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Abstract

Timely, balanced, and transparent detection of retinal diseases is essential to avert ir-
reversible vision loss; however, current deep learning screeners are hampered by class
imbalance, large models, and opaque reasoning. This paper presents a lightweight attention-
augmented convolutional neural network (CNN) that addresses all three barriers. The
network combines depthwise separable convolutions, squeeze-and-excitation, and global-
context attention, and it incorporates gradient-based class activation mapping (Grad-CAM)
and Grad-CAM++ to ensure that every decision is accompanied by pixel-level evidence.
A 5335-image ten-class color-fundus dataset from Bangladeshi clinics, which was severely
skewed (17-1509 images per class), was equalized using a synthetic minority oversampling
technique (SMOTE) and task-specific augmentations. Images were resized to 150 x 150 px
and split 70:15:15. The training used the adaptive moment estimation (Adam) optimizer
(initial learning rate of 1 x 10~#, reduce-on-plateau, early stopping), ¢, regularization,
and dual dropout. The 16.6 M parameter network converged in fewer than 50 epochs on
a mid-range graphics processing unit (GPU) and reached 87.9% test accuracy, a macro-
precision of 0.882, a macro-recall of 0.879, and a macro-F1-score of 0.880, reducing the
error by 58% relative to the best ImageNet backbone (Inception-V3, 40.4% accuracy). Eight
disorders recorded true-positive rates above 95%; macular scar and central serous chori-
oretinopathy attained F1-scores of 0.77 and 0.89, respectively. Saliency maps consistently
highlighted optic disc margins, subretinal fluid, and other hallmarks. Targeted class re-
balancing, lightweight attention, and integrated explainability, therefore, deliver accurate,
transparent, and deployable retinal screening suitable for point-of-care ophthalmic triage
on resource-limited hardware.

Keywords: convolutional neural network; diabetic retinopathy; eye disease; fundus imaging;
retinal disease classification

1. Introduction

The global situation of eye disease today is that it is a significant public health issue,
and an estimated 2.2 billion people suffer from some kind of vision loss or eye disease [1].
Cataracts remain a leading cause of blindness, and access to care remains an issue, even
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with more eye-care programs [2]. Age-related macular degeneration (AMD) is also increas-
ing, with an estimated increase in its prevalence from 196 million in 2020 to 288 million
by 2040 [3]. Despite the decline in the prevalence of blindness and vision impairment,
the number of people affected is growing as a result of population growth and aging [4].
Furthermore, the comorbidity of eye diseases with other disease states, such as diabetes
and cardiovascular diseases, delineates the need for integrated care models [1]. These
issues require action across both public health policies and eye-care provisions to facilitate
universal access to prevention and treatment [4].

Socioeconomic determinants contribute to the global burden of eye disease, and several
studies have reported disparities in prevalence and economic costs. For example, AMD is
extremely expensive economically, with costs of €43.2 billion in the United States (US) alone,
largely due to lost productivity and decreased well-being, disproportionately affecting older
individuals and those in less privileged socioeconomic groups [5]. Similarly, the burden
of glaucoma in DALYs increases in populations with lower human development indices
(HDIs) and mean years of schooling (MYS), whose socioeconomic status is negatively
related to disease burden [6]. Blindness and visual impairment due to limited access to
adequate interventions also occur more frequently in countries with a low HDI, a result
that corroborates the link between socioeconomic development and eye outcomes [7].
The increasing burden of near-vision impairment, particularly in low-income and middle-
income countries, strongly underscores the need for targeted public health interventions to
address these disparities [8]. Socioeconomic determinants are active contributors to global
eye disease trends, and interdisciplinary measures are required to safeguard against them.

Convolutional neural networks (CNNs) may lead the way when it comes to the diag-
nosis of eye disease because they are capable of processing and analyzing large groups of
retinal images in a manner that supports rapid and effective disease diagnosis, like that of
diabetic retinopathy and glaucoma. Some notable reasons are the application of advanced
image preprocessing techniques, such as data augmentation and generative adversarial
networks (GANSs), for the enhancement of the image quality and data imbalance correction,
respectively, to enhance the performance of the model [9]. In addition, CNNs are supported
by end-to-end data-driven approaches that facilitate the auto-learning of discriminative
features of inexplicably high-dimensional medical images using conventional practices [10].
The use of diversified deep architecture models, such as hybrid architectures, improves di-
agnostic accuracy and efficacy, with a diagnostic accuracy of above 80% in some studies [11].
The problems of overfitting and heterogeneous datasets remain the foremost drivers of
innovativeness in such diagnostic equipment [12].

While standard deep learning models have shown promise, their direct clinical applica-
tion is often hindered by critical, practical barriers. First, large, computationally expensive
models are impractical for deployment in point-of-care or low-resource settings, where the
diagnostic need is often greatest. Second, the “black box” nature of many advanced models,
where the reasoning behind a diagnosis is unclear, erodes trust, and makes it difficult for
ophthalmologists to verify or accept automated results. Finally, real-world clinical datasets
are inherently imbalanced, causing models to perform poorly on rarer but equally critical
diseases, which can lead to missed diagnoses.

