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Abstract: Sediment transport and shoreline changes causing shoreline morphodynamic
evolution are key indicators of a coastal structure’s operational continuity. To reduce the
computational costs associated with sediment transport modelling tools, a novel procedure
based on the combination of a support vector machine for image classification and a trained
neural network to extrapolate the shore evolution is presented here. The current study
focuses on the coastal area over the Amir-Abad port, using high-resolution satellite images.
The real conditions of the study domain between 2004 and 2023 are analysed, with the aim
of investigating changes in the shore area, shoreline position, and sediment appearance
in the harbour basin. The measurements show that sediment accumulation increases by
approximately 49,000 m?/y. A portion of the longshore sediment load is also trapped and
deposited in the harbour basin, disrupting the normal operation of the port. Afterwards,
satellite images were used to quantitatively analyse shoreline changes. A neural network is
trained to predict the remaining time until the reservoir is filled (less than a decade), which
is behind the west arm of the rubble-mound breakwaters. Harbour utility services will no
longer be offered if actions are not taken to prevent sediment accumulation.

Keywords: longshore sediment transport; high-resolution satellite images; shoreline change
prediction; support vector machine; artificial neural network; lifetime; Amir-Abad port;
Caspian Sea

1. Introduction

The northern Iranian coastline extends for approximately 820 km from Turkmenistan’s
western border to Azerbaijan’s eastern one. As one of the key ports in the region, Amir-
Abad is strategically located on the southeastern coast of the Caspian Sea, hosting in-
ternational commercial vessels. A noticeable challenge that port managers face is the
accumulation of sediment in conjunction with some irregular events, which has altered
the region’s hydrodynamic pattern. Hence, supervisors have determined that parts of
the port’s basin and surrounding areas should be dredged intermittently to provide the
required draft, guaranteeing operational continuity. However, this non-quantified process
can only continue for a limited period of time, as it is not feasible to sustain it indefinitely.
The motivation is twofold: First, existing structures have a limited penetration depth, and
their stability will be questioned when this criterion is reduced. Second, dredging is a
costly process, as it involves expensive operations, interfering with normal port activities.
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Therefore, it is essential to accurately quantify changes in the shoreline position and the
shore area surrounding the port.

Various methods exist for quantifying sediment transport rates and predicting coast
configurations over time [1-3]. In general, computational methods can be categorised
into the following two classifications: empirical methods and math-based methods. The
CERC formula [4] is an appropriate and well-known empirical method. The empirical
coefficient plays a significant role in sediment transport rate estimations when using this
relation. The SPM code recommends a value of 0.39, which does not take into account the
specific conditions of each area and is based on a study by Komar and Inman [5]. According
to Fowler et al. [6] and Wang et al. [7], the CERC relation can only be used to calculate
sediment load orders when the empirical coefficient has not been calibrated with precise
data. Thus, they argued that the CERC formula can be used to predict potential sediment
transport rates that are two to five times greater than dredging records, bypassing rates,
or volumetric variations. In contrast, Miller [8] asserted that if the empirical coefficient is
not calibrated, it may underestimate sediment transport rates. Using the CERC formula,
Samaras and Koutitas [9] found that the evaluated longshore sediment transport rates were
higher than those obtained by Kamphuis’s [10] and Bayram et al.’s [11] formulas. Hence,
it can be concluded that, in each region, there is a direct correlation between the accuracy
of the evaluations and the experiences of users of empirical formulas, which can lead to
unrealistic assumptions and higher project costs.

Mathematical methods may be a better, more viable alternative. In academia, several
researchers have either applied or developed numerical methods as a means of overcoming
empirical restrictions or analytical simplifications, and a variety of methods have been
formulated for this purpose. Three types of models can be categorized based on the follow-
ing spatial dimensions: one-dimensional, two-dimensional (horizontal (H) or vertical (V)),
and three-dimensional (full) models. The simplest simulation involves a one-dimensional
model of sediment transport along shorelines. Afterwards, two-dimensional models can
be divided into horizontal or vertical solution domains. In 2DH models, the flow values
are integrated vertically, and gridding is conducted horizontally. The 2DV models, on
the other hand, do not consider variables along the shoreline and perform gridding on a
vertical plane. Accordingly, Wang [12] used a depth-averaged model to simulate sediment
transport in the curve of a channel with fixed walls. To describe the cross-stream distri-
bution of the flow intensity located at the channel curves, a semi-empirical relationship
is proposed. Effects such as the bed load transport angle were practically neglected. It
is generally accepted that two-dimensional models constrain simulation processes com-
pared to real-world conditions due to the assumption of a constant distribution pattern
for governing variables in one particular direction. In an attempt to overcome the lim-
itations of two-dimensional models and to obtain accurate modelling results, scientists
have developed three-dimensional models where sediment transport is coupled with CFD
solvers. Sakhaei and Niksokhan (2021) [13] examined the pattern and rate of sediment
transport around Amir-Abad port using the MIKE model. The solution domain of their
study was considered such that the effects of structures around ports on sediment transport
during port functions were not considered. The Delft3D model was used by Mayerle and
co-workers [14] to study sediment transport along three dimensions. Their study aimed
to improve the Delft3D’s accuracy by calibrating the hydrodynamic information using
measured data. It should be mentioned that the use of three-dimensional models is not
without complications. Firstly, the lack of precise predictions of wave data or sediment
properties (during the design process, as well as during operation) in a particular region has
a significant impact on the accuracy of the results. Also, the relationships and computations
are based on the assumption of an infinite sediment source. However, local and timely
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variations due to unpredicted occurrences in these models are not taken into account.
Moreover, the non-uniformity of portions of a shoreline affects the potential transport rate.
The breaking wave height, angle, and shoreline orientation of these shore types need to be
calculated accurately. Hence, tools for ray-tracing, as well as performing grid-based wave
refraction analysis are required [15,16]. In the 3D-modelling process, the consideration of
all these factors leads to a significant intensification in computational costs.

