations are fused and the corresponding normals are combined into a 3D normal vector.
From this, it follows that the surface is reconstructed using both 2D and 3D normal vectors. In contrast
to previous implicit methods, the method is superior for images with a high noise level, as it does not
depend on intensity information or well defined borders for the 3D interpolation.

2. Methods

Our approach combines advantages of semi-automatic segmentation methods, as well as the
user’s high-level anatomical knowledge to generate segmentations quickly and accurately with
fewer interactions. Using our method, the user first segments a few slices with the Smart Brush;
then, the scattered data points are extracted and the 2D normal information of the annotated slices
is computed. Applying our new formulation of Hermite radial basis function (HRBF), the desired
surface is reconstructed. In Figure 1, the segmentation pipeline is illustrated.

Figure 1. Segmentation pipeline. The first image from the left shows the 3D volume as input. In the
next step, single slices are segmented using the Smart Brush functionality. Third, the control points of
the contours are extracted. Fourth, the 2D and 3D normal vectors are computed for the Hermite radial
basis function interpolation. In the final image, the interpolated surface is visualized ([2] Reproduced
with permission).
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2.1. Smart Brush

The 2D segmentation functionality classifies pixels into foreground and background based on the
intensity information. Prior to the segmentation, pre-processing is required for magnetic resonance
images (MRI), as the intensity values are in arbitrary units. Therefore, a normalization is required.
For this aim, an interval I = [vmin, vmax] is defined based on the maximum and minimum intensity
of the whole DICOM data set D ∈ Rw×h×l . Then, for each 2D image slice, the values outside the
interval I are clipped to the interval borders. To have a gray-scale image, the minimum value of
the clipped image is set to zero and the maximum to 255. In the next step, to reduce the existing
noise, an edge-preserving, denoising filter called bilateral filter is used to suppress the noise in the
normalized image. In this method, spatial closeness and radiometric similarity are measured by the
Gaussian function of the Euclidean distance between two pixel intensities [15].

The smart brush segmentation is user driven and the interactions start with each displacement
of the mouse cursor. The segmentation scheme comprises the following steps: (i) manually
initializing a small part of the region of interest (ROI); (ii) improving the segmentation using the
Smart Brush functionality; (iii) post-processing the segmentation result and extending the previously
segmented region.

First, a small area of the region of interest has to be segmented manually by the user. The mean
intensity of this area is required for the initialization of the smart brush functionality. When the user
selects a new ROI with the brush, an adaptive threshold is computed using the mean intensity of

the ROI Imean = ∑N
i=1 Ii
N , where N is the number of pixels in the selected area A0. Afterwards, the

user progresses with the smart brush and a new area is selected. For the new selected area, the
intensity distribution is investigated. A threshold for pixel-wise classification is derived for the mean
values. The pixels of the component whose mean is closer to the mean intensity of the initial area
are classified as foreground. Finally, to reduce false positives, the morphological connectivity of each
pixel in the ROI to the initial ROI is checked using a 4-connected structuring element. This way, pixels
that have the same intensity value but are not connected to the previous segmentation are removed.
In Figure 2a, the initialization of the smart brush is shown in red and the brush is moved over a new
area, illustrated by the yellow circle. In Figure 2b, the correct segmented area is visualized, using the
adaptive thresholding together with the propagation checking. If no propagation checking would be
applied for this example, also the right ventricle would be segmented, as it has the same intensity
values. In the final step, to get a smooth looking contour, the wholes are filled using binary hole filling.

(a) (b)

Figure 2. (a) Initialization of the smart brush in red and the smart brush is propagated which is
illustrated as yellow circle; (b) Correct segmented area under the brush using adaptive thresholding
and propagation checking.
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2.2. Control Point Extraction

We assume that multiple slices are segmented in axial, sagittal, and coronal orientation using the
smart brush functionality. First, the contours are extracted from the segmentations of the individual
slices. Given a structural element, a morphological operation named binary erosion is used to extract
the boundary. The structuring element is a square connectivity equal to one. Then, by subtracting
the eroded mask from the original mask and applying a threshold, a one-pixel thick edge is extracted.
In the next step, the control points (CPs) are computed from the contours adaptively according to the
shape of the object.