This study is, therefore, motivated by the urgent need for a solution that overcomes
these specific application-focused challenges. We propose a lightweight CNN architecture
designed not only for high accuracy but also for computational efficiency, enabling its use
on resource-limited hardware. Crucially, by integrating explainable artificial intelligence
(XAI) techniques such as gradient-based class activation mapping (Grad-CAM), we provide
transparent visual evidence for each diagnosis, fostering the clinical trust and validation
required for adoption. By addressing data imbalance with targeted oversampling using
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the synthetic minority oversampling technique (SMOTE) and standard data augmenta-
tion techniques, we ensured that the model is reliable across a wide spectrum of retinal
conditions. The ultimate goal is to bridge the gap between artificial intelligence (AI) po-
tential and practical clinical utility, delivering a screening tool that is accurate, efficient,
and trustworthy for real-world ophthalmic triage. The main objectives are the following:

*  Designing an optimal CNN-based classifier for 10 retinal diseases with data augmen-
tation and class balancing.

¢ Applying real-time explainability using gradient-based attention mapping (Grad-
CAM and Grad-CAM++) for clinical transparency.

*  Developing a reproducible pipeline for clinical Al deployment with class balancing
included and with SMOTE and computational efficiency considered.

The remainder of this paper is organized as follows: Section 2 contains related studies
on eye disease diagnosis approaches using deep learning; Section 3 presents the overall
research plan and proposed approach for eye disease classification; the results and in-depth
analysis of the proposed model and baseline models are presented in Section 4; finally,
Section 5 contains the overall verdict, limitations, and future work.

2. Related Studies

Several recent studies have focused on nonstandard modalities and methodologies for
eye disease diagnosis, taking advantage of developments in machine learning and imaging
technologies to improve patient care and accuracy. They refer to the ability of deep learning
models to process retinal images for the diagnosis of diabetic retinopathy and age-related
macular degeneration with highly accurate results.

According to a systematic review, deep learning systems have considerably boosted
the classification and diagnosis of various eye diseases in contemporary studies. Deep
learning systems, that is, CNNs, have been deployed in a vast range of imaging modalities,
such as optical coherence tomography (OCT) and fundus photographs, to maximize the
diagnostic efficiency and accuracy for diabetic retinopathy, glaucoma, and age-related
macular degeneration [12,13]. For example, one experiment derived from the Ocular
Disease Intelligent Recognition (ODIR) database recorded an 89.64% test accuracy using
the MobileNet model, and one experiment exceeded 90% accuracy in OCT image binary
classification [14,15]. Despite these advances, several challenges remain to be resolved,
such as the variability of data and access to large-scale heterogeneous datasets required
to enhance the robustness and interoperability of models mentioned by Dash et al. [12].
Future directions involve integrating multimodal imaging and patient metadata to further
increase model performance and clinical usefulness [16].

Imbalanced eye disease images can significantly impact the performance of the clas-
sification model and require effective data-balancing techniques. SMOTE is a popular
technique for generating synthetic examples of minority classes by interpolation with
neighboring points, but it is prone to overgeneralization and noise sensitivity [17,18]. Mo-
hammed et al. mentioned that variants such as FADA-SMOTE resolve these problems
through minority instance clustering and synthetic sample generation optimization to
reduce overlap with majority classes [19]. Safe-Level-SMOTE is yet another variant of the
original SMOTE that adds a “safe level” that prefers sampling in areas with fewer majority
instances to improve classification accuracy [20]. In addition, techniques such as SMOTE-
LMVDE incorporate noise detection and local mean adaptive vectors into synthetic sample
generation, thereby outperforming conventional methods [21]. All of these developments
provide a strong foundation for the handling of class imbalance in eye disease imagery.

New developments in CNNs for the detection of retinal diseases have highlighted the
strengths of diverse architectures for diagnosing diabetic retinopathy (DR) and glaucoma.
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Thakoor et al. points to the strength of their CNN models for glaucoma detection using
optical coherence tomography images through transfer learning and ensemble techniques
for performance improvement as well as explainability [22]. Abushawish et al. [23] provides
a detailed overview of CNNs for DR diagnosis, tracing the evolution from conventional
techniques to deep learning and the significance of explainability through mechanisms
such as Grad-CAM. Pandey et al. [24] demonstrates how a stack of CNNs achieves a higher
accuracy of identifying a number of retinal conditions from fundus images than board-
certified ophthalmologists at an average rate of 79.2% to the latter’s 72.7%, whereas for
human clinicians. Furthermore, the effectiveness of deep CNNs has been validated, and the
most reliable architecture, EfficientNetB4, has achieved high training accuracy [25,26]. All
these studies confirm the potential of CNNs in enhancing the diagnostic efficiency and
accuracy of retinal disease detection.

Data augmentation methods play a crucial role in increasing the accuracy of eye dis-
ease image classification models by solving problems such as small datasets and overfitting.
For instance, Moya-Sanchez et al. [27] demonstrated that their specific augmentation tech-
nique improved the classification accuracy by as much as 9% for non-mydriatic fundus
images, demonstrating the necessity for specific augmentation techniques for specific im-
ages. Goceri et al. [28] emphasized that the performance of the augmentation techniques is
dependent on the disease and imaging method and, thus, needs to be selected accordingly
in order to provide excellent performance. Furthermore, generative modeling approaches,
as investigated in glaucoma classification, have achieved outstanding improvements in
sensitivity, specificity, and overall accuracy, thereby highlighting the contributions of var-
ious image qualities during training, as mentioned by Leonardo et al. [29]. In addition,
Mounsaveng et al. [30] proposed a bi-level optimization method that can automatically
search for augmentation parameters with performance rivaling or even surpassing conven-
tional approaches. Taken together, the aforementioned studies show that successful data
augmentation is essential for enhancing the robustness and performance of deep learning
models for medical image classification [31].