Mathematical simulations associated with Amir-Abad Port present a number of issues
that are not exclusively related to the use of conventional numerical methods. First, the
dredging process has been conducted irregularly, as well as without consideration of quan-
titative computations, leading to the emergence of an unexpected geometric and material
pattern that differs from the properties of the natural shoreline. This results in a difference
between sediment transport rates over short- and long-terms periods. Additionally, by con-
structing an industrial yard with 2775 m of breakwaters, which exceed the surf zone in the
port upstream, sediment transport mechanisms are affected by interactions between two
coastal structures. In the end, the decreasing water level in the Caspian Sea in recent years
has changed the shoreline position, in addition to sediment movement and accumulation.

To overcome the computational limitations and quantify changes in coastlines over time,
reliable codes suggest the use of remote sensing data. Accordingly, satellite images with
high spatial resolution have been used in numerous studies to monitor short- and long-term
changes in coastlines [17-22]. Monitoring such situations over time has additional benefits
beyond the data that may be obtained from satellite images. Extracted remote sensing data
can be utilised in conjunction with prediction tools to forecast future events [23,24].

In spite of the existence of many studies with a wide spectrum of methods and algo-
rithms for the prediction of changes in shorelines [17,18,25-32], one of the most promising
methods in this field is the artificial neural network [33], which has been used in studies
in this field to a limited extent [34-36]. In addition to managing and processing a large
volume of data with a high degree of nonlinearity, this method provides a high degree of
certainty, making it widely used in studies [37-39].

Shoreline change in this area is influenced by three simultaneous phenomena. Two of
these phenomena are natural, namely, sediment accumulation due to longshore sediment
transport and a decrease in the level of the Caspian Sea. Thirdly, there is a phenomenon
that is the result of human activity, which involves the construction of a protective structure
upstream of the harbour. The simultaneous occurrence of these three phenomena has led
to inaccurate, simplified modelling results. Hence, in light of the abovementioned issues,
extracted satellite image data can be combined with artificial neural network algorithms to
create a reliable framework for longshore dynamic changes, which includes the effects of
both natural factors and human decisions. In other words, the coupled model relies on data
that allocate these irregular effects. Consequently, first, the current study quantifies and
reports changes in the shore area surrounding the Amir-Abad port during its operation
through the interpretation of high-resolution satellite images. Second, the shoreline position
is digitised and presented at various times from the port’s construction to the present.
Eventually, it is attempted to identify patterns in the changes in shoreline position using
a trained artificial neural network, for which assuming possible shoreline patterns when
the sediment accumulation reservoir is filled, the remaining time until complete port
inoperability is estimated.

2. Data and Study Area
2.1. Study Area

Amir-Abad port is located near the city of Behshahr, Mazandaran province, Northern
Iran, south of the Caspian Sea, at a geographical latitude of 36° North and a geographical
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longitude of 53° East (Figure 1). Its construction started in 1991, and it was established as a
free commercial zone. The distance from its western breakwaters to the nearest port, Sadra,
a shipbuilding port, situated to the west, is approximately 7.5 km. On the other hand, the
nearest eastern port, Turkmen, is located about 60 km from the eastern breakwaters of
Amir-Abad port.
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Figure 1. Top-down views of the study areas: (a) general overview; (b) Mazandaran province, Iran;
(c) Amir-Abad port in Mazandaran province.

2.2. Data

The present study utilises high-resolution satellite imagery from the designated region,
comprising ten images sourced from the Google Earth Pro (GE Pro) platform [22] at a
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consistent eye altitude of 3.5 km to analyse the coastal changes that occurred between
2004 and 2023. Additionally, an aerial image with a spatial resolution of approximately
2 m, obtained from the United States Geological Survey (USGS), is included, representing
the pre-construction conditions of the port community in 1956. Table 1 provides detailed
descriptions of all historical images used in the study, including the source and spatial
resolution. The utilisation of these images adheres to the copyright regulations of GE Pro
and the EarthExplorer.usgs.gov [40] website. Furthermore, various processes applied to
the images were conducted using the free and open-source software QGIS 3.10.14.

Table 1. Date and source of the high-resolution satellite images, along with their approximate
spatial resolution.

