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Abstract: The objective of this study is to propose an advanced image enhancement strategy
to address the challenge of reducing radiation doses in pediatric renal scintigraphy. Data
from a public dynamic renal scintigraphy database were used. Based on noisier images,
four denoising neural networks (DnCNN, UDnCNN, DUDnCNN, and AttnGAN) were
evaluated. To evaluate the quality of the noise reduction, with minimal detail loss, the
kidney signal-to-noise ratio (SNR) and multiscale structural similarity (MS-SSIM) were
used. Although all the networks reduced noise, UDNnCNN achieved the best balance
between SNR and MS-SSIM, leading to the most notable improvements in image quality.
In clinical practice, 100% of the acquired data are summed to produce the final image. To
simulate the dose reduction, we summed only 50%, simulating a proportional decrease
in radiation. The proposed deep-learning approach for image enhancement ensured
that half of all the frames acquired may yield results that are comparable to those of the
complete dataset, suggesting that it is feasible to reduce patients” exposure to radiation.
This study demonstrates that the neural networks evaluated can markedly improve the
renal scintigraphic image quality, facilitating high-quality imaging with lower radiation
doses, which will benefit the pediatric population considerably.

Keywords: P9mMT- MAG3; deep learning; noise reduction; pediatric renal scintigraphy;
medical imaging

1. Introduction

In recent decades, imaging techniques have been consistently used for the determi-
nation and analysis of pediatric kidney diseases. There are several widely applied renal
imaging modalities, including computed tomography (CT), ultrasound (US), magnetic
resonance imaging (MRI) and nuclear medicine [1-3].

As is well known, CT and US techniques only provide anatomical information. Mag-
netic resonance imaging can also provide functional information in addition to anatomical
(fRMI); however, its use in the renal context is still limited due to the lack of standard
protocols [4,5]. Nuclear medicine techniques, such as positron emission tomography (PET)
and single-photon emission computed tomography (SPECT), offer functional information,
but require longer acquisition times, which can be a challenge for pediatric patients due to
the need for prolonged immobility. On the other hand, scintigraphy is a simpler and faster
2D technique. As it significantly reduces the examination time compared to PET or SPECT,
it is preferred for children [6,7].
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Children with suspected renal pathologies often undergo several medical imaging
exams, the frequency of which depends on the severity of the disease and the response
to treatment [8]. Approximately 90% of pediatric radionuclide studies are focused on
non-oncological pathologies, with approximately half focused on renal studies, a trend that
has remained stable in developed countries [9]. Early diagnosis and treatment of urinary
abnormalities can reduce comorbidities and infant mortality [10].

The increase in medical imaging exams in recent years has raised concerns about
cumulative radiation exposure and cancer risk [11]. Some patients receive high doses,
with one in one hundred twenty-five exposed to more than 50 mSv on a single CT examina-
tion and three in ten thousand exposed to more than 100 mSv in a single day [12]. A study
in the United Kingdom revealed that 0. 68% of the patients received more than 100 mSv in
5.5 years, increasing their cancer risk [13]. Children are especially vulnerable, with a higher
lifetime risk of cancer due to radiation [11,14].

For pediatric nuclear medicine, determining the correct amount of activity to admin-
ister depends on a variety of factors specific to the child being imaged. This includes the
reason for the acquisition, any variations in physiology, as well as the size and shape of the
patient [15,16].

According to the Society of Nuclear Medicine and Molecular Imaging guidelines,
the injected radiation in ™ Tc-MAG3 scintigraphy examinations should be 3.7 MBq/kg
(0.10 mCi/kg) [17]. In pediatric imaging, the lower radiation dose leads to fewer photon
interactions within the body. This results in fewer detected photons, reducing the overall
signal. As a consequence, the image noise increases. The higher noise level degrades
the clarity of anatomical structures, complicating diagnostic interpretation. Therefore,
optimizing the image quality is crucial, especially in pediatric patients, where minimizing
radiation exposure is a priority [18].