The clinical adoption of Al in ophthalmology has numerous significant challenges and
limitations. Despite Al demonstrating high accuracy in the diagnosis of diseases such as
diabetic retinopathy and glaucoma, Al systems are often affected by data variability and
the need for large and diverse datasets to ensure confidence in good performance across
populations [32]. Additionally, the interpretability of AI models is an issue of concern
because the majority of models are “black boxes,” and clinicians find it hard to interpret
their decision making [12]. In addition, overdependence on automation would lead to the
deskilling of medical professionals who would overdepend on Al systems for diagnosis [33].
Other limitations include the incorporation of Al into existing workflows, the requirement
for high-quality imaging data, and the risk of misdiagnosis caused by natural variability in
clinical presentations [34,35]. These limitations must be overcome before Al technology
can be effectively applied in ophthalmology.

While the reviewed literature highlights significant progress, our analysis identifies
three interlinked constraints that previous studies often address in isolation, impeding the
broad clinical deployment of automated retinal screening: the excessive computational
demands of conventional CNNs, opaque, “black-box” models that erode clinician trust,
and performance biases from imbalanced datasets. The primary distinction of our study
lies in addressing these three challenges simultaneously through a unified framework. In-
stead of adapting heavyweight ImageNet encoders, we propose a custom, computationally
efficient network that combines depthwise separable convolutions with dual squeeze-and-
excitation (SE) and global-context (GC) attention modules. This architecture is specifically
designed to maintain high discriminative power while remaining suitable for resource-
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limited point-of-care hardware. Furthermore, our framework does not treat explainability
as a separate, post hoc analysis, but as a core requirement. The inference loop is intrinsically
coupled with Grad-CAM and Grad-CAM++ to provide pixel-level visual evidence for
every prediction, directly addressing the critical barrier of clinical trust. This synergistic
combination of a lightweight architecture, integrated explainability, and robust data balanc-
ing provides a holistic solution tailored for real-world clinical viability and constitutes the
main contribution and distinction of this work.

3. Methodology

The research pipeline is illustrated in Figure 1, which shows the linear workflow
from dataset preprocessing to model assessment. It starts with dataset preparation, where
images are resized, normalized, and balanced using SMOTE if a class imbalance exists.
The dataset was divided into training (70%), validation (15%), and testing (15%) datasets.
To enhance the generalization of the model, we performed a set of data augmentation
methods, including rotation, zoom, shear, and flipping. We then trained the CNN-based
deep learning model with optimized hyperparameters, such as Adam optimization and
learning-rate scheduling. The model was then validated, and fine-tuning was performed if
the trained model failed to exceed a specified threshold. Upon obtaining good performance,
the best model was assessed on the test dataset against accuracy, precision, recall, and F1-
score measures.

. — Load Eye Disease Dataset ¢ —
Start Validate Model Performance
Preprocess Data Test model on test set

¢ { Evaluate on validation set }

Resize image to 150x150 " Compute accuracy, precision,
([ Resieimegeto 150050 ] [ o) recl f-sre
15:15 ratio Tune hyperparameters
Normalize Pixel Values — o ¥ Generate confusion matrix,
minor augmentation i
PPy J Performance Below Threshold? learning curves

rotation, zoom, shear,

Class Imbalance Detected? horizontal flip, shift lYes |
: v
———— |
[ Fine-tune model J [ Grad-CAM J
Preprocessing Train DL Model
Grad-CAM++ —»@

End

S

Model Validation

Model Training

Dataset Preparation

Figure 1. Proposed research methodology pipeline.

3.1. Dataset Overview

The data utilized in this study [36] are a dataset of 5335 color fundus images collected
from two hospitals in Bangladesh with ten different classes of eye diseases, including Dia-
betic Retinopathy, Glaucoma, Macular Scars, and normal eyes, among others. As is evident
in Figure 2, the dataset is extremely imbalanced, with Diabetic Retinopathy (1509 images)
and Glaucoma (1349 images) being the most prominent, and classes such as Pterygium
(17 images) and Central Serous Chorioretinopathy (101 images) being rare. This imbalance
can bias model performance towards majority classes, and techniques such as SMOTE
are needed to negate disparities. The photographs were captured using Topcon fundus
cameras, resized to a uniform resolution of 2004 x 1690 pixels, and manually annotated
by healthcare professionals for accuracy. The heterogeneity and clinical significance of the
dataset render it a practical resource for the training of sturdy deep learning algorithms for
the automated detection of eye diseases, provided that geographical and ethnic limitations
are considered for generalizability.
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Figure 2. Dataset overview.

3.2. Preprocessing

The data for this study included images divided into different eye disease condi-
tions. There are several operations in the preprocessing pipeline, including image loading,
normalization, class balancing, dataset splitting, and data augmentation.

The images were loaded from their directory and resized to a uniform size of
150 x 150 pixels to maintain consistency in all samples. All images were transformed
into an array format, and labels were assigned accordingly based on their respective classes.
The pixel values were normalized between [0, 1] by dividing the pixel value by 255 for
smooth model training.

Because there was an inherent skew in the dataset, SMOTE was used to create synthetic
samples of minority classes. SMOTE was used in the feature space after flattening the
image arrays to ensure a balanced distribution of the class before reshaping the images to
their original dimensions. This helped minimize the bias toward majority classes, along
with model generalization. The data distribution after SMOTE is shown in Figure 3.

2000

T 1509 1509 1509 1509 1509 1509 1509 1509 1509 1509
1500

1000

500

Count

Class

Figure 3. Dataset overview after applying SMOTE.
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To ensure appropriate testing, the data were divided into three sets: 70% for training,
15% for validation, and 15% for testing. Stratified sampling was used to preserve the origi-
nal class distribution in each subset to prevent data leakage and ensure a fair representation
of all classes. Figure 4 shows the distribution of the split datasets.