The contour is sampled equidistantly with a predefined sampling size δ ∈ Z. The number of
control points ne ∈ N is based on the contour length lc ∈ N and computed as np = b lc

δ c. Furthermore,
nc ∈ N convexity defect points, where the contour has the maximum distance to its convex hull are
added (see the blue points in Figure 3a). To increase the accuracy of the 3D interpolation for complex
objects, the number of CPs is increased in rough areas. Therefore, the local curvature κ ∈ R is checked
for all CPs and additional points are added in case of roughness. The curvature κ is dependent on the
derivatives of the curve c(t) = (x(t), y(t))T,

κ =
|x′y′′ − y′x′′|
(x′2 + y′2)3/2 , (1)

where the primes refer to derivatives d
dt with respect to the parameter t. To compare curvature values,

a reference quantity r ∈ R (global roughness) is defined, which is the ratio of the convex hull area of
the curve Ah and the curve area Ac, r = Ac/Ah [16]. New CPs are added at a certain distance to the
investigated CP, if the criterion

κ

r
> θr (2)

is fulfilled, where the threshold θr ∈ R is obtained heuristically. The number of additional CPs due to
curvature is denoted as nκ . The total number of CPs is N = ne + nc + nκ . Figure 3b depicts the total
number of extracted control points with the convexity defect points in blue and the additional rough
surface points in green.

The subsequent interpolation requires Hermite data, i.e., function values and their derivatives.
In this case, we need the normal vector for each control point. The first derivative of the contour
approximates the tangent vector of the curve. Having the 2D tangent vector t = (dx, dy)T,
the orthogonal normal vector is obtained by n = (−dy, dx)T.

(a) (b)

Figure 3. (a) A rough surface with initial equidistant points in red and convexity defect points in blue;
(b) A rough surface with increased number of points in green ([2] Reproduced with permission).
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2.3. Control Point Merging

The CPs are used to interpolate the 3D surface belonging to one object of interest. To gain more
accuracy, it is always better to have cross sections from different orientations of the desired object.
Considering a 3D object, the intersection of any two non-parallel image planes will result in a line with
at least two intersection points. Figure 4 shows the location of these two points in yellow. It implies
that there are joint points in case the selected planes intersect. However, the extracted contour needs
to be identical for both planes at the point of intersection to result in the same point in 3D space.
In practice, the contour of the segmented mask may not be located precisely at the actual object border,
as the annotation is done manually by the user. Consequently, there is no intersection point in 3D.
Hence, instead of having one point at each junction, there will be two points at each intersection,
corresponding to the annotated planes. These points can then lead to incorrect 3D interpolations,
as they have conflicting gradient and zero-level set information. As a result, unwanted holes may
appear in the final interpolation result. To prevent this artifact, all possible intersections of cross
sections must be detected. Therefore, points in a certain radius rd are merged into a single 3D point.
Apart from eliminating undesired artifacts, merging CPs has another advantage because the 3D normal
vector can be computed and this will further improve the accuracy of the 3D interpolation. The
calculation of the intersection points and their normal vectors is explained in the following section.

Figure 4. Two orthogonal planes are segmented in red, and the resulting intersection points are
depicted in yellow.