Several approaches have been explored to reduce radiation doses while maintaining
image quality. Hsiao et al. [19] evaluated the minimum dose of 99mMT_ MAG3 required
for pediatric renal scintigraphy without compromising the diagnostic quality or renal
function quantification. Starting from an initial dose of 7.4 MBq/kg, they simulated
reductions to 50%, 30%, 20%, and 10%. Four doctors assessed the images with and without
noise reduction. The study found that doses could be reduced to 30% without affecting
the image quality, and a 20% reduction caused a slight degradation, corrected by noise
reduction. At 10%, the image quality dropped significantly, though the renal function
remained stable. With noise reduction, the dose could be decreased to 1.5 MBq/kg without
noticeable quality loss, and accurate renal function quantification was achieved, even at
0.74 MBq/kg. However, the image evaluation depended on subjective assessments by
physicians, and the study did not explore fully automated noise reduction approaches.
Nagayama et al. [20] examined dose reduction in pediatric CT by lowering the tube voltage
and using iterative reconstruction (IR). The low voltage reduced the radiation level and
improved the contrast with IODINATED MEDIA, although it increased the noise, which IR
mitigated. These techniques maintained diagnostic quality. Although IR proved to be
effective, it can be computationally demanding and is not directly applicable to scintigraphy.
Studies by Miglioretti and Journy [21] demonstrated that reducing the highest pediatric CT
doses can lower cancer risk. Automatic voltage selection systems, like CARE kV, enable up
to 50% dose reduction without the loss of diagnostic quality. Feghali et al. [22] developed
the S-Vue™ scoring system to assess image quality in pediatric X-rays. They showed that a
50% dose reduction across different areas and weight categories maintained satisfactory
image quality. Their study, involving six hundred ninety-six digital radiographs, used
four dose levels (100%, 50%, 32%, and 12.5%) processed with S-Vue™, and image quality
was evaluated using the intraclass correlation coefficient (ICC). However, this approach
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was designed for X-ray imaging and does not extend to modalities like scintigraphy, where
noise characteristics differ. Minarik et al. [23] used convolutional neural networks (CNNs)
to reduce Poisson noise in whole-body bone scintigraphy, comparing their results to those
obtained using traditional filters. CNNs, trained on 40,000 image pairs, reduced noise by
92%, outperforming standard filters (88%). CNNs improved the mean-squared error and
noise reduction without compromising image quality or metastasis detection. The study
concluded that CNNs could halve the scan time while maintaining diagnostic accuracy.
Nevertheless, their work focused on whole-body bone scintigraphy rather than specific-
organ imaging, such as pediatric renal scintigraphy.

Despite these advancements, several challenges remain unaddressed. Prior studies
have demonstrated that dose reduction is feasible, but many relied on subjective image
evaluations rather than objective automated approaches [19]. Although iterative recon-
struction has proven to be effective in dose reduction for CT imaging, its computational
demands and lack of direct applicability to scintigraphy limit its practical use [20]. Addi-
tionally, methodologies developed for other imaging modalities, such as X-ray imaging,
do not necessarily translate to scintigraphy because of differences in noise characteris-
tics [22]. Although CNNs have been successfully applied to noise reduction in whole-body
scintigraphy, their impact on specific-organ imaging, such as pediatric renal scintigraphy,
remains unexplored [23]. Addressing these gaps is crucial, as pediatric patients are par-
ticularly sensitive to radiation exposure, making dose optimization a priority in nuclear
medicine. This study introduces a novel deep-learning-based approach tailored to pediatric
renal scintigraphy, leveraging CNNs to enhance image quality while enabling significant
dose reduction. Utilizing a publicly available dataset and objectively evaluating multiple
state-of-the-art networks, this work establishes a reproducible and scalable framework for
improving diagnostic imaging in vulnerable populations.

In this paper, we analyzed the applications of different deep convolutional neural
networks (CNNs) specifically designed for image denoising in pediatric renal scintigraphy.
Four popular networks were considered: DnCNN, UDnCNN, DUDNnCNN, and an atten-
tional generative adversarial network (AttnGAN), using images from a publicly available
database. The final image quality was assessed through the SNR for the kidneys and the
MS-SSIM between the original data (without dose reduction) and the denoised data.

To the best of our knowledge, this is the first study to address dose reduction in
pediatric renal scintigraphy by improving image quality using CNNs in a publicly ac-
cessible dataset. This transparency not only fosters reproducibility but also fills a gap in
the literature, as most related studies rely on proprietary clinical datasets. Additionally,
the combination of a pediatric focus, dose reduction, and deep learning represents a novel
approach for improving diagnostic imaging. By simulating dose reduction through sub-
sampled image summation, this study offers a practical method to assess noise reduction
strategies. Moreover, the comparative evaluation of four established networks provides a
robust benchmark for future research. These findings emphasize the potential of CNNs
to support safer imaging protocols while maintaining diagnostic quality, especially in
vulnerable populations, such as pediatric patients.

2. Materials and Methods
2.1. Database

This study used the Public Database of Dynamic Renal Scintigraphy [24], specifically
the drsbru set, which contains 100 dynamic renal studies with ™ Tc-MAG3 in children
aged from 0 to 17 years. Each case consisted of a DICOM 3D set of images, consisting
of 120 frames at 128 x 128 pixels, captured every 10 s for 20 min. All the *™Tc-MAG3
renograms were performed at University Hospital St. Pierre following EANM guide-
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lines [25]. To simulate reduced doses, the acquired data (100% of the counts) were divided
into subsets representing 50% of the original counts. This approach aimed to demonstrate
that these reduced subsets can sufficiently represent the full data while preserving the
image quality, compared to that obtained using the total administered dose.

Table 1 provides a detailed summary of the selected dataset. The average injected
activity per patient was not available in the database. However, an assumption based on
9ImMTe-MAG3 can be mode using average weight values for children aged from 0 to 17,
according to the 50th percentile.

Table 1. Summary of the image dataset used in this study.