I Train Set (10,563 samples, 70%) [l Validation Set (2,263 samples, 15%) Test Set (2,264 samples, 15%)
1250
1000
| u 1/ b/ ] ]/
750
500
250 r 226 227 226 227 226 226 227 226 226
5
i { | | { | | { | | |
r 226 226 227 226 226 227 226 226 227
0 - -
& S > ) & 5@ < e @
& < N o K s S &
o\’bo g ¥ g q?o‘) RS @ ) \é& Q¢ &
<><:: (©) @,bo
Class

Figure 4. Dataset distribution.

Data augmentation techniques were employed to enhance the generalization abilities
of the model. Random transformations, such as rotation (up to 20°), width and height shift
(up to 10%), shear transformation, zooming, and horizontal flip, were performed to create
variability in the training data. This augmentation procedure virtually adds diversity to the
dataset, prevents overfitting, and makes the model more robust. The augmented images
are shown in Figure 5.

Class: Central Serous

Class: Retinal Detachm Class: Retinal Detachm Class: Diabetic Retino Class: Pterygium

V@00

Figure 5. Random augmented sample images.

3.3. Proposed Model

The deep learning method proposed in this study, presented in Figure 6, is a high-
level hierarchical feature extraction network for classifying medical images. The network
started with an input layer accepting 150 x 150 x 3 RGB images, and the first convolu-
tional block consisted of a 3 x 3 convolution with 64 filters, batch normalization, ReLU
activation, and 2 x 2 max pooling. Four subsequent feature extraction blocks integrate
complementary attention mechanisms: blocks 1 and 3 combine depthwise separable convo-
lutions with squeeze-and-excitation (SE) attention for channel-wise recalibration; block 2
couples depthwise separable convolutions with global-context (GC) attention to capture
long-range dependencies; block 4 employs a residual connection to facilitate gradient flow.
Max-pooling progressively reduces spatial dimensions while expanding the channel width
(64 — 128 — 256 — 512 — 1024).
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Depthwise Separable Convolution Block

Input Input

L— DepthwiseConv2D (spatial filtering) ‘— Conv — BN — ReLU — Conv — BN
| L——BatchNorm = ReLU
(1x1 Conv — BN if needed)
Pointwise Conv2D (1x1 channel mixing) |
BatchNorm — RelLU Add — RelLU

Global Context Block SE (Squeeze-Exitation) Block

Input Input
| -
lobalAvgPool — Vector
?libgiﬁ]\([g;iggi;;zctor |—— Dense (C/r units) = ReLU
g —— Dense (C units) — Sigmoid

Add (input + inputxcontext) \— Multiply (channel-wise scaling)

DepthwiseConv2D DepthwiseConv2D
Conv2D (64 filters) BatchNorm + ReLU BatchNorm + RelLU
Batch Normalization Pointwise Conv2D Pointwise Conv2D
150x150x3 RelLU Activation BatchNorm + ReLU BatchNorm + RelLU
(RGBimages)| MaxPooling2D SE Attention Block Global Context Block
Input Layer 1 Block 0: Initial Preprocessing MaxPooling2D MaxPooling2D :
: 75x75x64 :
' Block 1: Depthwise Separable Block 2: Depthwise Separable | !
: + SE + Global Context ,
Out: 37x37x128 Out: 18x18x256 !
' GlobalAveragePooling2D DepthwiseConv2D
Dense (1024 units) BatchNorm + ReLU BatchNorm + RelLU
Dropout (0.5) Pointwise Conv2D
Softmax
Dense (512 units) BatchNorm BatchNorm + RelLU !
Output Layer Dropout (0.5) Add + ReLU SE Attention Block :
Dense (N classes) MaxPooling2D MaxPooling2D :
Classification Head Block 4: Residual Connection Block 3: Depthwise Separable !
Out: 4x4x1024 +SE

Out: 9x9x512

Figure 6. Proposed model architecture for multiclass eye-disease image classification.

The network terminates in a global average pooling (GAP) classification head with
two dense layers regularized by ¢, weight decay and dropout (p = 0.5). A softmax layer
produces class probability distributions. The training employs Adam (initial learning rate
of 10~%) combined with reduce-on-plateau scheduling and early stopping. This design bal-
ances the computational efficiency (via depthwise separable convolutions) with expressive
attention mechanisms, allowing the model to focus selectively on diagnostically relevant
regions across multiple feature hierarchies [37].

e Notation: Let the input image be x € R159*150x3 and let X € R**W*C denote an
intermediate feature map [38], where H and W are the spatial dimensions and C is the
channel dimension. The operator BN(-) is batch normalization [39], ¢(-) = max(0, -)
is ReLU activation [40], and o'(-) = 1/(1+ e’(')) is the logistic sigmoid. Global average
pooling (GAP) [41] is defined as

1 H W c
i=1j=1

and © denotes the channel-wise (Hadamard) product.
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Depthwise separable convolution: For a 3 x 3 kernel footprint £ = {—1,0, 1}2, input
X € RIXWxC and depthwise kernel KW € R3*3%C [42 43],

dejwc = Z Kg,wq,c Xi+p,j+q,6/ (2)
(pg)eK
DSConve, ¢ (X) = ¢(BN(Conv§3;1F (p(BN(YI™)))) ) 3)

where F is the number of output channels of the pointwise (1 x 1) convolution.
Attention modules (r = 16):

