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Abstract: Texture classification has a long history in computer vision. In the last decade, the strong
affirmation of deep learning techniques in general, and of convolutional neural networks (CNN)
in particular, has allowed for a drastic improvement in the accuracy of texture recognition systems.
However, their performance may be dampened by the fact that texture images are often characterized
by color distributions that are unusual with respect to those seen by the networks during their
training. In this paper we will show how suitable color balancing models allow for a significant
improvement in the accuracy in recognizing textures for many CNN architectures. The feasibility
of our approach is demonstrated by the experimental results obtained on the RawFooT dataset,
which includes texture images acquired under several different lighting conditions.

Keywords: convolutional neural networks; color balancing; deep learning; texture classification;
color constancy; color characterization

1. Introduction

Convolutional neural networks (CNNSs) represent the state of the art for many image classification
problems [1-3]. They are trained for a specific task by exploiting a large set of images representing
the application domain. During the training and the test stages, it is common practice to preprocess
the input images by centering their color distribution around the mean color computed on the training
set. However, when test images have been taken under acquisition conditions unseen during training,
or with a different imaging device, this simple preprocessing may not be enough (see the example
reported in Figure 1 and the work by Chen et al. [4]).

The most common approach to deal with variable acquisition conditions consists of applying
a color constancy algorithm [5], while to obtain device-independent color description a color
characterization procedure is applied [6]. A standard color-balancing model is therefore composed of
two modules: the first discounts the illuminant color, while the second maps the image colors from the
device-dependent RGB space into a standard device-independent color space. More effective pipelines
have been proposed [7,8] that deal with the cross-talks between the two processing modules.

In this paper we systematically investigate different color-balancing models in the context of
CNN-based texture classification under varying illumination conditions. To this end, we performed
our experiments on the RawFooT texture database [9] which includes images of textures acquired
under a large number of controlled combinations of illumination color, direction and intensity.

Concerning CNNs, when the training set is not big enough, an alternative to the full training
procedure consists of adapting an already trained network to a new classification task by retraining
only a small subset of parameters [10]. Another possibility is to use a pretrained network as a feature
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extractor for another classification method (nearest neighbor, for instance). In particular, it is common
to use networks trained for the ILSVRC contest [11]. The ILSVRC training set includes over one
million images taken from the web to represent 1000 different concepts. The acquisition conditions of
training images are not controlled, but we may safely assume that they have been processed by digital
processing pipelines that mapped them into the standard sRGB color space. We will investigate how
different color-balancing models permit adapting images from the RawFooT dataset in such a way
that they can be more reliably classified by several pretrained networks.

The rest of the paper is organized as follows: Section 2 summarizes the state of the art in both
texture classification and color-balancing; Section 3 presents the data and the methods used in this
work; Section 4 describes the experimental setup and Section 5 reports and discusses the results of
the experiments. Finally, Section 6 concludes the paper by highlighting its main outcomes and by
outlining some directions for future research on this topic.

Apply ColorCast ||
—_—

Top 3 predictions

Rapeseed, 99% Coral fungus, 11%
Appenzeller, 0% Picket fence, 3%
American black bear, 0% Dishrag, 3%

Figure 1. Example of correctly predicted image and mis-predicted image after a color cast is applied.

2. Related Works

2.1. Color Texture Classification under Varying Illlumination Conditions

Most of the research efforts on the topic of color texture classification have been devoted to the
definition of suitable descriptors able to capture the distinctive properties of the texture images while
being invariant, or at least robust, with respect to some variations in the acquisition conditions, such as
rotations and scalings of the image, changes in brightness, contrast, light color temperature, and so
on [12].

Color and texture information can be combined in several ways. Palm categorized them into
parallel (i.e., separate color and texture descriptors), sequential (in which color and texture analysis
are consecutive steps of the processing pipeline) and integrative (texture descriptors computed on
different color planes) approaches [13]. The effectiveness of several combinations of color and texture
descriptors has been assessed by Maenpid, and Pietikdinen [14], who showed how the descriptors in
the state of the art performed poorly in the case of a variable color of the illuminant. Their findings
have been more recently confirmed by Cusano et al. [9].