Parameter Total (100)
Gender (M/F) 65/35
Image resolution 128 x 128 pixels
Frames per study 120

Time per frame 10s

Total duration 20 min
Training set 67%
Testing set 17%
Validation set 16%

Because the database contains clinical images from a wide age range, cases were
carefully selected. The 100 cases were divided into one-year age groups, with one case
chosen from each group. Dose reduction was simulated by reducing the summed data to
50%, corresponding to proportional reductions in the simulated dose.

2.2. Deep-Learning-Based Approach

Scintigraphic images are primarily affected by Poisson noise because of the inherent
statistical nature of radioactive decay. This noise model leads to fluctuations in pixel
intensities, particularly in low-count regions, which can degrade image quality and affect
clinical interpretation. Given the statistical properties of Poisson noise, deep-learning-based
denoising approaches must effectively distinguish signals from noise while preserving
anatomical structures. The approach for the denoising of pediatric scintigraphic images
with less dose involved using deep-learning algorithms implemented with specific software
and hardware. MATLAB R2024b was used for metric analysis, while Python 3.12.4 was
used to train the neural networks. The algorithms were run on a MacBook Air (2017)
with a 1.8 GHz Intel Core i5 processor and 8 GB of RAM. The goal was to train deep-
learning models to reduce noise and improve image quality. Despite advancements in
nuclear medicine, applying deep learning to reduce noise in low-dose images remains
exploratory. Our approach involved training four existing architectures from scratch:
DnCNN, UDnCNN, DUDNnCNN, and AttnGAN [26,27]. These architectures were chosen
because of their proven capability in removing structured and unstructured noises while
maintaining image fidelity.

2.2.1. Denoising Convolutional Neural Network (DnCNN)

In the first stage, a DnNCNN was implemented to reduce noise in scintigraphic images.
This network consists of eight convolutional layers, and a simplified schematic of its
architecture is shown in Figure 1.

The network begins with an input convolutional layer using a 3 x 3 kernel (the
window size most typically used in this context) and 64 filters (the basic configuration of
the implementation used), which processes the 3D image and generates 64 feature maps.
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Next, six convolutional layers (the basic configuration of the implementation used)
with 3 x 3 kernels and sixty-four filters are applied, each followed by batch normalization
(BN) and a rectified linear unit (ReLU) activation. This deepens feature extraction while
progressively reducing noise.

The final convolutional layer uses a 3 x 3 kernel with 3 filters, producing a three-
channel output image that matches the original. This architecture is designed to reduce
noise, using padding to preserve image dimensions and BN to optimize and speed up
the training. The absence of pooling layers ensures image details are preserved, which is
crucial for effective noise removal.
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Figure 1. Schematic of a DNCNN. The input is 128 x 128 x 120 images.

2.2.2. Unsupervised Denoising Convolutional Neural Network (UDnCNN)

The UDnCNN is an enhanced version of the DnCNN, designed to improve noise
reduction using a U-shaped architecture. As shown in Figure 2, this structure combines
contraction and expansion paths, similar to those of U-Net, enabling the capture of both
local and global image features.
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Figure 2. Schematic of a UDnCNN. The input is 128 x 128 x 120 images.

The numbers of filters in the DnCNN and UDnCNN were chosen based on empirical
results from prior studies and optimization experiments conducted during model devel-
opment. The use of 64 filters in the initial layers ensures a rich feature extraction process,
capturing both low- and high-frequency components. As the network progresses, filters
maintain their dimensionality to preserve feature consistency throughout the contraction
and expansion paths. The final layer reduces the feature maps to three channels, restoring
the image to its original format while ensuring the optimal noise suppression.

In the contraction path, the network applies successive 3 x 3 convolutions, followed
by ReLU activations and 2 x 2 max pooling (the value commonly employed in this scenario)
operations, storing the indices. This strategy reduces spatial resolution while increasing
the receptive field, enabling the identification of high-level image features.

To restore the original resolution, the expansion path uses 2 x 2 unpooling (the
commonly referenced value in this setting) operations, recovering spatial dimensions based
on the stored indices. After unpooling, additional convolutions reconstruct the image at its
original resolution, integrating detailed features from the contraction phase. These features
are combined by summing them and normalizing the result by dividing by 1/2, ensuring
that the scale of the activations remains consistent across layers.
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The network begins with a convolutional layer of sixty-four filters, followed by six
additional convolutional layers, all with sixty-four filters and padding to maintain the
image size. The final layer reduces the feature maps to three channels, corresponding to
the original image.

This combination of contraction and expansion allows the UDnCNN to capture both
fine details and global information, making it an efficient architecture for noise reduction
in images.

2.2.3. Dual-Domain Unsupervised Denoising Convolutional Neural Network (DUDnCNN)

The DUDNCNN is an improved version of the UDnCNN, designed to reduce noise by
combining dilated convolutions with a U-shaped structure inspired by U-Net networks.
The main modification is the introduction of dilated convolutions, which increase the
receptive field without requiring pooling. This is crucial in image restoration tasks, like
noise reduction, where preserving the precise location of the details is essential. Although its
structure is similar to that of the UDnCNN (see Figure 2), the DUDnCNN replaces pooling
and unpooling operations with dilated convolutions that have a dilation factor of 2 (the
basic configuration of the implementation used), as shown in Figure 3.