SE(X): o(W2 ¢(W1 GAP(X))) © X, (4)
C(X) = (14 (W GAP(X))) ©® X, (5)

where W; € R? *C W, e RCX%, and W € RC*C are trainable weight matrices [44].
Residual block (stride s = 1, output channels F):

U = ¢(BN(Convy5(X))), (6)
U = BN(Conv}4(U)), 7
(
(

~

S = BN(Conv}%, (X)), 8
ResBlockp(X) = U + S. 9)

~

End-to-end computation: Setting X(?) = x and letting MP denote 2 x 2 max-pooling
(stride 2),

= MP(4> (BN( Conv3x3(X(O)))))/ (10)
= MP(SE(DSConvey 128(X1))), (11)
:MP(G (DSConviag-,256 (X ()))) (12)
= MP(SE(DSConvas 512 (X)), (13)
= MP (ResBlockjgpy (X*))). (14)

Global average pooling yields v = GAP(X®)) € R19% followed by

h; = Drop, 5(¢p(Wicv + b)), (15)
hy = Drop, 5(¢(With; + b)), (16)
p = softmax(W,h;y 4 b,) € RY, (17)

where W{C € R1024x512 Wéc € R312x512 1« RN*512 and b are the bias vectors.
Loss function (batch size B, classes N):

1 B
L(O)=-3 Y " logpy, (xu;0) + A[|0]3, A =0.01, (18)
n=1

where 0 collects all trainable parameters. Optimization uses Adam with an initial
learning rate of 1074, a reduce-on-plateau schedule (factor 0.5, patience 5), and early
stopping (patience of 15, restoring the best weights).

The complete architectural and training configurations of the proposed model are

presented in Table 1. Table 2 summarizes the parameter counts of the proposed model.
With roughly 16.6 million parameters (approximately 63 MB), of which more than 99.9% are
trainable, the model is compact enough for a single mid-range GPU while still providing
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sufficient representational capacity for the target classification task. To provide a clear,

quantitative context for our lightweight design, Table 3 compares the approximate total

parameter counts of our proposed architecture against the standard baseline models used

for benchmarking in Section 4. This comparison highlights the structural efficiency of our

model, which is a core component of its design for point-of-care applications.

Table 1. Model hyperparameters and training configuration.

Component Specification
Architecture parameters
Input dimensions 150 x 150 x 3

Initial convolution
Block progression

64 filters, 3 x 3 kernel, ReLU
[128, 256, 512, 1024] filters

Specialised layers

Depthwise separable conv
SE block

Global context block
Residual block

Depthwise 3 x 3 + pointwise 1 x 1
Reduction ratior = 16

Channel-wise attention (W)

Two 3 x 3 convs, skip connection (s = 1)

Classification head

Dense layers
Dropout rates

{5 regularization
Output layer

1024 — 512 units, ReLU
0.5 (both layers)

A =0.01

Soft-max, N classes

Training configuration

Optimizer

Batch size

Epochs

Learning-rate schedule
Minimum learning rate
Early stopping

Adam (7 = 1074, 1 = 0.9, B2 = 0.999)
32 (B)

50 (early stopping)

Reduce on plateau (factor 0.5, patience 5)
1076

Patience 15, restore best weights

Table 2. Parameter breakdown of the proposed model.

Parameter Class Count Memory Footprint
Trainable 16,552,114 63.14 MB
Non-trainable 8960 35.00 KB
Total 16,561,074 63.18 MB

Table 3. A comparison of model architecture parameter counts, where baseline parameters are for the

convolutional base (include_top = False).

Model Architecture Total Parameters (Approximate)
VGG16 1343 M

ResNet50 23.6 M

InceptionV3 21.8M

Proposed Model 16.6 M
EfficientNetB0 41 M
MobileNetV2 23 M

3.4. Evaluation Metrics

To assess the performance of the proposed deep learning model for multiclass classifi-

cation of eye diseases, several evaluation metrics were employed [45].
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*  Accuracy: This represents the overall correctness of the model across all classes. It is
computed as
TP+ TN
TP+ TN+ FP+FN

where TP, TN, FP, and FN denote true positives, true negatives, false positives,

Accuracy = (19)

and false negatives, respectively.
*  Precision: This measures the proportion of correctly predicted positive observations
to the total predicted positive observations:

TP

Precision = TP+ FD

(20)
*  Recall (Sensitivity): This indicates the ability of the model to correctly find all the
relevant cases (true positives) for each class:

TP

Recall - m

(21)
. Fl-score: This is a harmonic mean of the precision and recall, used to balance the two,
especially in cases of class imbalance:
Precision - Recall

F1- =2. 22
score Precision + Recall (22)

e  Confusion Matrix: This is a tabular representation that outlines the performance
of a classification model by comparing actual versus predicted classes, allowing for
detailed per-class error analysis.

* Training Time: The total computational time taken to train the model until early
stopping or completion of all epochs. This provides insights into the efficiency and
scalability of the model.

These metrics were calculated using classification_report and confusion_matrix func-
tions from the scikit-learn library. Furthermore, the training and validation accuracy and
loss curves over epochs were plotted to visualize the learning behavior of the model and
identify possible overfitting. To allow fair benchmarking, the same metrics were used on
a set of popular transfer-learning models (VGG16, ResNet50, InceptionV3, MobileNetV2,
and EfficientNetB0). The results are summarized in a comparison table.

