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Abstract: Currently, existing deep learning methods exhibit many limitations in multi-target detection,
such as low accuracy and high rates of false detection and missed detections. This paper proposes
an improved Faster R-CNN algorithm, aiming to enhance the algorithm’s capability in detecting
multi-scale targets. This algorithm has three improvements based on Faster R-CNN. Firstly, the
new algorithm uses the ResNet101 network for feature extraction of the detection image, which
achieves stronger feature extraction capabilities. Secondly, the new algorithm integrates Online Hard
Example Mining (OHEM), Soft non-maximum suppression (Soft-NMS), and Distance Intersection
Over Union (DIOU) modules, which improves the positive and negative sample imbalance and the
problem of small targets being easily missed during model training. Finally, the Region Proposal
Network (RPN) is simplified to achieve a faster detection speed and a lower miss rate. The multi-scale
training (MST) strategy is also used to train the improved Faster R-CNN to achieve a balance between
detection accuracy and efficiency. Compared to the other detection models, the improved Faster
R-CNN demonstrates significant advantages in terms of mAP@0.5, F1-score, and Log average miss
rate (LAMR). The model proposed in this paper provides valuable insights and inspiration for many
fields, such as smart agriculture, medical diagnosis, and face recognition.

Keywords: DIoU; improved Faster R-CNN; multi-scale target detection; ResNet101; Soft-NMS

1. Introduction

Object detection has long been a research focus for computer vision, and it has been
extensively applied in areas such as face recognition, medical image diagnosis, and road
detection [1–3]. At present, deep learning-based target detection methods can be broadly
categorized into two main classes [4,5]. One class is the two-stage object detection approach
typified by Region-based Convolutional Neural Networks (R-CNNs), and the other class
is the one-stage approach typified by You Only Look Once (YOLO). These two types of
algorithms have their own characteristics and advantages [6]. One-stage target detection
algorithms detect targets directly on the original image without a region proposal step, so
these algorithms are relatively faster, but the detection accuracy decreases when detecting
different multi-scale targets. Two-stage object detection algorithms exhibit relatively higher
detection accuracy but at the cost of slower processing speeds. Driven by the rapid advance-
ment of deep learning, target detection algorithms have achieved impressive gains in both
accuracy and processing speed. R-CNN [7] is the seminal work in object detection algo-
rithms, which computes over candidate regions generated by the selective search method,
and further applies SVM classification and bounding box regression. Consequently, R-CNN
consumes too much time in image processing, resulting in low detection efficiency. He
et al. [8] introduced the Faster R-CNN on the basis of R-CNN, which introduced the Region
Proposal Network (RPN) to generate candidate regions and utilized shared convolutional
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features to further improve detection accuracy and efficiency. Cai et al. [9] introduced Cas-
cade R-CNN, which is best characterized by cascading classifiers and multi-stage training
to improve detection accuracy and speed. Wan et al. [10] proposed an improved version
of Faster R-CNN with optimized convolutional and pooling layers for detecting a wide
range of fruits and achieving higher accuracy. Yang et al. [11] introduced an improved
strawberry detection algorithm based on Mask R-CNN, which resulted in a substantial
improvement in model generalization and robustness. After the R-CNN family of algo-
rithms, Divvala et al. [12] proposed YOLO as an alternative to R-CNN. Unlike R-CNN,
YOLO directly predicts classifications and regressions from features, using a single fully
connected layer for both tasks. This design enhances speed and efficiency in processing.
However, the disadvantage of YOLO is that its generalization ability and robustness are not
strong, and it is easy to miss small targets. With the aim of improving the above problems
effectively, Liu et al. [13] introduced the Single Shot MultiBox Detector (SSD) family of
algorithms. Zhu et al. [14] used SSD to detect fruits on mango trees with an F1 of 0.91.
Anagnostis et al. [15] used SSD to categorize infected trees in walnut orchards and the
method detected whether walnut leaves were infected with 87% accuracy. Tian et al. [16]
proposed EasyRP-R-CNN, a convolution-based framework for cyclone detection. The
method was improved based on Region of Interest and achieved satisfactory detection
accuracy. Li et al. [17] proposed a lightweight convolutional neural network, WearNet, to
achieve automatic detection of scratches on contact sliding parts such as metal molding,
and the classification accuracy of the method can reach 94.16%.

All of the methods mentioned above have some problems. (1) These methods detect
and recognize a single or no target categories, which cannot satisfy the multi-target de-
tection task, and are not able to accurately localize and recognize small targets. (2) These
methods do not have strong feature extraction capabilities for small targets and cannot
extract enough information about the target features. Thus, they can generate noise in the
detection region, resulting in a decrease in accuracy. (3) These methods do not achieve a
balance between detection accuracy and speed to meet the real-time demands of detection
tasks. For the purpose of improving the detection accuracy in a multi-scale target environ-
ment, after considering accuracy and detection efficiency, this paper chooses to use Faster
R-CNN as a baseline to detect different multi-scale targets on the Pascal VOC (Visual Object
Classes) dataset [18]. In this paper, the following modifications are made while reducing
model computation and improving model detection performance:

(1) ResNet101 [19] is employed as the trunk network in the improved Faster R-CNN,
which enhances the feature extraction capabilities of the model.