(@)

(b)
(c)
Figure 3. Dilated convolutions applied to the DUDNCNN architecture. (a) represents a 3 x 3 convo-
lutional kernel with a dilation of 1; (b) represents a 3 x 3 kernel dilated by a dilation of 2,i.e.,a5 x 5
kernel with “holes” of size 1; (c) represents a 3 x 3 kernel dilated with a dilation of 3,i.e.,a7 x 7
kernel with “holes” of size 2.

The network begins with a convolutional layer that transforms the three-channel input
image (RGB) to sixty-four feature channels. In the contraction path, 3 x 3 dilated convolu-
tions are applied, followed by ReLU activations. The dilation increases progressively along
the convolutional layers, adjusted based on pooling (k) and unpooling () values, with each
dilated convolution following the formula 2(*~)) — 1. This design enables the network to
capture high-level image features while preserving important spatial details.

Unlike traditional architectures, which reduce spatial dimensions after each convolu-
tion, the DUDNCNN expands the receptive field using dilated filters. To avoid increasing
the number of parameters, the filter is adjusted by inserting “spaces” between its rows and
columns, as illustrated in Figure 3. This approach enhances the receptive field without
compromising the computational efficiency or the network’s ability to generalize.

During the spatial resolution recovery phase, the dilated convolutional layers adjust
the dilation factor in reverse, eliminating the need for unpooling.

The DUDNCNN architecture includes several convolutional layers with 64 filters,
using padding to keep the image size constant. The final convolutional layer reduces
the feature maps to three channels, corresponding to the original image, completing the
restoration process.

2.2.4. Attention Generative Adversarial Network (AttnGAN)

Recent methods for noise reduction in images have used GAN networks, leveraging
advanced neural architectures to enhance image quality by removing noise while preserv-
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ing essential details. To tackle this challenge, we propose using an AttnGAN network,
which efficiently and accurately performs noise reduction. The general structure of the
AttnGAN is illustrated in Figure 4 and consists of two main components: the generator
and the discriminator.

Generator (AttnUNet)
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Figure 4. Schematic of a GAN for low-dose images.

The generator, termed AttnUNet, utilizes a sequence of convolutional and subsam-
pling layers, followed by upsampling layers and additional convolutions to restore the
image to its original form. Initially, it applies a convolutional layer to the input image
(single channel), resulting in 64 feature maps. The generator then performs four down-
sampling steps that reduce the spatial dimensions while increasing the feature depth,
as illustrated in Figure 4. Each downsampling stage combines convolution and max pool-
ing operations, followed by a convolutional block attention module (CBAM) to enhance
the capture of important features.

Following the downsampling phase, the upsampling process begins, consisting of four
layers that progressively recover the spatial dimensions while reducing the feature depth.
Each upsampling layer includes a transposed convolution, convolutions, and CBAMs,
as shown in Figure 4. The final convolutional layer adjusts the output dimensions to [32, 1,
256, 256], where 32 represents the batch size, 1 is the number of channels, and 256 x 256
corresponds to the spatial resolution of the reconstructed image.

The discriminator, also known as PixelDiscriminator, differentiates between real images
and those generated by the generator. It features a repetitive structure of convolutional
layers with varying feature depths, as depicted in Figure 4. The last layer reduces the
spatial dimension of the image to [32, 1, 30, 30], yielding the final noise-reduced image.

This combination of the generator and discriminator enables the AttnGAN to effec-
tively reduce noise, ensuring a faithful reconstruction of the original image while preserving
important details and eliminating unwanted artifacts.

2.3. Image Analysis

The image quality was assessed using the signal-to-noise ratio (SNR) and the multi-
scale structural similarity index (MS-SSIM) between the original and filtered data.

The SNR is a key indicator of image quality, measuring the prominence of a signal
relative to the background noise. It was calculated using Equation (1), where y; and
up represent the mean pixel values in the regions of interest (ROIs) for the lesion and
background, respectively, and o is the standard deviation of the background ROL

SNR = HL—HB (1)
0B
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The mean size of the lesion, represented by the kidney regions (marked in red),
was calculated, along with the mean and standard deviation of the background in the

surrounding areas (marked in blue), as illustrated in Figure 5, which shows two examples
of the drawn ROls.

Figure 5. Example of the ROIs considered in this study. Red: areas of increased renal activity.
Blue: background.

Because the SNR can be measured quickly and easily, it is a traditional and widely
used metric for assessing noise reduction. The MS-SSIM measures the similarity between
two images at multiple scales, providing a comprehensive evaluation of the image quality
by capturing details at different resolutions.

The MS-SSIM calculation (Equation (2)) involves three main components: intensity,
contrast, and structure. These components are weighted and combined to reflect the overall
similarity between the images.