3.5. Explainable Al

While the lightweight model architecture detailed in Figure 6 addresses the critical
challenge of computational efficiency and hardware deployability, it does not inherently
address the equally important challenge of clinical trust. An accurate prediction is of
limited value if the end-user, the ophthalmologist, cannot understand or verify the basis
of the model’s decision. Therefore, the second key component of our proposed system is
the integration of XAI to make the reasoning transparent. The lightweight and explainable
components are designed to be complementary; the former makes the model deployable,
and the latter makes it trustworthy. They are combined in the final workflow, where
every prediction generated by the efficient model is accompanied by a visual saliency
map, ensuring that the system is both practical for real-world use and interpretable for
clinical validation.

Grad-CAM and Grad-CAM++ play an important role in the classification of eye dis-
eases through the improvement of deep learning model interpretability in medical imaging,
particularly fundus images. Grad-CAM provides heat maps that highlight regions of inter-
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est, such as glaucoma and retinal disease lesions, thereby enabling the easy localization
and diagnosis of diseases [46,47]. For example, in the diagnosis of glaucoma, Grad-CAM
has been applied in CNNs with high accuracy and ROC-AUC scores, thereby proving to be
effective in image salient feature localization [48]. Grad-CAM++ is another enhancement
of the original technique that generates more precise lesion localization, which is extremely
useful when lesions are tiny and scattered, e.g., in retinal disease diagnosis [49]. This
not only improves classification performance but also enables improved clinical decision
making through visual explanations of model predictions [46,50].

4. Results and Analysis

Figure 7 depicts the evolution of the accuracy and loss for both the training and
validation splits over 50 epochs. The network exhibited a steep performance gain during
the first ten epochs, with the training accuracy increasing from 34.7% to 78.6% and a five-
fold drop in loss. The improvement then became more gradual, and a peak validation
accuracy of 87.4% was achieved at epoch 35, where the corresponding validation loss
decreased to 0.426. After that point, the validation metrics stabilized, whereas the training
loss continued to decrease slightly, indicating that the reduce-on-plateau schedule (learning
rate halved every five stagnant epochs) and dropout contained overfitting. Early stopping
was triggered at epoch 50; however, the model parameters from epoch 35, saved by the
model checkpoint callback, were ultimately restored, yielding a final test accuracy of 87.9%
and a test loss of 0.417.

Model Accuracy Model Loss

—— Train Loss
Val Loss

Accuracy
Loss

0.4 61

0.2 21
—— Train Accuracy
Val Accuracy 4

T T v T T T T T T T T T
o 10 20 30 40 50 o 10 20 30 40 50
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Figure 7. Training and validation accuracy and loss curves for the proposed model.

Figures 8-12 display the training—validation accuracy (left) and loss (right) trajectories
for the five ImageNet backbones after fine-tuning on the same ophthalmic split. All
converged within approximately 15-20 epochs; however, their endpoint performances
diverged sharply. MobileNetV2 and EfficientNetB0 plateau early with large train-val gaps,
revealing under-fitting and heavy over-regularization, respectively. VGG16 and ResNet50
train longer but flatten far below the ceiling attained by InceptionV3. Even InceptionV3’s
best validation accuracy (40.4%) was less than half of the 87.4% achieved by the proposed
model, whose task-specific attention modules add discriminative power. It is critical to
contextualize the performance of the baseline models. Their lower-than-expected accuracy
is largely attributable to two deliberate experimental constraints. First, as noted, the models
were constrained to a 150 x 150 input size, which differed from their original pretraining
dimensions (e.g., 224 x 224). Second, the pretrained layers of these backbones were frozen
and used as fixed feature extractors, with only the final classification layers being trained.
Although fine-tuning the backbones would likely yield higher scores, our approach was
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chosen to ensure a fair comparison of all architectures under identical, computationally
efficient conditions that simulate a resource-constrained deployment. Therefore, the results
demonstrate that our custom architecture is more effective at extracting discriminative
features under these specific lightweight constraints than the adapted standard backbones.
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Figure 8. Learning curve of VGG16.
Model Accuracy Model Loss
0.325
—— Train Loss
Val Loss
0.300
23
0.275 4 v
22
0.250
=
g 0.2254
S 721
2
0.200
0.175 4 20
0.150 4
1.9 4
0.125 4 —— Train Accuracy
Val Accuracy
[ 10 20 0 40 50 0 10 20 0 40 50
Epoch Epoch
Figure 9. Learning curve of ResNet50.
Model Accuracy Model Loss
—— Train Loss
22
0.400 1 val Loss
0.375 4 /‘/\/—N .
TN -
e
0.350 .\/\/
2.0
0.325 4
>
3
g g
3 3
g 1 19
§ 0300
0.275 4
18 4
0.250 4
174
0.225 4
—— Train Accuracy
Val Accuracy
0 10 20 30 40 50 0 10 20 0 40 50
Epoch Epoch

Figure 10. Learning curve of InceptionV3.
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Figure 11. Learning curve of MobileNetV2.
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Figure 12. Learning curve of EfficientNetBO.

Table 4 confirms the following visual trends: InceptionV3 is the strongest baseline;
however, it still trails the proposed model by more than 47 percentage points. MobileNetV2
and EfficientNetB0 had accuracies below 20% and 10%, respectively, indicating that extreme
parameter compression degrades fine-grained recognition. Despite similar training times,
the proposed model delivered the best accuracy-time ratio, achieving a relative error
reduction of 58.1% over the top baseline. While the training times reported are comparable,
this reflects the early stopping protocol, which concluded training for each model once
its performance on the validation set plateaued. The primary advantage of a lightweight
architecture in this context is not the reduced training time but rather its efficiency during
inference. A model with fewer parameters, such as our proposed network, requires
significantly less computational power and memory to perform a prediction. This efficiency
enables deployment on resource-limited, point-of-care hardware, which is a key target of
this study. The larger baseline models, despite similar training times on powerful research
hardware, would have a much higher inference latency, making them less practical for
real-time clinical triage.