2.3.1. Contour Intersection

Since the volumetric 3D image is segmented in arbitrary 2D slices, intersections between
segmented slices from different orientations occur. Supposing that closed contours are extracted
from the intersecting slices, the intersection should result in two 3D points. The computation of these
intersection points is performed iteratively. The iterations are over all non-repetitive 2-permutations
of N segmented slices and are comprised of two steps. First, the existence of intersections is checked.
In the case of an intersection, the corresponding points are extracted. In some complex objects, i.e.,
non-convex shapes, more than two intersection points or a set of neighboring points can be extracted.
Figure 5 shows two possible cases for extracted intersection points. In the case of multiple intersection
candidates, classification is applied in order to distinguish between the different groups of points.
In the next step, the average of each group is taken as a final 3D intersection point. The classification of
the point groups is described in more details in the following section.
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(a) (b)

Figure 5. Possible intersection points of annotated non-parallel image slices. (a) The intersection occurs
in multiple points; (b) the intersection occurs in the form of one line.

2.3.2. Classification and Merging

Having found the intersection point candidates at each junction, the next step is to merge close
intersection points in order to decrease the redundancy. To obtain the neighboring points, a nearest
neighbor graph within a given radius rn is applied to the set of intersection point candidates [17].
According to the size and the complexity of the desired object, the user can change the search radius rn

for the neighboring points. The merging of the 3D points is simply done by averaging, resulting in one
3D point. The merging of the normal vectors is performed such that the final result is a unit vector
again. Averaging of a collection of three-dimensional points is described as:

p =
1
m

m

∑
i=1

pi =

(
1
m

m

∑
i=1

xi,
1
m

m

∑
i=1

yi,
1
m

m

∑
i=1

zi

)T

, (3)

where pi refers to the intersection point candidates in one neighborhood and m is the number
candidates. To have a unit vector, the merging is done as

n =

(
1

N(ni,x)

m

∑
i=1

ni,x,
1

N(ni,y)

m

∑
i=1

ni,y,
1

N(ni,z)

m

∑
i=1

ni,z

)T

, (4)

nnormalized =
n
‖n‖ , (5)

where operator N counts the number of valid elements, i.e., the intersection points that have an
in-plane normal for this dimension. In Figure 6, all the control points extracted from the different
image planes are shown, where the control points with a 2D normal vector are visualized in green and
all control points with a 3D normal vector are shown in blue.
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Figure 6. Control points extracted from three different orientations, where N points have a 2D normal
vector (green) and M points with 3D normal vector (blue).

2.4. 3D Interpolation

For the 3D interpolation of the scalar field, radial basis functions are used. The RBF function
interpolation depends only on the distance of the center x to a point pi [10],

ϕ (x) = ϕ (‖x− pi‖) , (6)

where ϕ is a nonlinear activation function and pi is an extracted control point. If we consider N radial
basis functions around every control point pi, we end up with a system of linear equations

f (x) =
N

∑
i=1

αi ϕ (‖x− pi‖) , (7)

where αi is a weighting factor for each control point. To make sure that the equation is always solvable,
a low-degree polynomial g (x) is added

f (x) =
N

∑
i=1

αi ϕ (‖x− pi‖) + g (x) . (8)

However, this simple RBF formulation requires the definition of inside and outside values.
To address this issue, Hermite data is incorporated into the RBF, which directly use derivatives.
This method ensures the existence of a non-null implicit surface without the need of additional
information [18]. Using the first order Hermite interpolation in combination with RBF, the scalar field
can be formulated as follows:

f (x) =
N

∑
i=1

αi ϕ (‖x− pi‖)− βi∇ϕ (‖x− pi‖) + g (x) , (9)

where βi ∈ R3 is a weighting factor.
In this work, a new formulation of HRBF is introduced that allows for reconstructing the 3D

surface based on scattered control points and their associated 2D and 3D normal vectors. Assume
that N Hermite data points {(pi, ni)|pi ∈ R3, n2D

i ∈ R2, i = 1, ..., N} with a 2D normal vector and M
Hermite data points {(pi, ni)|pi ∈ R3, ni ∈ R3, i = N + 1, ..., N + M} with a 3D normal vector are
generated, where pi ∈ R3. In RBF interpolation, the final segmentation is given as the zero level set of
a scalar field. The scalar field f consists of two components f = f 2D + f 3D. The scalar field f 2D for the
2D normal vectors is formulated as
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f 2D(x) =
N