M
MS — SSIM(x,y) = [Ip(x,y)]"™ - H[c] X,y ] < [si(x, y)] )
i=

—_

where I51(x,y) represents the luminance component between images x and y, cj(x,y)
denotes the contrast component at scale j, and s;(x, y) reflects the structural similarity at
scale j. The parameters ay, Bj, and 7; define the relative importance of the luminance,
contrast, and structure components, respectively. Finally, M represents the number of scales
used in the MS-SSIM calculation.

The MS-SSIM values range from 0 to 1, with 1 indicating perfect similarity.

The performance differences among the different networks were tested using a t-test
(for normal distributions) and a Wilcoxon signed-rank test (for non-normal distributions),
with a two-tailed p-value of <0.05 indicating a significant difference.

2.4. Training Options

From the original 100 pediatric renal scintigraphic images acquired at 100% data
counts, additional images were generated by reducing the counts to 50%, resulting in a
total of 200 paired images. Before training, all the images were preprocessed to ensure
consistency in input dimensions and intensity normalization. Each image was resized to
128 x 128 pixels, and pixel intensity values were normalized to a range between 0 and 1.
Data augmentation techniques were not applied, as the dataset already included paired
images reflecting different noise levels (100% and 50% data counts), which inherently
provided a variety of noise patterns for training.

Of the 200 paired images, 134 pairs (67%) were used for training, 32 pairs (16%) were
set aside for validation during training, and the remaining 34 pairs (17%) were reserved
for testing the model. The mean-squared error (MSE) was selected as the loss function
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because it effectively minimizes the average squared difference between the predicted and
original images, aligning with the goal of reducing the pixel-level noise while preserving
the structural integrity.

The hyperparameter tuning involved several stages. Initially, the CNNs were trained
at three learning rates: 1.0 x 1073,1.0 x 1074, and 1.0 x 10~°. The optimal learning rate
was determined by evaluating the balance between the signal-to-noise ratio (SNR) and the
multiscale structural similarity index measure (MS-SSIM), as detailed in the Image Analysis
section. Next, the batch size was varied among four, sixteen, and thirty-two to assess
the impacts on the models’ performances, also using the SNR and MS-SSIM as metrics.
After identifying the best learning rate and batch size, the stochastic gradient descent (SGD)
optimizer was compared with Adam, and Adam was ultimately selected for its superior
performance in terms of the convergence speed and stability, as described in Section 2.3.

Next, the batch size was adjusted to four, sixteen, and thirty-two, evaluating the
models’ performances based on the SNR and MS-SSIM. After determining the optimal
configuration, the performance of the stochastic gradient descent (SGD) optimizer was
compared with that of Adam.

To ensure the robustness of the chosen hyperparameters, the average relative error for
the 17 test patients was calculated, as shown in Equation (3). This relative error quantifies
the difference between the model-generated images and the original images, normalized
by the higher intensity between the two as follows:

Neuronal Network Image — Original Image

Relative E =
clative Brrot max(Neuronal Network Image, Original Image)

®)

These steps ensured a comprehensive exploration of the training process, optimizing
the model’s ability to denoise pediatric scintigraphic images effectively.

3. Results

Four neural networks were implemented: DnCNN, UDnCNN, DUDnCNN, and
AttnGAN. The training progress of these networks is shown in Figure 6.
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Figure 6. Training progress of the DnCNN (a), UDnCNN (b), DUDNCNN (c) and AttnGAN (d). Plots
of the training and validation losses (MSEs) per epoch. Epoch 0 corresponds to the initial loss for the
training and validation sets, before applying the network.
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To determine the optimal hyperparameters for the neural networks, models were
trained multiple times with various configurations. The training ran for 1000 epochs, as the
validation loss stabilized in the final 200 epochs, with variations remaining under 4%. This
stability indicates that the models reached a plateau, where further improvements would
be minimal. Additionally, there was no divergence between the training and validation
curves, reducing the risk of overfitting.

Table 2 summarizes the training settings used to optimize the hyperparameters, in-
cluding the batch size, learning rate, and optimizer.

Table 2. Neural network training configurations. Each training varied in terms of the hyperparame-
ters, such as the size of the batch, the learning rate, and the optimizer, based on the error of the SNRs
of the right and left kidneys and the MS-SSIM.

Training Batch Size Learning Rate Optimizer
Training 1 32 1.0 x 107% Adam
Training 2 32 1.0 x 1073 Adam
Training 3 32 1.0 x 107° Adam
Training 4 16 1.0 x 1073 Adam
Training 5 4 1.0 x 1073 Adam
Training 6 (4-32) * (1.0 x 107°-1.0 x 1073) * SGD

* Variable depending on the network.

The best hyperparameters—the learning rate, batch size, and optimizer—are presented
in Table 3, according to the percentage of the relative error between the original image and
the images generated by each of the four networks.

Table 3. The optimized hyperparameters of the neural networks.