In order to successfully exploit color in texture classification the descriptors need to be invariant
(or at least robust) with respect to changes in the illumination. For instance, Seifi et al. proposed
characterizing color textures by analyzing the rank correlation between pixels located in the same
neighborhood and by using a correlation measure which is related to the colors of the pixels, and is not
sensitive to illumination changes [15]. Cusano et al. [16] proposed a descriptor that measures the local
contrast: a property that is less sensitive than color itself to variations in the color of the illuminant.
The same authors then enhanced their approach by introducing a novel color space where changes in
illumination are even easier to deal with [17]. Other strategies for color texture recognition have been



J. Imaging 2017, 3, 33 3o0f15

proposed by Drimbarean and Whelan who used Gabor filters and co-occcurrence matrices [18], and by
Bianconi et al. who used ranklets and the discrete Fourier transform [19].

Recent works suggested that, in several application domains, carefully designed features can be
replaced by features automatically learned from a large amount of data with methods based on deep
learning [20]. Cimpoi et al., for instance, used Fisher Vectors to pool features computed by a CNN
trained for object recognition [21]. Approaches based on CNNs have compared against combinations of
traditional descriptors by Cusano et al. [22], who found that CNN-based features generally outperform
the traditional handcrafted ones unless complex combinations are used.

2.2. Color Balancing

The aim of color constancy is to make sure that the recorded color of the objects in the scene does
not change under different illumination conditions. Several computational color constancy algorithms
have been proposed [5], each based on different assumptions. For example, the gray world algorithm
[23] is based on the assumption that the average color in the image is gray and that the illuminant
color can be estimated as the shift from gray of the averages in the image color channels. The white
point algorithm [24] is based on the assumption that there is always a white patch in the scene and
that the maximum values in each color channel are caused by the reflection of the illuminant on the
white patch, and they can be thus used as the illuminant estimation. The gray edge algorithm [25]
is based on the assumption that the average color of the edges is gray and that the illuminant color
can be estimated as the shift from the gray of the averages of the edges in the image color channels.
Gamut mapping assumes that for a given illuminant, one observes only a limited gamut of colors [26].
Learning-based methods also exist, such as Bayesian [27], CART-based [28], and CNN-based [29,30]
approaches, among others.

The aim of color characterization of an imaging device is to find a mapping between its
device-dependent and a device-independent color representation. The color characterization is
performed by recording the sensor responses to a set of colors and the corresponding colorimetric
values, and then finding the relationship between them. Numerous techniques in the state of the
art have been proposed to find this relationship, ranging from empirical methods requiring the
acquisition of a reference color target (e.g., a GretagMacbeth ColorChecker [31]) with known spectral
reflectance [8], to methods needing the use of specific equipment such as monochromators [32]. In the
following we will focus on empirical methods that are the most used in practice, since they do not
need expensive laboratory hardware. Empirical device color characterization directly relates measured
colorimetric data from a color target and the corresponding camera raw RGB data obtained by shooting
the target itself under one or more controlled illuminants. Empirical methods can be divided into two
classes: the methods belonging to the first class rely on model-based approaches, that solve a set of
linear equations by means of pseudo-inverse approach [6] , constrained least squares [33], exploiting
a non-maximum ignorance assumption [33,34], exploiting optimization to solve more meaningful
objective functions [7,35,36], or lifting the problem into a higher dimensional polynomial space [37,38].
The second class instead contains methods that do not explicitly model the relationship between
device-dependent and device-independent color representations such as three-dimensional lookup
tables with interpolation and extrapolation [39], and neural networks [40,41].