∑
i=1

α2D
i ϕ (‖x− pi‖)− β2D

i
T

s2D
i (∇ϕ (‖x− pi‖)) + g (x) , (10)

where g(x) is a low-degree polynomial, s2D
i (x) is a function that selects the 2D gradient direction that

is available for control point pi, and α2D
i ∈ R, β2D

i ∈ R2 are the RBF coefficients. The scalar field f 3D

for the 3D normal vectors is formulated accordingly:

f 3D(x) =
N+M

∑
i=N+1

α3D
i ϕ (‖x− pi‖)− β3D

i
T∇ϕ (‖x− pi‖) + g (x) , (11)

where g(x) is a low-degree polynomial and α3D
i ∈ R, β3D

i ∈ R3 are the RBF coefficients. A 3D
gradient selection function similar to s2D

i (x) is not necessary, since all dimensions are specified by
the 3D normals. According to previous work [14], the commonly used tri-harmonic kernel ϕ (t) = t3,
t ∈ R, with a linear polynomial g(x) = aTx + b yields adequate results in terms of shape aesthetics.
To determine the coefficients α2D

i , α3D
i , β2D

i , and β3D
i constraints are derived from the CPs [14]:

f (pi) = 0, (12)

s2D
i (∇ f (pi)) = n2D

i , (13)

∇ f (pi) = ni . (14)

In addition, the orthogonality conditions

N

∑
i=1

α2D
i = 0, (15)

N+M

∑
i=N+1

α3D
i = 0, (16)

N

∑
i=1

α2D
i s2D

i (pi) + β2D
i = 0, (17)

N+M

∑
i=N+1

α3D
i pi + β3D

i = 0 , (18)

have to be fulfilled [14]. These constraints yield a linear system of equations represented in the matrix
form as 

0 ST
1 · · · ST

M ST
M+1 · · · ST

M+N
S1 K1,1 · · · K1,M K1,M+1 · · · K1,M+N
...

...
. . .

...
...

. . .
...

SM KM,1 · · · KM,M KM,M+1 · · · KM,M+N
SM+1 KM+1,1 · · · KM+1,M KM+1,M+1 · · · KM+1,M+N

...
...

. . .
...

...
. . .

...
SM+N KM+N,1 · · · KM+N,M KM+N,M+1 · · · KM+N,M+N





s
w1

...
wM

wM+1
...

wM+N


=



0
c1
...

cM
cM+1

...
cM+N


, (19)

where different colors in the matrix imply the points and the corresponding normal vectors with
different dimensionality (3D blue, 2D green, mixed purple). The linear systems of equations can be
also written as DX = B, with D ∈ RM+N×M+N , X ∈ RM+N and B ∈ RM+N .

The blue block describes the constraints on the 3D variables α3D
i , β3D

i derived from the 3D
constraints and orthogonality conditions Equations (12), (14), (16) and (18). Thus, the matrices Ki,j, Si
and the vectors s, wi, and ci are defined as:
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Ki,j =

[
ϕ(
∥∥pi − pj

∥∥) −∇ϕ(
∥∥pi − pj

∥∥)T

∇ϕ(
∥∥pi − pj

∥∥) −Hϕ(
∥∥pi − pj

∥∥)
]

, Si =

[
pT

i 1
I 0

]
,

s =

[
a
b

]
, wi =

[
α3D

i
β3D

i

]
, ci =

[
0
ni

]
,

(20)

where I ∈ R3×3 is a unit matrix and Hϕ ∈ R3×3 is the Hessian matrix of the kernel ϕ, which arises due
to the normal constraint Equation (14) applied to ∇ϕ. The green block describes the constraints on the
2D variables α2D

i , β2D
i derived from the 2D constraints and orthogonality conditions Equations (12), (13),