(2) The Online Hard Example Mining (OHEM) algorithm [20] is used to help the model learn
hard-to-classify samples more efficiently, which in turn enhances the model’s capacity
for generalization. The Soft non-maximum suppression (Soft-NMS) algorithm [21] and
the Distance Intersection Over Union (DIOU) algorithm [22] are used to optimize the ex-
cessive bounding boxes generated by the RPN and their overlap degree, which enhances
the accuracy of detecting small targets and improves the issue of missed target detection.

(3) The RPN structure is optimized by adding an anchor box with a scale of 64 and using
a smaller convolutional kernel to achieve bounding box regression. Employing the
multi-scale training (MST) method to train the improved Faster R-CNN [23] achieves
a balance between detection accuracy and speed.

2. Methodology and Modeling

In this chapter, we first introduce the overall structure of the proposed model. Then, we
provide a detailed explanation of the improvements and integrated modules within the model.
Finally, we briefly describe the performance evaluation metrics used in the experiments.

2.1. The Adjusted Faster R-CNN Network

Figure 1 shows the overall framework of the improved Faster R-CNN [24]. By com-
paring the four networks, VGG16, ResNet34, ResNet50, and ResNet101 [19], ResNet101
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is chosen as the trunk network. The introduction of DIOU can increase the effectiveness
of the improved Faster R-CNN regarding the problems of slow convergence of the target
detection loss function and target regression localization accuracy. The introduction of
OHEM enables the improved Faster R-CNN to mine difficult samples in the dynamic
training process. This can improve the issue of imbalance between positive and negative
samples during the training process. As depicted in Figure 1, the feature map from the
ResNet101 trunk network is input into the optimized RPN. At this point, a large number of
candidate proposal boxes are generated on the feature map. Soft-NMS is used to eliminate
redundant target proposal boxes. It can reduce the miss rate of small targets by gradually
decreasing the confidence score of overlapping proposal boxes.
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2.1.1. Improved Backbone Network

VGG16 [25] serves as the trunk network for the original Faster R-CNN. In general,
data expansion and increasing network depth methods can be used to improve model per-
formance, and network depth is very important for optimizing network performance [26].
ResNet [27] makes it possible for information to skip certain layers directly by introducing
direct connections across layers in the network. This effectively improves the problems
of gradient vanishing and gradient explosion. ResNet mainly uses convolutional opera-
tions instead of fully connected layers, which reduces the number of network parameters
and can effectively avoid overfitting problems. Common ResNet structures are ResNet34,
ResNet50, and ResNet101 [28]. One of the most significant features of ResNet50 compared
to ResNet34 is the introduction of a new bottleneck residual block structure. It comprises a
sequence of 1 × 1 convolutional layers, followed by a 3 × 3 convolutional layer, and then
another 1 × 1 convolutional layer. This structure allows ResNet50 to have stronger feature
representation while maintaining the depth of the model. ResNet101 has an additional
set of convolutional blocks compared to ResNet50, which contains multiple residual units.
The deeper network structure allows ResNet101 to further enhance its expressive and
learning capabilities, allowing it to better capture image details and semantic information,
as shown in Figure 2.

ResNet101 consists of two fundamental blocks, as depicted in Figures 2a and 2b,
respectively, named Conv Block and Identity Block. The Conv Block’s input and output
dimensions are different and cannot be connected in series. Its function is to change the
network dimension. The input dimensions and output dimensions of the Identity Block
are the same and can be connected in series to deepen the network. ResNet101 consists
of multiple residual units in each convolutional block, as illustrated in Figure 2c. Each
residual unit performs three convolutional operations. The shortcut connections of residual
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units and the identity mapping help address the issues of gradient vanishing or exploding,
which can lead to a decrease in detection accuracy. As shown in Figure 2d, ResNet101
consists of five convolutional layers and has a depth of 101 layers, which can provide
stronger feature extraction capabilities.

J. Imaging 2024, 10, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 2. Resnet101 network composition. (a) Conv Block. (b) Identity Block. (c) Residual block. (d) 
Resnet101 network structure. 