3. Materials and Methods

3.1. RawFooT

The development of texture analysis methods heavily relies on suitably designed databases
of texture images. In fact, many of them have been presented in the literature [42,43]. Texture
databases are usually collected to emphasize specific properties of textures such as the sensitivity
to the acquisition device, the robustness with respect to the lighting conditions, and the invariance
to image rotation or scale, etc. The RawFooT database has been especially designed to investigate
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the performance of color texture classification methods under varying illumination conditions [9].
The database includes images of 68 different samples of raw foods, each one acquired under 46
different lighting conditions (for a total of 68 x 46 = 3128 acquisitions). Figure 2 shows an example for
each class.

chickpeas n white peas sliced bread
R = -

basmati rice

apple slice pearl barley black rice quinoa buckwheat puffed rice

B T 7
55 a,l,-q Al
A BN

% AN
L BN

fennel seeds brown sugar

b B £ T X et X
sultana coffee powder polenta flour air-cured beef flatbrea corn crackers aregano black beans soluble coffee
7 CNWE

-
cut spaghett pastina red cabbage grapefruit hamburger swordfish candied fruit chilipepper  milk chocolate

garlic grain pink pepper pomegranate currant pumpkin seeds red lentils green adzuki linseeds

coconut flakes chicory pork loin chicken breast carrols sugar salmaon tuna

Figure 2. A sample for each of the 68 classes of textures composing the RawFooT database.

Images have been acquired with a Canon EOS 40D DSLR camera. The camera was placed 48 cm
above the sample to be acquired, with the optical axis perpendicular to the surface of the sample.
The lenses used had a focal length of 85 mm, and a camera aperture of f/11.3; each picture has been
taken with four seconds of exposition time. For each 3944 x 2622 acquired image a square region of
800 x 800 pixels has been cropped in such a way that it contains only the surface of the texture sample
without any element of the surrounding background. Note that, while the version of the RawFooT
database that is publicly available includes a conversion of the images in the sSRGB color space, in this
work we use the raw format images that are thus encoded in the device-dependent RGB space.

To generate the 46 illumination conditions, two computer monitors have been used as light sources
(two 22-inch Samsung SyncMaster LED monitors). The monitors were tilted by 45 degrees facing
down towards the texture sample, as shown in Figure 3. By illuminating different regions of one or
both monitors it was possible to set the direction of the light illuminating the sample. By changing the
RGB values of the pixels it was also possible to control the intensity and the color of the light sources.
To do so, both monitors have been preliminarily calibrated using a X-Rite il spectral colorimeter by
setting their white point to D65.

With this setup it was possible to approximate a set of diverse illuminants. In particular,
12 illuminants have been simulated, corresponding to 12 daylight conditions differing in the color
temperature. The CIE-xy chromaticities corresponding to a given temperature T have been obtained
by applying the following equations [44]:

X :ﬂ0+ﬂ1@+ﬂzﬁ+ﬂ3@
T T? T3’
y = —3x> +2.87x — 0.275,

)
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where g9 = 0.244063, a; = 0.09911, ap = 29678, a3 = —4.6070 if 4000K < T < 7000K,
and ag = 0.23704, a1 = 0.24748, a, = 1.9018, a3 = —2.0064if 7000K < T < 25,000 K. The chromaticities
were then converted in the monitor RGB space [45] with a scaling of the color channels in such a way
that largest value was 255.

R’ 32406 —1.5372 —0.4986 x .
G | =] —09689 18758 00415 |- y x =, @)
B 0.0557 —02040  1.0570 1-x—y ) 7
R R’
255 ,
g ~ max{R/,G,B'} . (;/ ) ®)
camera

texture sample
[

Figure 3. Scheme of the acquisition setup used to take the images in the RawFooT database.

The twelve daylight color temperatures that have been considered are: 4000K, 4500 K, 5000K, ...,
9500 K (we will refer to these as D40, D45, ..., D95).

Similarly, six illuminants corresponding to typical indoor light have been simulated. To do so,
the CIE-xy chromaticities of six LED lamps (six variants of SOLERIQ®S by Osram) have been obtained
from the data sheets provided by the manufacturer. Then, again the RGB values were computed and
scaled to 255 in at least one of the three channels. These six illuminants are referred to as L.27, 130, L40,
L50, L57, and L65 in accordance with the corresponding color temperature.