Date of Acquisition Source Approximate Image Resolution (m)
1956.13.09 USGS Aerial Photo 1.9-2
2004.28.05 Digital Globe 1.2-1.5
2006.19.09 Digital Globe 1.2-1.5
2014.18.09 CNES/ Astrium 1.2-1.5
2015.11.06 Digital Globe 1.2-1.5
2016.24.05 Digital Globe 1.2-1.5
2017.23.10 CNES/ Astrium 1.2-15
2018.24.04 CNES/ Astrium 1.2-1.5
2020.14.01 Digital Globe 1.2-15
2021.20.03 Digital Globe 1.2-1.5
2023.03.11 CNES/ Astrium 1.2-1.5

3. Method of Data Analysis

The high-resolution images need to correspond to the same area and viewpoint.
It should be noted that the images available from GE are not provided with ground
coordinates. Consequently, the georeferencing of all adopted images prior to their use is
required to overlay them sequentially over time, with the aim of detecting changes in the
coast of Amir-Abad port.

In the next step, the images are prepared for classification by combining the RGB
bands with the two texture bands. Then, the satellite images were classified using the
support vector machine (SVM) technique to identify the border between land and sea. The
next stage involved converting the classified raster images into a vector format so that
changes in the shoreline and its advance or retreat can be tracked in QGIS. Ultimately, a
neural network model was created using the dates of the images and the numerical values
of the shoreline changes to forecast how long it will take for sediment to accumulate and
completely fill the area behind the breakwaters main arm. The overall procedure described
above is depicted in Figure 2. Specific information on the steps to be undertaken will be
given in the next sections.

3.1. Preparation of Images

The study area from which the images were progressively captured over time is shown
in Figure 3. Six ground control points (GCPs) are identified.

The images (as listed in Table 1) were downloaded using GE Pro 7.3.4.8248 software.
The same eye altitude was kept fixed so that the scale was the same for all of images. The
coordinates of the ground control points (GCPs) were obtained as a KML (Keyhole Markup
Language) file, for use in the QGIS 3.10.14 software from GE Pro 7.3.4.8248.
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Figure 2. Flow chart illustrating the adopted methodology.
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Figure 3. Distribution of Ground Control Points (GCPs) over the study area.

3.2. Image Georeferencing

Before downloading the images, the study area and the time intervals between images
captures were selected first and, as mentioned in Section 2, the images were downloaded
via GE Pro 7.3.4.8248 software and from the USGS website, as shown in Table 1. In order to
prepare the georeferencing facilities for the images used in GE Pro, before downloading the
images, six GCPs with regular distributions, as shown in Figure 3, were selected from the
latest available images dated for 2023.11.03 in the study area. When extracting data using
the software (GE Pro), the same eye altitude and fixed image frame were used for all images,
as shown in Table 1, to ensure that the scale for all images remained constant. Also, the
coordinates of the GCPs that were selected from the images dated 2023.11.03 were extracted
via GE software as a KML (Keyhole Markup Language) file for loading into the QGIS software.

Images downloaded via GE Pro and from USGS do not come with ground coordinates. To
spatially reference these images using the image-to-image georeferencing method, a previously
georeferenced image that is similar to the unreferenced image is necessary. The open-source
software QGIS 3.10.14, along with the GE Pro plugin, allows users to download georeferenced
images in the GeoTiff format. However, this plugin can only access the most recently uploaded
image and does not provide access to the history of images available in GE.

Here, an image on 3 November 2023 was acquired using QGIS in the GeoTiff format,
which included the necessary control points obtained from GE in the KML format. This
image was then used in the image-to-image georeferencing process alongside a similar but
unreferenced image that was also prepared from GE Pro on the same date.

Now, we have two very similar images: one without ground coordinates downloaded
from GE Pro and the other with ground coordinates obtained from QGIS. The locations of
the ground control points (GCPs) are known for both images. Using these shared points,
the georeferencing process for each image was conducted with reference to the ground
image from 3 November 2023. The image-to-image method has the advantage that the
georeferencing accuracy is the same for all of the images, with a root mean square error
(RMSE) of 0.1492 units of the image pixels for all images.

3.3. Image Preparation for Classification

After georeferencing, the images must be separated into dry and wet classes. To increase
the classification accuracy and highlight the edges of the coastline in the images, first, a variance
and a contrast texture are created separately from the red band of each image, which are shown
in Figure 4, panels a and b, respectively. The date of 28 May 2004 is taken as an example.
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Figure 4. (a) Variance texture in the red band of the satellite image; (b) contrast texture in the red
band of the satellite image. The date of the selected image is 2004.28.05.

The textures produced from the original image were ultimately combined with the
original image, resulting in a total of five bands in each image. In other words, the first
to the fifth bands are the red, green, blue (three principal bands of images obtained from
GE Pro), contrast, and variance bands, respectively. As shown in Figure 5, the virtual
combination of bands 4, 5, and 3, which, respectively, represent the red, green, and blue
colours in the image, achieves a more prominent coastline edge compared to the images
given in Figure 4.