Figures 13-18 visualize the classwise behaviour of every model by means of
10 x 10 confusion matrices. Several common trends have emerged. First, Pterygium (a con-
junctival lesion with a distinctive wing-shaped profile) is almost never confused with any
retinal disorder; every network, even EfficientNetB0, assigns the 226 test images of this class
to the correct column. The opposite extreme is Central Serous Chorioretinopathy (Color
Fundus); VGG16, ResNet50, and MobileNetV2 mislabel the majority of Color Fundus cases
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as Healthy or Glaucoma, reflecting subtle macular fluid that mimics physiological foveal
reflexes. Across all baselines, the anatomically related triad of Color Fundus, Macular Scars,
and Myopia form the densest off-diagonal blocks, indicating systematic confusion among
macula-centric pathologies.

Table 4. Performance comparison of baseline backbones versus the proposed model.

Model Accuracy Precision Recall F1-Score Train Time (s)
EfficientNetB0 0.100 0.010 0.100 0.018 1826
MobileNetV2 0.184 0.065 0.184 0.071 2329
VGG16 0.238 0.116 0.238 0.146 2419
ResNet50 0.315 0.270 0.315 0.233 2404
InceptionV3 0.404 0414 0.404 0.378 2391
Proposed Model 0.879 0.882 0.879 0.880 2414

Best value per row in bold.
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Figure 18. Confusion matrix of EfficientNetB0.

Model-specific observations reinforce the quantitative metrics in Table 4. Efficient-
NetB0 in Figure 18 collapses into a near-single-column predictor, assigning almost every
image to the dominant class (healthy), which explains its accuracy of 10%. MobileNetV2 in
Figure 17 retains some class discrimination but still confuses more than one-third of Disc
Edema, Myopia, and Macular Scar images with unrelated categories. ResNet50 in Figure 15
reduces gross errors yet continues to misclassify about one quarter of Glaucoma as Healthy.
InceptionV3 in Figure 16 exhibits the clearest diagonal among the baselines, but substantial
leakage remains from the Color Fundus and Macular Scar into neighboring labels.

The confusion matrix of the proposed model in Figure 13 shows a markedly stronger
diagonal and thinner off-diagonal than the baseline. True-positive counts exceeded 185
for eight of the ten classes, whereas the largest remaining confusion, 27 glaucoma images
predicted as myopia, was less than one-sixth of the corresponding error in ResNet50.
These patterns corroborate the aggregate improvements reported earlier and highlight
that attention-guided depthwise design not only raises overall accuracy but also balances
performance across clinically heterogeneous categories.

Table 5 presents the precision, recall, and Fl-score for each pathology and model.
The proposed model attains the highest value in every class, with F1-scores of at least 0.97
for Pterygium, Retinal Detachment, and Retinitis Pigmentosa, and balanced scores for
the more challenging macular disorders: 0.89 for central serous chorioretinopathy (color
fundus) and 0.77 for Macular Scars. The best baseline, InceptionV3, registers an F1-score be-
low 0.60 in six of the ten classes and a macro-average of only 0.38. Lightweight architectures
such as MobileNetV2 and EfficientNetB0 perform little better than chance, concentrating
most predictions on the majority Healthy category and producing macro-F1-scores of 0.07
and 0.02, respectively. These results show that the proposed model improves class discrimi-
nation uniformly across the diagnostic spectrum rather than boosting accuracy by favoring
only the largest or easiest classes.

Figure 19 illustrates the visual explanations produced by the proposed network for
five representative test images. For each sample, the first row shows the raw color fundus
photograph, the second row superimposes a Grad-CAM saliency map, and the third row
displays the corresponding Grad-CAM++ map, both computed from the last convolutional
layer of the proposed model.
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Table 5. Per-class precision/recall/F1-score for all six models.
Class (Support) Proposed Model InceptionV3 ResNet50 VGG16 MobileNetV2  EfficientNetB0
Color Fundus (227) 0.92/0.86/0.89 0.31/0.35/0.33  0.00/0.00/0.00 0.16/0.71/0.26  0.02/0.00/0.01  0.00/0.00/0.00
Diabetic Retinopathy (226) 0.85/0.92/0.88 0.54/0.29/0.38  0.00/0.00/0.00  0.00/0.00/0.00  0.00/0.00/0.00  0.00/0.00/0.00
Disc Edema (226) 0.99/0.95/0.97 0.26/0.40/0.32  0.28/0.41/0.33  0.00/0.00/0.00 0.00/0.00/0.00  0.00/0.00/0.00
Glaucoma (227) 0.71/0.72/0.71 0.29/0.09/0.14  0.36/0.04/0.06  0.00/0.00/0.00  0.00/0.00/0.00  0.00/0.00/0.00
Healthy (226) 0.71/0.83/0.76 0.26/0.66/0.37  0.17/0.80/0.28 0.18/0.14/0.16 0.17/0.81/0.28  0.10/1.00/0.18
Macular Scar (226) 0.83/0.72/0.77 0.19/0.04/0.07  0.00/0.00/0.00  0.00/0.00/0.00  0.00/0.00/0.00  0.00/0.00/0.00
Myopia (227) 0.83/0.81/0.82 0.46/0.22/0.30  0.29/0.06/0.10  0.00/0.00/0.00 0.00/0.00/0.00  0.00/0.00/0.00
Pterygium (226) 1.00/1.00/1.00 1.00/1.00/1.00  0.99/0.95/0.97 0.60/1.00/0.75 0.23/1.00/0.37  0.00/0.00/0.00
Retinal Detachment (226) 1.00/0.99/1.00 049/0.73/0.59 0.37/0.86/0.52  0.20/0.52/0.29  0.02/0.01/0.01  0.00/0.00/0.00
Retinitis Pigmentosa (227) 0.99/1.00/0.99 0.35/0.24/0.28  0.24/0.04/0.07  0.02/0.01/0.01  0.22/0.02/0.03  0.00/0.00/0.00
Macro-avg. 0.88/0.88/0.88 0.41/0.40/0.38  0.27/0.32/0.23  0.12/0.24/0.15  0.07/0.18/0.07  0.01/0.10/0.02