Neural Network Batch Size Learning Rate Optimizer
DnCNN 16 1.0x 1073 Adam
UDnCNN 16 1.0 x 1073 Adam
DUDnCNN 4 1.0 x 1073 Adam
AttnGAN 32 1.0 x 1073 Adam

The results obtained from the four networks were analyzed using the optimal hy-
perparameters identified earlier. The SNR values for the right and left kidneys, along
with the MS-SSIM, were compared across the networks. Both quantitative and qualitative
approaches were used to assess the image quality.

Figure 7 presents three box plots comparing the performances of the different neural
network architectures by considering the SNRs of both the right and left kidneys and the
MS-SSIM.

The gains (+) or losses (—) of the SNRs and MS-SSIMs for the different processing
methods—DnCNN, UDnCNN, DUDNCNN, and AttnGAN—are shown in Table 4. These
values, calculated based on the percentage of the relative error, indicate that the UDnCNN
outperforms the other neural networks.

Table 4. Comparison of the mean relative errors of the SNRs of the right and left kidneys and the
MS-SSIMs among the different neural networks. (+) indicates a gain and (—), a loss.

Mean Relative Error (%)

Metric

DnCNN UDnCNN  DUDnCNN AttnGAN
SNR—Right Kidney +10.8 +11.5 +10.1 +34
SNR—Left Kidney +10.6 +11.4 +10.0 +3.4

MS-SSIM —-0.5 —0.5 —-0.5 —0.6
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Figure 7. Comparison of the SNRs of the right (a) and left kidneys (b) and the MS-SSIMs (c) of the

different architectures.

A visual comparison of the original images and the denoised images processed using

the various approaches is shown in Figure 8.

Original — 100% Original — 50 % DnCNN UDnCNN DUDnCNN AttnGAN

1
ol------

Figure 8. Images obtained using these optimized methods—the original (the sum of 100% of the data
and the sum of 50% of the data) and with noise reduction through the implementation of the different
networks. The color scale is presented in grayscale.

In addition, a comparative analysis was carried out to evaluate the performances of
the different neural networks applied to noise reduction in pediatric scintigraphic images,
considering different age groups, as can be seen in Figure 9.

The p-values for the statistical analyses of the right kidney’s SNR, left kidney’s SNR,
and MS-SSIM difference for the various processing methods are presented in Tables 5-7,

respectively.
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Figure 9. Comparison of the SNRs of the right and left kidneys and the MS-SSIMs of the

different architectures.

Table 5. The p-values for the differences between the SNR values of the right kidney, obtained with
the original image and the four denoising methods.

Valor-p Original DnCNN UDnCNN DUDnCNN AttnGAN
Original <0.001 <0.001 <0.001 0.001
DnCNN 0.449 0.125 <0.001
UDnCNN 0.003 <0.001
DUDnCNN <0.001
AttnGAN

For p-values of <0.05 (in bold), there is a significant difference.

Table 6. The p-values for the differences between the SNR values of the left kidney, obtained with the
original image and the four denoising methods.

Valor-p Original DnCNN UDnCNN DUDnCNN AttnGAN
Original <0.001 <0.001 <0.001 0.005
DnCNN 0.252 0.210 <0.001
UDnCNN 0.013 <0.001
DUDnCNN <0.001
AttnGAN

For p-values of <0.05 (in bold), there is a significant difference.

Table 7. The p-values for the differences between the MS-SSIM values obtained with the original
image and the four denoising methods.

Valor-p Original DnCNN UDnCNN DUDnCNN AttnGAN
Original <0.001 <0.001 <0.001 <0.001
DnCNN 0.317 0.157 0.001
UDnCNN 1.000 0.001
DUDnCNN 0.001
AttnGAN

For p-values of <0.05 (in bold), there is a significant difference.
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The training that provided the best performance (UDnCNN) required a training
time of approximately 5 h. Table 8 shows the training and inference times for all the
neural networks.

Table 8. Training times, in hours, needed for the networks with optimized hyperparameters, and
mean inference times (in seconds) needed to denoise the images.

Neural Network Training Time (h) Inference Time (s)
DnCNN 12.2 0.1328
UDnCNN 5.0 0.0791
DUDNnCNN 13.2 0.1209
AttnGAN 13.3 0.0657

4. Discussion

This work investigates the abilities of four neural networks to denoise pediatric renal
scintigraphic images. The primary task involved denoising using both the original data
and the data obtained from summing 50% of the original images.

The dose reduction was simulated by decreasing the number of images added to each
study, which increased noise levels because of the reduced information available for the
final image formation.

Four neural networks were implemented: DnCNN, UDnCNN, DUDnCNN, and At-
tnGAN. The training progress of the implemented networks is shown in Figure 6. We
trained the models across multiple epochs and observed that by epoch 1000, the variation
between the epochs was less than 4%. This indicated stable performance, and we, therefore,
selected 1000 epochs as the optimal number for training.