(15) and (17). Thus, the matrices KM+i,M+j and SM+i and the vectors wM+i and cM+i are defined as:

KM+i,M+j =

[
ϕ(
∥∥pi − pj

∥∥) −s2D
i
(
∇ϕ(

∥∥pi − pj
∥∥))T

s2D
i
(
∇ϕ

(∥∥pi − pj
∥∥)) −s2D

i
(
∇Ts2D

i
(
∇ϕ

(∥∥pi − pj
∥∥)))

]
, SM+i =

[
s2D

i
(
pT

i
)

1
I 0

]
,

wM+i =

[
α2D

i
β2D

i

]
, cM+i =

[
0

n2D
i

]
.

(21)

The mixed blocks are defined analogously. There is always a unique solution to the system of
equations, if the points pi are pairwise distinct [14,19].

Considering the basis function of the tri-harmonic kernel ϕ(t) = t3, the gradient and the Hessian
matrix of the kernel ϕ is denoted as follows:

∇ϕ(t) = 3 ‖t‖ t,

Hϕ =

{
0 if ‖t‖ = 0

3ttT

‖t‖ + 3 ‖t‖ Ik otherwise
,

(22)

where Ik ∈ Rk×k is a unit matrix. To solve the linear system of equations, it is assumed that all the
M + N points have 3D normal vectors. Therefore, the linear system has the size of 3(M + N + 1)×
3(M + N + 1).

The unknown parameters α2D
i , α3D

i , β2D
i , β3D

i , a and b can be obtained directly as the matrix is
square and non-singular:

DX = B,

X = D−1B .
(23)

The parameter αi is the weight of each RBF at its center pi and βi is the weight of the normal vector
at the same center. The next step is to extract the 3D surface, which is presented in the next section.

2.5. Surface Reconstruction

As mentioned in the introduction, the RBF surface can be interpreted as an implicit surface,
as depicted in Figure 7. Therefore, after interpolating the scalar field, in order to get the 3D surface,
the zero level of the scalar field has to be extracted. For this aim, the level set method is used and the
zero level set is extracted. Using this method, no a priori knowledge is required about the topology
of the reconstructed shape. In general, the level set c0 at time t of a function ψ(x, y, t) is the set of
arguments {(x, y), ψ(x, y, t) = c0}. In the zero level set, the idea is to define a function ψ(x, y, t) such
that, at any time,

γ(t) = {(x, y), ψ(x, y, t) = 0} . (24)

The function ψ has many other level sets, in addition to γ, while only γ has a meaning for the
segmentation and not for any other level sets of ψ. A very commonly chosen ψ is the signed distance
to the front γ(0) given as
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ψ(x, y, 0) =


−d(x, y, 0) if (x, y) inside the front

0 if (x, y) on the front

d(x, y, 0) if (x, y) outside the front

. (25)

The level set method segments the surface iteratively. In the first step, the front γ(0) is initialized
at a certain position. The second step is to compute ψ(x, y, 0) and then iterate over until convergence:

ψ(x, y, t + 1) = ψ(x, y, t) + ∆ψ(x, y, t) . (26)

Lastly, the γ(tend) is marked as a desired extracted surface.

(a) (b)

Figure 7. (a) 3D Interpolation using radial basis function (RBF); (b) implicit surface of the RBF.

3. Evaluation and Results

The evaluation was performed on 12 MRI data sets. The data was acquired with a 1.5 T MAGNETOM
Aera scanner (Siemens Healthcare GmbH, Erlangen, Germany). Gold standard annotations of the left
ventricle were provided by a clinical expert. The Dice coefficient was evaluated as a quantitative score
for the segmentation overlap.