Figure 5. The resulting image ready for classification with the virtual combination of bands 3, 4, and 5.
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3.4. Support Vector Machine Classification

In supervised classification, the collected training data are of great importance. For
each of the water and land classes, 9000 pixels scattered across each image were selected
as the training data by the operator (Figure 6). Based on the high-quality GE imagery
and field knowledge of the area, pixels that were clearly in the land or water classes
were selected as training data. To ensure effective classification control, alongside the
training data, represented by the yellow and red points in Figure 6, a total of 4500 land
pixels (indicated by green points) and 4500 seawater pixels (depicted as purple points)
were utilised as verification points for the land and water classes, respectively. These test
points were carefully chosen by the operator from the GEpro images, ensuring they were
situated closer to the coastline than the training points to improve the evaluation of the
classification accuracy. In total, each image incorporated 27,000 pixels for both training and
testing purposes.

Figure 6. The distribution of the training data in the study area is characterised by red pixels for the
water class and yellow pixels for the dry class. In addition, the test data are represented by purple
pixels for the water class and green pixels for the dry class.

Satellite image classification plays a vital role in remote sensing and geographic
information systems (GIS). To attain precise classifications, a range of machine learning
techniques, including k-nearest neighbours (k-NN), logistic regression, support vector
machines (SVMs), and Random Forest (RF), are utilised. k-NN is straightforward to
implement and comprehend, establishing it as a reliable baseline technique [41]. It does
not rely on a specific data distribution, which can be advantageous. Nonetheless, it may
require significant computational resources during the classification process, especially
when dealing with large datasets, as it necessitates distance calculations for every training
sample [42]. Furthermore, the presence of irrelevant features can adversely affect its
performance [43]. Logistic regression offers coefficients that are easy to interpret, facilitating
an understanding of the impact of each feature [44]. This method presumes a linear
association between the features and the log-odds of the outcome, an assumption that may
not be valid in the context of complex satellite imagery data [45]. An SVM is effective in high-
dimensional spaces, such as satellite imagery with many spectral bands, and is less prone
to overfitting when dimensions exceed samples [46]. Its use of kernel functions enables
modelling of the complex data relationships [47]. However, SVMs can be computationally
expensive for large datasets, and their performance depends significantly on the choice of
kernel and hyperparameter tuning, which can be challenging [42]. Random Forest (RF) is
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effective in managing noise and large datasets without overfitting, while also providing
insights into feature importance [48]. It can be easily parallelised for faster processing.
However, RF may underperform compared to support vector machines (§VMs) when the
number of features significantly exceeds the number of samples [49]. Additionally, RF
models are often seen as black boxes, complicating the interpretation of results compared
to linear models.

Satellite imagery is commonly subject to noise caused by atmospheric factors or
sensor errors; however, the robustness of support vector machines (SVM) ensures reliable
classification even amid such noise. The nature of coastline changes is both complex and
non-linear, and SVM’s kernel functions are superior in addressing these complexities when
compared to linear models like logistic regression. Considering the limited number of
images available for this study and the effectiveness of the SVM technique [50-53], it was
selected for the classification of images aimed at coastline detection. Before classification,
principal component analysis (PCA) is used to project the original images onto a new
orthogonal coordinate system with lower dimensions. This method separates principal
features from dependent features and increases the processing speed.

The radial base function (RBF) kernel demonstrates a significant capacity to distinguish
between classes within a multidimensional (e.g., five bands in this study) and intricate
nonlinear space. It offers greater flexibility and accuracy in image classification compared
to other kernels, such as linear and polynomial kernels [54,55]. Then RBF SVM [53] is
performed on individual images. For classification in this way, gamma and kernel function
coefficient values between 1 and 0.001 were chosen, as well as a penalty parameter (PP)
value between 1 and 1000, to test and determine the error resulting from the classification.
In the present study, the most appropriate gamma and kernel function coefficient values
were adjusted to 0.200, and the PP value was adjusted to 100. A total of 9000 selected
checkpoints from the images of each year, represented by the purple and green pixels in
Figure 6, were utilised to create a confusion matrix. This matrix facilitated the calculation
of the classification error values employing the SVM method, which includes the overall
accuracy and the kappa coefficient for each image. The results are presented in Table 2.

Table 2. Error values for the classification of the images used in the present investigation.

Date of Acquisition Overall Accuracy Kappa Coefficient
1956.13.09 92.18 0.916
2004.28.05 96.14 0.939
2006.19.09 96.35 0.959
2014.18.09 96.60 0.951
2015.11.06 96.22 0.942
2016.24.05 96.90 0.959
2017.23.10 96.78 0.954
2018.24.04 96.53 0.948
2020.14.01 96.81 0.955
2021.20.03 96.87 0.956
2023.03.11 96.92 0.959

Based on Table 2, the kappa coefficient and the overall accuracy values in the image
classification varied in the range of 0.916-0.959 and 92.18-96.90 per cent, respectively. For
example, after performing the stated steps, the results of the classification using the SVM
method on the part of the image from 2004 is provided in Figure 7.
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Figure 7. Image related to the year 2004 after the classification and separated into two wet classes in
blue colour and dry in yellow colour.

3.5. Convert Image to Map

QGIS 3.10.14 open-source software was used to digitise the images resulting from
the classification and evaluate the outcomes of converting the images into polygons and
preparing GeoPackage layers. After preparing the polygon of the study’s region, the area
and changes in each year were calculated. Also, after defining the coastline in each image,
the coastline transgression in a local coordinate system was determined. According to
Figure 8, the x-axis in the local system indicates the distance of transgression lines from
each other, and the y-axis indicates transgression values calculated using a large smoothing
method. In this method, a main line parallel to the horizontal line (x-axis) was chosen as a
reference for drawing lines perpendicular to the coastline.

y
A LARGE SMOOTHING

r—

D B [ B N S N N

T

» X

Figure 8. Representation of the large smoothing method for calculating the amount of shoreline
change in the local coordinate system.