Figure 4 shows, for one of the classes, the 46 acquisitions corresponding to the 46 different lighting
conditions in the RawFooT database. These include:

e 4 acquisitions with a D65 illuminant of varying intensity (100%, 75%, 50%, 25% of the maximum);

e 9 acquisitions which were only a portion of one of the monitors lit to obtain directional light
(approximately 24, 30, 36, 42, 48, 54, 60, 66 and 90 degrees between the direction of the incoming
light and the normal to the texture sample);

e 12 acquisitions with both monitors entirely projecting simulated daylight (D4, ..., D95);

e 6 acquisitions with the monitor simulating artificial light (L27, ..., L65);

e 9 acquisitions with simultaneously change of both the direction and the color of light;

e 3acquisitions with the two monitors simulating a different illuminant (L27+D65, L27+4D95 and
D65+D95);

e 3 acquisitions with both monitors projecting pure red, green and blue light.
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D65 (=50%) D65 (I=25%) D65 (A=60°)  DB5 (A=66°)
- \ { 7 { T

D65 (A=90°)

D95 L27 L30 L40 L50 Ls57 LBS DB5 (A=24°) D95 (A=24") D27 (A=24") D65 (A=60°) D95 (A=60")

D27 (A=60") DE5 (A=80°) D95 (A=907) D27 (A=80°) DES+D95 DE5+L27 D95+L27

Figure 4. Example of the 46 acquisitions included in the RawFooT database for each class (here the
images show the acquisitions of the “rice” class).

In this work we are interested in particular in the effects of changes in the illuminant color.
Therefore, we limited our analysis to the 12 illuminants simulating daylight conditions, and to the six
simulating indoor illumination.

Beside the images of the 68 texture classes, the RawFooT database also includes a set of
acquisitions of a color target (the Macbeth color checker [31]). Figure 5 shows these acquisitions
for the 18 illuminants considered in this work.

Figure 5. The Macbeth color target, acquired under the 18 lighting conditions considered in this work.

3.2. Color Balancing

An image acquired by a digital camera can be represented as a function p mainly dependent on
three physical factors: the illuminant spectral power distribution I(A), the surface spectral reflectance
S(A), and the sensor spectral sensitivities C(A). Using this notation, the sensor responses at the pixel
with coordinates (x,y) can be described as:

p() = [ 169,155, 3,2)C(A)dA, ()

where w is the wavelength range of the visible light spectrum, and p and C(A) are three-component
vectors. Since the three sensor spectral sensitivities are usually more sensitive respectively to the low,
medium and high wavelengths, the three-component vector of sensor responses p = (p1, p2, p3) is also
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referred to as the sensor or camera raw RGB triplet. In the following we adopt the convention that p
triplets are represented by column vectors.

As previously said, the aim of color characterization is to derive the relationship between
device-dependent and device-independent color representations for a given device. In this work,
we employ an empirical, model-based characterization. The characterization model that transforms
the i-th input device-dependent triplet p'V into a device-independent triplet p®UT

written as follows [46]:

can be compactly

our N7
pi = (“IMPi ) , ©)
where « is an exposure correction gain, M is the color correction matrix, [ is the illuminant correction
matrix, and (-)7 denotes an element-wise operation.

Traditionally [46], M is fixed for any illuminant that may occur, while « and I compensate for the

illuminant power and color respectively, i.e.,
o g
oOUT = (,xj [;MpfY ) . (6)

The model can be thus conceptually split into two parts: the former compensates for the variations
of the amount and color of the incoming light, while the latter performs the mapping from the
device-dependent to the device-independent representation. In the standard model (Equation (6))
a; is a single value, [; is a diagonal matrix that performs the Von Kries correction [47], and M is
a 3 x 3 matrix.