3.1. Smart Brush Evaluation

The 2D ground truth annotations were used to assess the 2D segmentation and the complete 3D
ground truth for the 3D interpolation scheme. The main problem with evaluating the Smart Brush
is that it inherently involves human interaction. Furthermore, there are many parameters that affect
the result of the 2D segmentation, such as the size of the brush or the initialization step. Therefore,
objective testing without human interaction is difficult. To address this, we mimicked user interactions
such as slice selection, mouse movement, brush size, etc. Iteratively, a 2D slice was selected and one
patch of the ground truth was for the initialization of the brush. The evaluation of the Smart Brush
was performed on a different patch by computing the Dice coefficient per patch. As it is difficult to
test all the parameters, we evaluate the performance of the proposed method with a fixed brush size
and constant morphological operations such as opening and closing. For each data set, five slices per
orientation and five different positions for each slice of the DICOM volume, which leads to 75 patches
for each data set, were evaluated.

The results of the 2D evaluation of our Smart Brush are depicted in Figure 8. For most patients,
an average Dice coefficient of 0.9 was achieved.
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Figure 8. The evaluation results of the 2D segmentation result using the Smart Brush.

3.2. 3D Interpolation Evaluation

For the evaluation of the 3D interpolation, the same 12 data sets were used as for the smart brush
evaluation. The Dice coefficient was used to evaluate the quantitative score of overlap of the 3D
interpolation compared to the gold standard segmentation. The accuracy of the 2D segmentations,
the number of segmented slices, and the distribution of these slices are all criteria that can directly
change the result of the 3D interpolation. Therefore, the evaluation is done based on the ground truth
segmentation of the 3D volume, where individual slices were extracted to initialize the 3D interpolation.
For each data set, the evaluation was performed with a different number of segmented slices per
orientation. We evaluated one, three, and five slices per orientation, which means to have a total
number of three, nine, and fifteen segmented slices, respectively. The slice selection was randomly;
however, for the first three slices, the center slice for each orientation was chosen. The same method of
control point extraction was used for both methods. The results of the 3D interpolation are depicted in
Figure 9a. It can be seen that, by increasing the number of slices, the Dice coefficient usually increases
slightly.

Furthermore, we compare our adapted-HRBF (A-HRBF) method to a reference method that
extracts 3D gradients at the control points based on the local intensity (HRBF) [14]. The main
difference from our proposed A-HRBF method to the HRBF is that we use a combination of 2D and 3D
gradients based on the extracted contour of the 2D segmentation, which makes the interpolation faster.
As mentioned, the standard HRBF method uses the 3D intensity gradient for their 3D interpolation.
These can lead to errors, especially in the case of ambiguous boundaries, such as the transition between
the left and the right ventricle. The differences will be outlined in more detail in the discussion.
Comparing the different methods, the Dice coefficient for the proposed A-HRBF is consistently higher
than for the HRBF [14], as depicted in Figure 9.

Figure 10 depicts the qualitative results of the A-HRBF 3D interpolation scheme for one example
data set, where the result is shown in blue and the ground truth in red.
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(b) HRBF [14]

Figure 9. The 3D interpolation evaluation results: (a) the A-HRBF result with average Dice coefficient of
0.91, 0.95, and 0.96 for one, three, and five slices per orientation, respectively; (b) the HRBF result with
average Dice coefficient of 0.69, 0.63 and 0.69 for one, three, and five slices per orientation, respectively.

Figure 10. The ground truth (red) and the result of 3D interpolation (blue) are shown. The interpolation
is obtained based on only one reference slice per orientation. Each row depicts a different orientation
(axial, sagittal, and coronal). It is expected that the closer to the reference slice, the higher Dice
coefficient is obtained ([2], Reproduced with permission).

4. Discussion

Our experiments show that three slices per orientation is sufficient to get a good segmentation
result. Furthermore, in order to achieve more accurate interpolation results, the user has to segment
those slices that have the maximum mismatch with the actual ground truth. In fact, for 3D interpolation,
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the user selects those slices that are a good representation of the complete shape. Hence, the actual
result of the interpolation is even better than the evaluation result shows.