In Figure 9, lines with red arrows pointing towards north indicate regression, whereas
red arrows pointing towards south indicate transgression of the coast between 1956 and
2023. Starting from the left side, the first 100 transgressions are 50 m in distance. Because of
the importance of examining the coastline between the main breakwater and the constructed
perpendicular arm in 2014, the next 33 transgression lines on the right side were selected at
20 m distances from each other. Perpendicular extension lines were drawn at each point of
the coastline so that their Euclidean distances from each other were actually equal. The
shoreline in 1956 is shown by the green line, while in 2023, it is indicated by the yellow line.
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Figure 9. Regression (i.e., seaward shoreline shift) or transgression (i.e., landward shoreline shift) of
part of the coastline in the study area between 1956 and 2023.

3.6. Projections of Coastline Evolution

This study focuses primarily on the evolution of the shoreline position over time.
Several years’ records of shoreline positions are digitised based on a local Cartesian co-
ordinate system. Considering the additional factors that influence the phenomenon of
changing shorelines over time (such as changes in water levels, construction of sea struc-
tures surrounding the target structure during operation, etc.), the method employed in the
present study is significantly enhanced in comparison to other numerical and analytical
methods, since it is based on the reality of the governing conditions. The most similar form
of shoreline geometry near the main arm of the port is estimated by extracting multiple
shoreline versions. Accordingly, each version of shoreline in the assessed zone can be
accurately and properly quantified with a regression line. This study defines a catastrophe
of normal port operation as the situation where sediment accumulates on the shoreline
of the port until it reaches the breakwater tip and enters the port in significant quantities
and causes the port to be rendered inoperable. Despite the roundhead being one of the
endpoints of this shoreline version, the other end lacks accurate coordinates. Consequently,
a number of potential shoreline endpoints are considered. The trained artificial neural
network predicts the occurrence time of each of these versions when compared to 1996
(when the mentioned port was constructed).

3.7. Artificial Neural Network

Artificial neural networks (ANNSs) are paradigms for processing information inspired
by the brain. By modifying the nonlinear parameterised mapping between the input and
output sets through their neurons, ANNs can be configured and trained, just as the brain
employs multiple neurons to process information. A neural network can be applied to
problems for which there is no algorithmic solution or where an algorithmic solution would
be too complex. An ANN method based on a back propagation learning algorithm was
used in this study. In order for a network to meet its target by minimising the mean square
error between the actual and predicted vectors, various internal weights and biases are
adjusted during the training process. A gradient search technique was used to achieve this
minimisation. An appropriately trained neural network can accurately predict outputs for
inputs that are not included in its training. Levenberg-Marquardt (LM) is among the fastest
and most efficient training algorithms available and, therefore, applied in the current study.
In order to provide robustness and stability, it can switch dynamically between Gauss—
Newton methods when the problem is well conditioned and gradient descent methods
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when the problem is far from the solution. As opposed to gradient descent, which is often
slow and sensitive to learning rate, and Gauss-Newton, which can be computationally
expensive and impractical for large datasets, Levenberg-Marquardt strikes an optimal
balance by taking advantage of both second-order derivatives and first-order derivatives.
For small- to medium-sized problems, for which a high degree of accuracy is required,
Levenberg-Marquardt method is superior to the others because of its flexibility and speed
in finding solutions.

The number of hidden layers and neurons within each hidden layer are important
considerations when designing a neural network. Various types of networks with different
architectures are taken into account. Based on the mean square error, the network perfor-
mance is calculated for each architecture. An analysis of three types of architecture with
one, two, and three hidden layers is conducted. Steps for increasing neurons are applied
to each of these scenarios. Figure 10 illustrates the results of the network’s performance
in each of these network architecture cases. Hence, using a trial-and-error process and
checking the accuracy obtained, a network with two layers of 20 neurons is developed.

mone layer
two layers
three layers
| 30 | 35 ‘ 40

25
Figure 10. Performance evaluation of the various network architectures.
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4. Results and Discussion

A number of records extracted from satellite images were analysed in this section with
the following three objectives: a—evaluation of changes in shore areas surrounding the port,
b—study of changes in shoreline position, and c—prediction of shoreline developments.
Therefore, Section 4.1 discusses trends in area changes within different subdomains of the
shore zone adjacent to the port. To determine the actual long-shore sediment transport rate,
these areas need to be extracted, especially for the early years. According to the CEM code,
40% of the accumulated sediment volume consists of pores between particles and 60% is
solid particles. Section 4.2 examines the alterations in shoreline position during the study
period. Eventually, in Section 4.2, an artificial neural network is trained to predict how the
shoreline would develop based on the extracted data in Section 4.2. In order to determine
the expected period of time for the port to be used, this prediction is made.