The training configurations for all the networks are shown in Table 2, detailing each
combination tested. After evaluating these combinations, we identified the optimal parame-
ters, presented in Table 3. The results show that although the batch size varied significantly
across the networks, the best learning rate and optimizer remained consistent for all the
networks. These parameters were adjusted to maximize the image quality while balanc-
ing structural detail preservation and noise reduction. This careful analysis allowed for
identifying the configurations that optimized each model’s performance.

Figure 7 displays three box plots comparing the SNR of the right kidney, the SNR of
the left kidney, and the MS-SSIM across four image sets: the original and those processed
using the DnCNN, UDnCNN, DUDNnCNN, and AttnGAN. The graphs indicate that the
median and maximum values are consistently higher in the UDnCNN implementation.

To achieve a qualitative assessment, we compared the numerical values of the SNR
and MS-SSIM between the original and preprocessed images. Table 4 provides a summary
of this analysis. Through this comparison, we identified the UDnCNN network as the top
performer, demonstrating the optimal balance between noise reduction and preservation of
structural details. This is reflected in the variations observed: an 11.5% increase in the SNR
for the right kidney, an 11.4% increase for the left kidney, and only a —0.5% change in the
MS-SSIM, indicating the minimal compromise in the structural similarity.

These findings reinforce the stability and effectiveness of the UDnCNN in denoising
without significant loss of detail, suggesting its strong potential for clinical applications.

Figure 8 shows a visual comparison of the original images and those processed using
the different approaches. Although significant visible differences are not apparent among
the processed images, they exhibit notable reductions in noise compared to that of the
original image.

The analyses of the neural networks implemented highlighted differences in the perfor-
mances of the SNR and MS-SSIM metrics, depending on the age groups evaluated. It was
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observed that the UDnCNN maintained higher SNR values for both kidneys and preserved
the structures of the images (MS-SSIM) more consistently at all ages, even under reduced
dose conditions. This stability is particularly important in younger children, where the
smaller size of the organs and greater sensitivity to noise pose additional challenges. In com-
parison, the DnCNN and DUDnCNN showed greater variability in results between age
groups, with lower performance in younger age groups. Although the AttnGAN showed
competitive MS-SSIM values, its SNR performance was less consistent in younger patients,
indicating less robustness under more challenging conditions. The results in Figure 9
reinforce the clinical application potential of the UDnCNN, showing its ability to balance
noise reduction and preservation of structural details, regardless of the patient’s age.

Statistical analysis revealed significant differences (p < 0.05) in the kidney SNRs
and MS-SSIMs across the processes (original Image, DnCNN, UDnCNN, DUDnCNN,
and AttnGAN), as shown in Tables 5-7. However, these differences may not be easily
discernible in clinical interpretation. This is supported by Figures 7 and 8, which present
the metrics and visually similar results side by side.

The training and inference times in Table 8 are indicative, varying with the available
computing power. In relative terms, the existing networks (the DnCNN, DUDnCNN,
and AttnGAN) had the longest times. The UDnCNN model struck the best balance be-
tween the SNR and MS-SSIM while also being the fastest. Given the importance of the
inference time in clinical applications, it is noteworthy that the AttnGAN processed unseen
images faster than the other networks in this study. This efficiency makes the AttnGAN
a promising candidate for future research involving more complex training. However,
the strong denoising results of the UDnCNN in pediatric renal scintigraphy suggest further
exploration of such architectures.

Previous studies on deep-learning-based denoising in medical imaging have reported
improvements in image quality. Minarik et al. [23] applied convolutional neural networks
(CNNs) to whole-body bone scintigraphy, achieving a 92% noise reduction and outperform-
ing traditional filters. However, their study focused on whole-body imaging rather than
specific-organ imaging, such as pediatric renal scintigraphy. Compared to these studies, our
work specifically targets pediatric renal scintigraphy and demonstrates that the UDnCNN
achieves SNR improvements of 11.% for the right kidney and 11.4% for the left kidney,
with a minimal MS-SSIM reduction of 0.5%. These results highlight the effectiveness of the
UDnCNN in balancing noise reduction and structural preservation in this imaging context
while addressing the limitations of previous studies by leveraging a publicly available
dataset for enhanced reproducibility.

Direct comparisons between literature values and those obtained in this study are
challenging because of varying databases and methodologies. The training data differ
significantly in characteristics because of the distinct denoising tasks. Some studies focused
on small animal images, while others analyzed different medical imaging techniques.
Nonetheless, the results from our study (maximum SNRs of 11.5% for the right kidney and
11.4% for the left kidney, with an MS-SSIM reduction of only 0.5%) are competitive with
those in the existing literature.

5. Limitations and Future Research
5.1. Limitations

This study had several limitations. The lack of data on the average radiopharmaceu-
tical activity injected into patients limited the ability to accurately assess the impact of
administered activity on the image quality. Without this information, direct and rigorous
comparisons with other studies are challenging, potentially restricting the generalization
of these findings. Additionally, for a given acquisition time, a gamma camera with higher
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sensitivity would have produced images with a higher number of counts, resulting in
improved image quality. This makes it difficult to compare different datasets when imaging
equipment and acquisition protocols are not identical.