In this work, different characterization models have been investigated together with Equation (6)
in order to assess how the different color characterization steps influence the texture recognition
accuracy. The first tested model does not perform any kind of color characterization, i.e.,

i = piy- @

The second model tested performs just the compensation for the illuminant color, i.e., it balances
image colors as a color constancy algorithm would do:

pOUT = (o). ®)

The third model tested uses the complete color characterization model, but differently from the
standard model given in Equation (6), it estimates a different color correction matrix M; for each
illuminant j. The illuminant is compensated for both its color and its intensity, but differently from the
standard model, the illuminant color compensation matrix I; for the j-th illuminant is estimated by
using a different luminance gain «; ; for each patch i:

v

The fourth model tested is similar to the model described in Equation (9) but uses a larger color
correction matrix M; by polynomially expanding the device-dependent colors:

pOUT = (wMiT (p1)), (10)

where T(-) is an operator that takes as input the triplet p and computes its polynomial expansion.
Following [7], in this paper we use T(p) = (0(1),0(2),0(3), /p(1)p(2), /p(1)p(3), /p(2)p(3)), i.e.,
the rooted second degree polynomial [38].

Summarizing, we have experimented with five color-balancing models. They all take as input the
device-dependent raw values and process them in different ways:
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1. device-raw: it does not make any correction to the device-dependent raw values, leaving them
unaltered from how they are recorded by the camera sensor;

2. light-raw: it performs the correction of the illuminant color, similarly to what is done by color
constancy algorithms [5,30,48] and chromatic adaptation transforms [49,50]. The output color
representation is still device-dependent, but with the discount of the effect of the illuminant color;

3. dcraw-srgb: it performs a full color characterization according to the standard color correction
pipeline. The chosen characterization illuminant is the D65 standard illuminant, while the color
mapping is linear and fixed for all illuminants that may occur. The correction is performed using
the DCRaw software (available at http:/ /www.cybercom.net/~dcoffin/dcraw/);

4. linear-srgb: it performs a full color characterization according to the standard color correction
pipeline, but using different illumination color compensation and different linear color mapping
for each illuminant;

5. rooted-srgb: it performs a full color characterization according to the standard color correction
pipeline, but using a different illuminant color compensation and a different color mapping
for each illuminant. The color mapping is no more linear but it is performed by polynomially
expanding the device-dependent colors with a rooted second-degree polynomial.

The main properties of the color-balancing models tested are summarized in Table 1.

Table 1. Main characteristics of the tested color-balancing models. Regarding the color-balancing steps,
the open circle denotes that the current step is not implemented in the given model, while the filled
circle denotes its presence. Regarding the mapping properties, the dash denotes that the given model
does not have this property.

Color-Balancing Steps Mapping Properties
Model Name Illum. Intensity Illum. Color Color Mapping Number
Compensation Compensation  Mapping Type of Mappings
Device-raw (Equation (7)) @) O @) - -
Light-raw (Equation (8)) @) [ ] (@) - -
Dcraw-srgb (Equation (6)) [ © fixed for D65 ) Linear 1
Linear-srgb (Equation (9)) ) [ [ ) Linear 1 for each illum.
Rooted-srgb (Equation (10)) ) ) [ ) Rooted 2nd-deg. poly. 1 for each illum.

All the correction matrices for the compensation of the variations of the amount and color of the
illuminant and the color mapping are found using the set of acquisitions of the Macbeth color checker
available in the RawFooT using the optimization framework described in [7,36]. An example of the
effect of the different color characterization models on a sample texture class of the RawFooT database
is reported in Figure 6.
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(b)

Figure 6. Example of the effect of the different color-balancing models on the “rice” texture class:
device-raw (a); light-raw (b); dcraw-srgb (c); linear-srgb (d); and rooted-srgb (e).

4. Experimental Setup

Given an image, the experimental pipeline includes the following operations: (1) color balancing;
(2) feature extraction; and (3) classification. All the evaluations have been performed on the
RawFooT database.

4.1. RawFooT Database Setup

For each of the 68 classes we considered 16 patches obtained by dividing the original texture
image, that is of size 800 x 800 pixels, in 16 non-overlapping squares of size 200 x 200 pixels. For each
class we selected eight patches for training and eight for testing alternating them in a chessboard
pattern. We form subsets of 68 x (8 + 8) = 1088 patches by taking the training and test patches from
images taken under different lighting conditions.