In contrast to previous implicit methods for 3D interpolation [14], this method can not only
be used for high-contrast images, but also for images with high noise level or other confounding
factors due to the independence of intensity information for the 3D interpolation. The main advantage
happens when there is an ambiguous boundary that only an expert can recognize (e.g., between the
left ventricle and left atrium at the left ventricular outflow tract). In this case, the normal vector
computation fails based on the previous method [14], whereas, using our method, the normal vectors
are oriented based on the contour extracted from the 2D segmentation mask (see Figure 11). This leads
to a better segmentation result compared to the standard HRBF method, which is also seen in Figure 9.

(a) (b)

(c) (d)

Figure 11. Normal vector orientation for left ventricle segmentation with an ambiguous boundary:
(a,b) control points (yellow) and associated normal vectors (blue) based on intensity gradients for the
HRBF method; (c,d) control points (yellow) and associated normal vectors (blue) based on the drawn
contour (red) for our proposed method ([2], Reproduced with permission).

For the 2D evaluation, the outliers occur mainly because of two reasons. First, when there
is no boundary or change in the intensity within the region of interest, in contrast to background
or an undesired object, i.e., two different regions have the same intensities. For example, in heart
segmentations, the intensities of the left ventricle and the left atrium have the same intensity and only
experts can differ between these two objects. In this case, the fully automatic evaluation of the smart
brush fails as it considers both objects as a single one (see Figure 12 for an example). Considering this
case, the smart brush accuracy decreases as it performs based on the intensity thresholding. The second
case of having a low Dice coefficient is when the hole filling is applied on the patch. In a real use of the
smart brush, the user fills the holes at the end of the segmentation. In the automatic evaluation, the
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filling is done each time after the patch is segmented and, as it is done by using the morphological
operations, e.g., opening and closing, it expands the region of interest in this case. As the evaluation is
performed patch-wise, the hole filling is done for a single patch each time and, at the end, the ROI is
bigger than the ground truth.

(a) (b) (c) (d)

Figure 12. (a) the overlaid ground truth shown in red and the smart brush patch shown with a yellow
rectangle; (b) the extracted patch from the smart brush; (c) the pre-segmented mask that is obtained by
eroding the extracted patch; (d) the segmentation result by using the smart brush, which is different to
the ground truth patch due to the same intensity rage values.

For the 3D interpolation, we showed that good results are achieved with only one slice per
orientation. However, this was only evaluated for the left ventricle, which is a convex object.
For considering more complex objects, more annotations would be necessary. In addition, it would be
great to analyze the inter-observer variability. However, we would therefore need the gold standard
annotations from at least two clinical experts.

For future work, the method should be extended to use arbitrary orientations of the 2D slices,
and not only axial, sagittal, and coronal image slices for the 3D interpolation. Having the possibility
to annotate arbitrary orientations, the 2D annotations can be better adopted to the 3D segmentation
problem. For the left ventricle, for example, one would annotate the short-axis orientation, and the two
long-axis orientations to achieve excellent 3D interpolation results. Therefore, the 3D interpolation with
the 2D gradient selector has to be adopted. In addition, the functionality of the 2D smart brush can also
be improved, as right now only the intensity distribution and the connectivity is considered. However,
for medical images, the texture can also play an important role. Incorporating texture features for the
classification of foreground and background could further improve the 2D segmentation result.

5. Conclusions

The benefit of the method is that the user can correct the 3-D segmentation result easily by
segmenting an additional 2-D slice with the maximum mismatch. Furthermore, no prior knowledge
is involved, which leads to the ability to generate any arbitrary segmentation of any 3D data set,
irrespective of image modality, displayed organ, or clinical application.
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Abbreviations

The following abbreviations are used in this manuscript:

A-HRBF Adaptive Hermite Radial Basis Function
HRBF Hermite Radial Basis Function
RBF Radial Basis Function
MRI Magnetic Resonance Imaging
ROI Region of Interest
CP Control Point
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