Another limitation is that all the images were acquired using the same gamma camera,
meaning that the variability across the different imaging systems was not considered.
In clinical practice, where different devices may be used, the image quality can vary, which
limits the applicability of these results to other settings. Furthermore, although quantitative
metrics, such as the SNR and MS-SSIM, were used to evaluate the quality of the processed
images, no qualitative assessment was performed by clinical experts. The input of nuclear
medicine physicians or other healthcare professionals would be crucial to verify whether
the denoised images retain their diagnostic value.

Moreover, this study did not implement a formal validation strategy, such as cross-
validation or hold-out validation, to assess the reliability of the results. Although the
models were trained and tested on independent image sets, a more structured validation
approach could improve confidence in the robustness and generalizability of these findings.
Future studies should incorporate appropriate validation methods to better evaluate the
models” performances across different datasets and in different clinical scenarios.

Finally, the approach used to simulate the reduced administered activity was based
on summing partial data from the original images, allowing for a controlled assessment of
its impact. However, this method may not fully replicate real clinical conditions, where
patient variability and radiopharmaceutical distribution dynamics can influence the results.
As a result, simply reducing the data noise may not accurately reflect low-activity scenarios
in clinical practice, potentially limiting the direct applicability of these findings.

5.2. Future Research

Although this study demonstrated promising results, several avenues for future
research remain. Expanding the dataset to include pediatric renal scintigraphic images
from multiple centers, acquired with different gamma cameras and clinical protocols,
would enhance the generalization and robustness of deep-learning models. Additionally,
beyond the DnCNN, UDnCNN, DUDnCNN, and AttnGAN models explored in this study,
future work could investigate alternative noise reduction techniques, such as wavelet-based
methods or more advanced deep-learning architectures.

Another important direction would be to move beyond simulated dose reductions
and investigate real-world strategies for minimizing the administered activity. This could
involve acquiring low-dose images from realistic phantoms and training deep-learning
models to handle various noise levels. Incorporating images obtained with different
administered activities into the training process could lead to more flexible models, better
suited for clinical applications.

Furthermore, a qualitative evaluation by nuclear medicine specialists would provide
crucial insights into the clinical relevance of denoised images, ensuring that improved
image quality translates to enhanced diagnostic accuracy. Finally, integrating these models
into routine clinical workflows could optimize the diagnostic image quality, improving
efficiency and precision in renal function assessments, particularly in cases where balancing
radiation safety and image clarity is critical.

6. Conclusions

Deep-learning-based denoising techniques have demonstrated strong potential in
medical imaging, particularly in reducing noise while preserving diagnostic features.
However, their applications to pediatric renal scintigraphy remains underexplored, limiting
direct comparisons with existing noise reduction methods.
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This study applied four deep convolutional neural networks (DnCNN, UDnCNN,
DUDNCNN, and AttnGAN) to a publicly available pediatric renal scintigraphy dataset.
The objective was to evaluate whether deep-learning-based image enhancement could
enable the acquisition of lower-dose images while maintaining clinically relevant image
quality. The results indicate that the renal scintigraphic images reconstructed from a
simulated 50% dose reduction retained diagnostic value, with the UDnCNN offering the
best tradeoff between image quality and computational efficiency.

A comparison with related studies (Table 9) highlights the diversity of dose reduction
strategies across different imaging modalities. Hsiao et al. explored clinical thresholds
for dose reduction in pediatric renal scintigraphy, finding that a 50% reduction was fea-
sible with noise correction. Minarik et al. demonstrated the effectiveness of CNN-based
denoising in bone scintigraphy, achieving substantial noise reduction. Our study comple-
ments these findings by systematically evaluating multiple CNN architectures in renal
scintigraphy, reinforcing the feasibility of deep learning in dose reduction strategies.

Table 9. Comparison of Dose Reduction and Noise Reduction Methods in Medical Imaging Stud-
ies [19,20,22,23].

Study Imaging Modality Dose Reduction Noise Reduction Method Key Finding

50% dose reduction

Pediatric Renal

[19]

[20] Pediatric CT

[22] Pediatric X-ray 50% S5-Vue™ Scoring System

[23] Bone Scintigraphy

This study

Scintigraphy

Up to 90% Physician-Reviewed Filtering feasible with
noise correction
Maintained
diagnostic quality
despite
increased noise
Image quality
remained satisfactory
Reduced noise by
CNN-Based Denoising 92%, superior to
traditional filters
The UDnCNN

Variable Iterative Reconstruction

50% (scan time
halved)

Pediatric Renal provided the best
Scintigraphy

50% CNN-Based Denoising balance between

quality and efficiency

Although these findings are promising, future research should explore model general-
ization across different datasets and validate clinical applicability through expert evaluation.
Expanding the dataset to include multi-center acquisitions and incorporating hybrid noise
models could further enhance the robustness of deep-learning-based denoising in nuclear
medicine imaging.
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