In this way we defined several subsets, grouped in three texture classification tasks.
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1.  Daylight temperature: 132 subsets obtained by combining all the 12 daylight temperature
variations. Each subset is composed of training and test patches with different light temperatures.

2. LED temperature: 30 subsets obtained by combining all the six LED temperature variations.
Each subset is composed of training and test patches with different light temperatures.

3. Daylight vs. LED: 72 subsets obtained by combining 12 daylight temperatures with six
LED temperatures.

4.2. Visual Descriptors

For the evaluation we select a number of descriptors from CNN-based approaches [51,52].
All feature vectors are L>-normalized (each feature vector is divided by its L>-norm.). These descriptors
are obtained as the intermediate representations of deep convolutional neural networks originally
trained for scene and object recognition. The networks are used to generate a visual descriptor
by removing the final softmax nonlinearity and the last fully-connected layer. We select the most
representative CNN architectures in the state of the art [53] by considering different accuracy/speed
trade-offs. All the CNNs are trained on the ILSVRC-2012 dataset using the same protocol as in [1].
In particular we consider the following visual descriptors [10,54]:

e  BVLC AlexNet (BVLC AlexNet): this is the AlexNet trained on ILSVRC 2012 [1].

e  Fast CNN (Vgg F): it is similar to that presented in [1] with a reduced number of convolutional
layers and the dense connectivity between convolutional layers. The last fully-connected layer is
4096-dimensional [51].

o  Medium CNN (Vgg M): it is similar to the one presented in [55] with a reduced number of filters in
the fourth convolutional layer. The last fully-connected layer is 4096-dimensional [51].

o  Medium CNN (Vgg M-2048-1024-128): it has three modifications of the Vgg M network, with a
lower-dimensional last fully-connected layer. In particular we use a feature vector of 2048, 1024
and 128 size [51].

e  Slow CNN (Vgg S): it is similar to that presented in [56], with a reduced number of convolutional
layers, fewer filters in layer five, and local response normalization. The last fully-connected layer
is 4096-dimensional [51].

o  Vgg Very Deep 19 and 16 layers (Vgg VeryDeep 16 and 19): the configuration of these networks has
been achieved by increasing the depth to 16 and 19 layers, which results in a substantially deeper
network than the previously ones [2].

e  ResNet 50 is a residual network. Residual learning frameworks are designed to ease the training of
networks that are substantially deeper than those used previously. This network has 50 layers [52].

4.3. Texture Classification

In all the experiments we used the nearest neighbor classification strategy: given a patch in the
test set, its distance with respect to all the training patches is computed. The prediction of the classifier
is the class of the closest element in the training set. For this purpose, after some preliminary tests
with several descriptors in which we evaluated the most common distance measures, we decided to

use the L2-distance: d(x,y) = \/ YN, (x(i) — y(i))2, where x and y are two feature vectors. All the
experiments have been conducted under the maximum ignorance assumption, that is, no information
about the lighting conditions of the test patches is available for the classification method and for
the descriptors. Performance is reported as classification rate (i.e., the ratio between the number of
correctly classified images and the number of test images). Note that more complex classification
schemes (e.g., SVMs) would have been viable. We decided to adopt the simplest one in order to focus

the evaluation on the features themselves and not on the classifier.
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5. Results and Discussion

The effectiveness of each color-balancing model has been evaluated in terms of texture
classification accuracy. Table 2 shows the average accuracy obtained on each classification task (daylight
temperature, LED temperature and daylight vs LED) by each of the visual descriptors combined with
each balancing model. Overall, the rooted-srgh and linear-srgb models achieve better performance than
others models with a minimum improvement of about 1% and a maximum of about 9%. In particular
the rooted-srgb model performs slightly better than linear-srgb. The improvements are more visible
in Figure 7 that shows, for each visual descriptor, the comparison between all the balancing models.
Each bar represents the mean accuracy over all the classification tasks. ResNet-50 is the best-performing
CNN-based visual descriptor with a classification accuracy of 99.52%, that is about 10% better than the
poorest CNN-based visual descriptor. This result confirms the power of deep residual nets compared
to sequential network architectures such as AlexNet, and VGG etc.