To better deal with the results, the domain surrounding the port is divided into five
subdomains (shaded areas in Figure 11). The longshore upstream of the port exhibits
two distinct sediment load patterns because of the development of an industrial zone
neighbouring the target structure. Region 1 is located downstream of the adjacent industrial
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area. Because of the lack of sediment in longshore currents, they tend to pick up sediment
in this zone. Considering the motion of this flow along the shoreline and the moving
of sediment from the seabed, it is expected that sedimentation occurs close to the port
(in regions 2 and 3). Due to port managers’ growing concern regarding the formation of
shorelines caused by sedimentation phenomenon, during port functions, an embankment
structure was realised in the region of sediment accumulation in the reservoir (the following
sections explore the efficiency of such choice, on the dynamics of the consequent sediment
transport). In the area of sediment accumulation behind the main breakwaters arm, an
additional arm has been constructed. Area 2 is located in the sediment accumulation
area, which is on the western side of this additional arm. The location between this
newly developed segment and the principal arm of the port breakwater is identified
as region 3. The term “subdomain 4” refers to the area surrounding the breakwater
structure, located primarily on its western and southern sides. Since this subdomain is
located in a dry area, no expectations can be made regarding its area change. Region 5
represents the downstream part of the port structure, which is vulnerable to sediment
erosion during longshore sediment transport. Port managers constructed concrete walls to
prevent sediment depletion in subdomain 5. A storage site was constructed by dredging
sand materials from the harbour basin and filling behind this wall. It was not necessary to
construct a corrosion prevention structure in this area because the erosion is negligible.

Amir-Abad Port

polygone area
N area 1

area 2

area 3
[ area 4

area 5
coast line

Figure 11. Identification of regions throughout the study area to expedite interpretation and address.

4.1. Examining the Changes in the Shore Area in the Sediment Deposit Region

The coastal conditions in 1956, as defined by the first available aerial image, can
be taken as the reference for comparing changes in the shore area surrounding the port.
However, this image is not an appropriate option for digitizing because of its lower reso-
lution compared to other images. As a thoughtful solution, since the shore experienced
marginal regression or transgression prior to the start of port activities (compared to the
1956 situation) due to human-made actions, the image related to 1996 is therefore taken as
a reference. Images from 1956, 2004, 2006, 2014, 2015, 2016, 2017, 2018, 2020, 2021, and 2023
were used to examine the changes in the shore surrounding the port.

Table 3 shows the added /reduced shore area calculated in subdomains 2 and 3. These
values are extracted based on the shoreline position in each satellite image.

According to the extracted data from 1956 to 2014, the shore area has increased
overall by approximately 1,099,430 m?2, reflecting the duration between port operations
and upstream industries development. A substantial reduction in the volume of sediment
load on the longshore flow has been achieved due to the construction of long breakwaters



J. Imaging 2025, 11, 86

15 of 24

in the industry region. From 2014 to 2015, the shore at the interface between subdomains
1 and 2 experienced temporary erosion. Therefore, the sum of the sedimentation and
sediment removal during this period is overall negative. This negative value indicates that
erosion overcomes sedimentation. After leveraging towards new conditions, the longshore
sediment load increased again in 2015, leading to shore development. Figures 12 and 13
visualize the changes in the shore zone after the port’s construction. It should be noted that
the construction of the upstream industry structure has significantly extended the port’s life.
The shore area expansion rate between 1956 and 2014 reached 61,079 mZ2. However, after the
implementation of the upstream industrial structure, the shore deposition rate decreased to
49,609 m? /y, indicating a 20% drop. It is also worthwhile to note that subdomains 2 and 3
have been affected along a length of about 3.5 km, which corresponds to the length of the
sediment accumulation reservoir.

Table 3. Increment/decrement in the shore area in subdomains 2 and 3.

Period Area Variation (m?)
19562004 378,346
2004-2006 106,654
2006-2014 614,430
2014-2015 —1953
2015-2016 17,842
20162017 26,768
2017-2018 1436
2018-2020 41,926
2020-2021 19,542
2021-2023 134,467

Amir-Abad port

Legend
] 1956-09-13
= [ 2004-05-28
I 2006-09-19
[ 2014-18-09
I 2015-06-11
Il 2016-05-24
Il 2017-02-19
2018-04-24
[ 2020-01-14
Il 2021-03-20

I 2023-11-03

Figure 12. Superposition of changes in the area surrounding the Amir-Abad Port.

A further consideration is that in the first years after the port’s construction, the rate
of change in the subdomains 2 and 3 areas differs from that in the subsequent years, for
various reasons. Such a circumstance is not merely related to the development of the
upstream industry. Another reason for this difference is that in the early years of operation,
sediment accumulated along the lower length of the western arm. The sediment load
had to be directed along the breakwater for a longer distance to escape this region. In the
following years, accumulated sediment behind the principal arm of the breakwater left
the lower length of the primary arm sediment-free. As a result, sediment has been trans-
ported through the port’s entrance and sedimentation in the harbour basin has accelerated.
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Additionally, sediment flow in the early years of port operation interacted with breakers’
sharp-edged stones. Particles deposited between the structure’s stones and the velocity of
sediment-transport flow decreased. Over time, sediment accumulated between breakwater
stones, covered sharp edges on stones, and caused the shoreline to direct towards the
breakwaters roundhead (Figure 14). By facilitating sediment loading movement along the
principal arm, sedimentation in subdomains 2 and 3 was reduced.