Best value per row in bold. Support is the number of test images in each class.
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True: Disc Edema
Disc Edema: 87.5%
Healthy: 5.5%
Macular Scar: 2.8%

Sample 2
True: Retinal Detachm
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Glaucoma: 0.0%
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Healthy: 2.0%
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Central Serous : 99.4%
Macular Scar: 0.4%
Healthy: 0.1%
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Figure 19. Visual explanations produced by the proposed model: For five representative fundus
images (columns), the first row shows the original photograph, the second row shows the Grad-
CAM heat-map, and the third row shows the corresponding Grad-CAM++ map, highlighting the
disease-specific regions that drive the network’s predictions.

Sample 1 (disc edema) revealed strong activation around the swollen optic nerve
head and peripapillary nerve fiber layer, exactly where neuro-ophthalmologists inspect
for raised intracranial pressure. In Sample 2 (total retinal detachment), the network was
concentrated on the superior nasal periphery, where the detached neuro-retina was most
clearly elevated, ignoring the unaffected posterior pole; the detached fold coincided with
the hottest Grad-CAM++ pixels. Samples 3 and 4, both labeled myopia, exhibit heatmaps
centered on the tesselated fundus and tilted optic disc typical of high axial myopia while
sparing the relatively featureless mid-periphery. In Sample 5, the model focused on the
juxta-foveal serous blister characteristic of central serous chorioretinopathy; the elongated
hotspot across the macula in Grad-CAM++ matched the subretinal fluid pocket observed
by clinicians.

Across all cases, the Grad-CAM-++ maps were sharper and more localized than the
vanilla Grad-CAM overlays; however, both highlighted the same disease-specific struc-
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tures, confirming that the attention mechanisms guided the classifier toward clinically
meaningful regions rather than spurious background patterns. These interpretable heat
maps strengthen the confidence in the proposed model’s predictions and underline its
potential for real-world decision support.

5. Conclusions

This study addressed three persistent barriers that restrict the clinical adoption of
automated retinal disease screening: pronounced class imbalance in publicly available
datasets, computational demands of conventional convolutional backbones, and lack of
transparent decision pathways in deep learning models. These issues collectively impede
reliable performance, real-time deployment in low-resource settings, and clinician trust.

To overcome these obstacles, we designed a 16.6 M parameter CNN that integrates
depthwise separable convolutions with squeeze-and-excitation and global-context attention
modules. The training pipeline couples SMOTE with extensive geometric and photometric
augmentation and optimizes the network using Adam with learning-rate scheduling and
early stopping. Prediction transparency was provided by Grad-CAM and Grad-CAM++,
ensuring that each classification was accompanied by a pixel-level saliency explanation.

Fulfilling the study’s primary objectives, the resulting model converged in fewer than
50 epochs on a single mid-range graphics processing unit and achieved 87.9% accuracy,
a macro-precision of 0.882, a macro-recall of 0.879, and a macro-F1-score of 0.880 on
a rigorously held-out ten-class color fundus test set. Relative to the strongest ImageNet
baseline (Inception-V3, 40.4% accuracy), this represents a 58% reduction in error while
sustaining a throughput suitable for point-of-care triage. True-positive rates exceeded 95%
for eight disorders, and saliency maps consistently highlighted diagnostic retinal structures,
thereby strengthening clinical interpretability and confidence.

Notwithstanding these advantages, this study has several limitations that warrant
discussion. First, the evaluation was conducted on a retrospective dataset from a single
national cohort; although rigorous, it lacks external validation using diverse international
datasets. Therefore, the model’s robustness across different patient ethnicities, device
manufacturers, and clinical settings is yet to be confirmed. Second, our model is currently
limited to a single imaging modality (color fundus photographs) and performs disease
classification without assessing the severity (e.g., grading diabetic retinopathy), which is
a crucial step for clinical management. Finally, the diagnostic process relies solely on the
image, without incorporating other rich clinical data such as patient history or intraocular
pressure, which are integral to an ophthalmologist’s final assessment.

These limitations directly inform our directions for future work. A crucial next step
is to perform external validation of the model on multi-ethnic, multi-device repositories
and to conduct prospective clinical trials to evaluate its real-world performance and utility.
We also plan to extend the model’s capabilities to include the severity grading of key
diseases. To create a more powerful diagnostic tool, we will explore multimodal fusion
techniques that integrate our image-based classifier with structured patient data. Further-
more, we will continue to incorporate other imaging modalities, such as volumetric OCT
and ultrawide-field imaging. Finally, exploring advanced training paradigms, such as
federated or self-supervised learning, could enhance data diversity and generalizability
while preserving patient privacy. Addressing these aspects will advance the readiness of
lightweight, explainable screening tools for equitable global eye-care delivery.
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