Table 2. Classification accuracy obtained by each visual descriptor combined with each model, the best
result is reported in bold.

Features Device-Raw  Light-Raw  Dcraw-Srgb  Linear-Srgb  Rooted-Srgb
VGG-F 87.81 90.09 93.23 96.25 95.83
VGG-M 91.26 92.69 94.71 95.85 96.14
VGG-S 90.36 92.64 93.54 96.83 96.65
VGG-M-2048 89.83 92.09 94.08 95.37 96.15
VGG-M-1024 88.34 90.92 93.74 94.31 94.92
VGG-M-128 82.52 85.99 87.35 90.17 90.97
AlexNet 84.65 87.16 93.34 93.58 93.68
VGG-VD-16 91.15 94.68 95.79 98.23 97.93
VGG-VD-19 92.22 94.87 95.38 97.71 97.51
ResNet-50 97.42 98.92 98.67 99.28 99.52
1 device-raw m—
light-raw
decraw-srgb  m—
linear-srgb
rooted-srgb - mm—"
0.9
08 Vgg-F Vgg-M Vgg-S Vgg-M-2048  Vgg-M-1024 Vgg-M-128 AlexNet Vgg-VD-16 Vgg-VD-19 ResNet-50

Figure 7. Classification accuracy obtained by each visual descriptor combined with each model.

To better show the usefulness of color-balancing models we focused on the daylight temperature
classification task, where we have images taken under 12 daylight temperature variations from 4000 K
to 9500 K with an increment of 500 K. To this end, Figure 8 shows the accuracy behavior (y-axis) with
respect to the difference (AT measured in Kelvin degrees) of daylight temperature (x-axis) between the
training and the test sets. The value AT = 0 corresponds to no variations. Each graph shows, given
a visual descriptor, the comparison between the accuracy behaviors of each single model. There is
an evident drop in performance for all the networks when AT is large and no color-balancing is applied.
The use of color balancing is able to make uniform the performance of all the networks independently
of the difference in color temperature. The dcraw-srgb model represents the most similar conditions to
those of the ILSVRC training images. This explains why this model obtained the best performance
for low values of AT. However, since dcraw-srgb does not include any kind of color normalization
for high values of AT we observe a severe loss in terms of classification accuracy. Both linear-srgb
and rooted-srgb are able, instead, to normalize the images with respect to the color of the illumination,
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making all the plots in Figure 8 almost flat. The effectiveness of these two models also depends on the
fact that they work in a color space similar to those used to train the CNNs. Between the linear and the
rooted models, the latter performs slightly better, probably because its additional complexity increases
the accuracy in balancing the images.
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device-raw
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Figure 8. Accuracy behavior with respect to the difference (AT) of daylight temperature between the
training and the test: (a) setsVGG-M-128; (b) AlexNet; (c) VGG-VD-16; (d) ResNet-50.

6. Conclusions

Recent trends in computer vision seem to suggest that convolutional neural networks are so
flexible and powerful that they can substitute in toto traditional image processing/recognition
pipelines. However, when it is not possible to train the network from scratch due to the lack of
a suitable training set, the achievable results are suboptimal. In this work we have extensively
and systematically evaluated the role of color balancing that includes color characterization as a
preprocessing step in color texture classification in presence of variable illumination conditions. Our
findings suggest that to really exploit CNNs, an integration with a carefully designed preprocessing
procedure is a must. The effectiveness of color balancing, in particular of the color characterization that
maps device-dependent RGB values into a device-independent color space, has not been completely
proven since the RawFooT dataset has been acquired using a single camera. As future work we would
like to extend the RawFooT dataset and our experimentation acquiring the dataset using cameras with
different color transmittance filters. This new dataset will make more evident the need for accurate
color characterization of the cameras.
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