2016-05-24
google earth

018-04-24
google earth

2021-03-20
= google earth
Figure 13. Single snapshots showing coastline evolution, (a) the shoreline position in 2004, (b) the
shoreline position in 2006, (c) the shoreline position in 2014, (d) the shoreline position in 2015, (e) the

shoreline position in 2016, (f) the shoreline position in 2017, (g) the shoreline position in 2018, (h) the
shoreline position in 2020, (i) the shoreline position in 2021, (j) the shoreline position in 2023.

Therefore, in subsequent years, the rate of growth in the width of the principal arm
has slowed to almost a standstill. It is estimated that most of the sediment that moves along
the major arm length enters the port, while the remainder passes through the port entrance
and escapes the port downstream.
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|

Figure 14. Changes in the coastline in subdomain 3, showing the tendency of the sediment to
accumulate along the breakwaters arm.

The sediment load enters the harbour basin following the path outlined in
Figures 15 and 16. The sediment loads that enter the basin move in a counterclockwise
direction due to the relative reduction in velocity (Figure 16). As an important point to
note, sedimentation in the harbour basin cannot be regarded as the result of a decrease in
the water level since the required draft of water should be provided for commercial vessels.
There is no significant sedimentation on the southern side of the harbour basin, where the
concrete wall has minimal friction with the longshore sediment load. In this zone, there is
almost no significant sedimentation.

area 4

[] 1956-09-13-in area 4
[ 2004-05-28-in area 4
Il 2006-09-19-in area 4
[ 2014-09-18-in area 4
I 2015-06-11-in area 4
Il 2016-05-24-in area 4
Il 2017-02-19-in area 4
[ 2018-04-24-in area 4
I 2020-01-14-in area 4
I 2021-03-20-in area 4
[ 2023-11-03-in area 4

google earth ﬁ

0 200 400 m

Figure 15. Sediment accumulation inside the stilling basin due to the entrance of the sediment flow.
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2004-2023
— Forward Line 2004-2023

google earth A

0 100 200 m

Figure 16. Details of the temporal changes along the edges of the port’s stilling basin for the
2004-2023.

period

Owing to changes in the wave direction, part of the sediment load did not enter the

harbour basin. Sediments were partially transported near the structure downstream, as

depicted in Figure 17, with the sediment that passed the port entrance settling among the

port’s eastern breakwater stones, contributing to the breakwater width.
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Figure 17. Changes on the right side of the eastern breakwater arm.
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However, it is crucial to note that when a large volume of longshore sediment load
is entrapped, a current without sediment is created downstream of the structure. Erosion
is an inherent characteristic of this flow process. Hence, in the first years of operation,
the shoreline erosion phenomenon is observable beside the breakwater eastern arm. This
phenomenon, however, is rather limited, and it is expected to stabilise after a few years.

4.2. Identifying the Changes in Shoreline Position Caused by Sediment Transport

Figure 18 depicts the shoreline positions in 1956 and 2023. Additionally, Figure 19
illustrates the shoreline obtained from satellite images from different years. The reference
point is located at (705947.1997, 4080209.9706). For instance, the displayed line in Figure 19
with the colour code Y-1956 indicates the location of the shoreline in the year 1956 in the
upstream port (sediment accumulation reservoir). As shown in Figure 18, the trend in the
shoreline changes generally agrees with the expected pattern for the direction of the long-
shore sediment transport (west to east). According to the shoreline changes in subdomains
2 and 3, the shoreline is being displaced towards the sea because of sediment accumulation.
Following the real conditions of the shore in the present study does not contradict other
methods so that the overall schematic of the configuration of the sedimentation section
is similar to the predicted curve in empirical relations such as CERC. As well, the rate of
change is noticeable in subdomain 1 after 2014. As a result, port owners should exercise
caution when developing depots or infrastructure in this region.

Legend

— Forward Line 1956-2023 Amir-Abad Port
1956-09-13

[12023-11-03

Figure 18. Changes in the location of the shoreline between an intact state and year 2023.

It is also advantageous to quantify the position of the shoreline over time. A measure
of the quality of a design can be evaluated by monitoring the entrance of sediment into the
port basin and observing the changes in the shoreline position over time. The principal
arm of the breakwater appears to be insufficiently long in the target port. From a marine
engineering point of view, the main arm of the breakwater needs to exceed the surf zone,
which has the highest potential for sediment transport. In addition, the general trend of
coast development in region 3 indicates that the rubble-mound element in the sediment
accumulation reservoir had no effect on shoreline changes (Figure 19). The addition of
this extra element at the breakwater roundhead, which completely exceeds the surf zone,
would have been a very effective measure to ensure the port’s continual operation.
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Figure 19. Projections for the coastline’s evolution.

Different polynomial trend functions are assigned to each of these shorelines based
on their displacement. By allocating a linear trend line, R?> > 0.98 was calculated. It can
be concluded that the shoreline configuration that may reach the breakwaters roundhead
follows a linear-type one (Figure 20). The shoreline begins to advance seaward as sediment
accumulates behind the main breakwater arm of the harbour. This process continues until
the shoreline reaches the breakwater’s roundhead. Consequently, the port’s performance
will be adversely affected, and its lifespan is approaching its end. When this disaster occurs,
the shoreline meets the breakwater roundhead at one end; however, at the other end, there
is no known location upstream of the harbour. For the second end of the shoreline, four
different states are being considered in order to solve this problem. Figure 20 illustrates
these four states by the labels Prediction_01 to Prediction_04. The ANNs were trained to
predict how long after the harbour’s construction each of these states will occur. The results

of these predictions are presented in Table 4.

2000 3000 4000 5000 6000 7000

Prediction 01 ~ +eeeveeee Prediction 02  ----- Prediction 03  ------- Prediction 04

Figure 20. Coastline predictions referring to the breakwater arm.
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Table 4. Predicted time of occurrence for the shoreline position.
LD First Point End Point Estimated
) Coordinates Coordinates Lifetime
Prediction_01 (1000, 400) (5640, 2280) At =33.33 y — 2030
Prediction_02 (1000, 450) (5640, 2280) At=36.31y — 2033
Prediction_03 (1000, 500) (5640, 2280) At=37.04y — 2034
Prediction_04 (1000, 600) (5640, 2280) At =37.45y — 2034

Table 4 shows the coordinates of the breakwaters roundhead point in the local coordi-
nate system in the second column. In the third column, the coordinates of the unknown
end of the shoreline at the time of the failure of the port are shown in each scenario. The
fourth column illustrates how long it will take for the port to fail due to sediment accumu-
lation from construction. Table 4 indicates that the region behind the principal arm will be
completely filled by sediment accumulation in six years if the “Prediction_01" pattern is
followed. The sediment reservoir will, however, be completed within about ten years if the
“Prediction_04" pattern is followed. Hence, it is noted that if port managers do not take
any action, the port’s performance will decrease because of sediment accumulation in six
to ten years.

5. Conclusions

Located near the borderline between southern and eastern countries in the Caspian
Sea, the Amir-Abad port plays an essential commercial role for its users. The simultaneous
operation of this port, which is being confronted with longshore sedimentation, and the
development of surrounding structures that have altered the hydrodynamic regimen has
greatly impacted its performance. Despite the significance of this issue, there have been
few investigations conducted in this region. The focus of these studies was on one of the
most effective factors. However, in this study, changes in coast area and shoreline position
are evaluated based on high-resolution satellite images between 2004 and 2023. An SVM
method was used to classify areas in satellite images into two categories, dry and wet.
In order to evaluate dynamic changes in the region’s shoreline, categorized images from
different years were compared. The following is a summary of the results:

a.  Satellite images were interpreted for various time periods to determine and report
on the areas of coastal growth. In the period 1956 to 2014, the area increased by
approximately 61,000 m?/y. By developing an industrial region upstream of the port
and constructing protective structures to control sediment flow, the amount of sedi-
ment transported to the port is reduced. In the region of the sediment accumulation
reservoir, the coast’s growth has reached approximately 49,000 m?/y.

b.  The patterns in coastline changes are plotted and reported in terms of time by creating
a local Cartesian coordinate system in the port upstream and digitising the shoreline
positions during different years. The results of these studies are not limited to
reporting past events. An artificial neural network was used to analyse the patterns
of the shoreline position changes in the port sediment accumulation region based on
these results.

c. The general trend of shoreline alterations over the examined period of time indicates
that the length of the principal arm of the breakwater is not sufficient for the current
environmental conditions. In the area of sediment accumulation, port managers
constructed an additional arm, but this structure does not affect coastline formation
and it appears that this decision was not appropriate.

d.  Inthelocal coordinate system, the patterns of each shoreline over time were similar
to a high degree of accuracy. A trained artificial neural network has shown that 6 to
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10 years of life for the port should be considered when predicting potential shoreline
formation. At this point, the coast has reached the principal breakwaters roundhead.
e.  The use of satellite images and the examination of actual conditions in the study
domain leads to results that take into account both natural and human phenom-
ena. Mathematical models cannot incorporate all of these factors, since the driven
equations cannot be solved. Consequently, combining satellite images with artificial
neural networks in the current study may be an effective method that does not
simplify assumptions.
Several potential directions have been identified for future work to enhance and
expand upon in the context of the Amir-Abad port, as follows:

1. Integration of Additional Data Sources: incorporating data from other high-resolution
satellite imagery and aerial surveys can provide a more comprehensive understanding
of coastline dynamics and enhance classification accuracy.

2. Advanced Machine Learning Techniques: exploring and comparing the performance
of other advanced machine learning algorithms, such as convolutional neural net-
works (CNNs) and Random Forests, can further refine the classification of land and
water classes.

3. Climate Change Impact Analysis: investigating the influence of climate change factors,
such as sea level rise and increased storm frequency, on observed coastline changes
can provide valuable insights for coastal management and planning.

4. Long-Term Monitoring and Prediction: developing a predictive model using time
series analysis to forecast future coastline changes and assess the potential impacts on
the region’s infrastructure and ecosystems.

5. Community Engagement and Policy Development: engaging with local communi-
ties and policymakers to share findings and collaboratively develop strategies for
sustainable coastal development and conservation.
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