ResNet101 consists of two fundamental blocks, as depicted in Figure 2a and Figure 
2b, respectively, named Conv Block and Identity Block. The Conv Block’s input and out-
put dimensions are different and cannot be connected in series. Its function is to change 
the network dimension. The input dimensions and output dimensions of the Identity 
Block are the same and can be connected in series to deepen the network. ResNet101 con-
sists of multiple residual units in each convolutional block, as illustrated in Figure 2c. Each 
residual unit performs three convolutional operations. The shortcut connections of resid-
ual units and the identity mapping help address the issues of gradient vanishing or ex-
ploding, which can lead to a decrease in detection accuracy. As shown in Figure 2d, Res-
Net101 consists of five convolutional layers and has a depth of 101 layers, which can pro-
vide stronger feature extraction capabilities. 

In the fourth chapter, comparative experiments are conducted for VGG16, ResNet34, 
ResNet50, and ResNet101. Experimental results indicate that ResNet101 outperforms the 
other three networks in overall detection performance. Therefore, ResNet101 has been se-
lected as the trunk network for the improved Faster R-CNN. 

2.1.2. Modifying the Region Proposal Network 
In the object detection process, CNNs are usually used to extract image features. 

These features are convolved and pooled through several convolution and pooling oper-
ations to produce a smaller feature map (also referred to as an activation map). The acti-
vation map contains semantic information and location information taken from the image, 
and then the activation map is input into the RPN. The RPN [8,29] will first further extract 
features from the input activation map through a shared convolutional layer, and then it 
will initially generate a set of predefined anchor boxes at each spatial position of the acti-
vation map to accomplish object detection. These predefined anchor boxes generated dur-
ing the detection process usually have different width-to-height ratios as well as areas. 
Figure 3 shows the schematic of the optimized RPN. 

Figure 2. Resnet101 network composition. (a) Conv Block. (b) Identity Block. (c) Residual block.
(d) Resnet101 network structure.

In the fourth chapter, comparative experiments are conducted for VGG16, ResNet34,
ResNet50, and ResNet101. Experimental results indicate that ResNet101 outperforms the
other three networks in overall detection performance. Therefore, ResNet101 has been
selected as the trunk network for the improved Faster R-CNN.

2.1.2. Modifying the Region Proposal Network

In the object detection process, CNNs are usually used to extract image features. These
features are convolved and pooled through several convolution and pooling operations to
produce a smaller feature map (also referred to as an activation map). The activation map
contains semantic information and location information taken from the image, and then the
activation map is input into the RPN. The RPN [8,29] will first further extract features from
the input activation map through a shared convolutional layer, and then it will initially
generate a set of predefined anchor boxes at each spatial position of the activation map to
accomplish object detection. These predefined anchor boxes generated during the detection
process usually have different width-to-height ratios as well as areas. Figure 3 shows the
schematic of the optimized RPN.

For each anchor box, the RPN network uses a binary classifier to predict whether it
contains a target. It outputs the probability that each anchor box belongs to the foreground
or background to complete the initial classification prediction. The conventional RPN
generates nine anchor boxes at each spatial position of the activation map with aspect ratios
of 1:1, 1:2, and 2:1 and scales of 128, 256, and 512, respectively, as shown in Figure 3a. In
order to improve the accuracy of detecting small targets and reduce the leakage rate, a
new anchor box with a scale of 64 is added to the RPN while the aspect ratio remains un-
changed [30], so that there are a total of 12 anchor boxes at each position of the feature map,
which is then able to better capture small-scale targets, as shown in Figure 3b. In addition to
the classification predictions, the RPN completes an initial bounding box regression on the
positive samples (containing the target’s anchor boxes) with the goal of accurately predict-
ing the target’s bounding box position. The output is the translation and scaling parameters
relative to each positive sample anchor box. As depicted in Figure 3c, the structure of the
RPN is simplified, and only the 3 × 3 convolutional kernel is used to generate 256 feature
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maps. The benefits of using a 3 × 3 convolution kernel include: reducing the number of
parameters and computational burden, improving computational efficiency, capturing local
features, effectively utilizing boundary information, and simplifying the network design.
The 3 × 3 convolution kernel is able to maintain model simplicity and computational
efficiency while ensuring the effectiveness and accuracy of feature extraction.
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2.1.3. Optimization of Detection Boxes and Sample Imbalance

In object detection, the bounding box mechanism is used to locate and identify objects
in an image using rectangular boxes. This is mainly achieved by predicting the center
coordinates, width, and height of the bounding boxes to ensure accurate object localization
and classification. Regression loss functions and post-processing algorithms are employed
to optimize the position of the bounding boxes and remove redundant detections, en-
hancing the accuracy and efficiency of detection. In the improved Faster R-CNN, several
common strategies are adopted to enhance the bounding box mechanism. Below is a brief
introduction to these strategies.

(1) DIOU
IOU [31] is a widely used performance index in object detection, indicating the degree

of overlap between the predicted box and the actual box. Figure 4 shows the schematic
diagram of the bounding box with different degrees of overlap. Currently, there are
two main disadvantages to using IOU as a loss function for object detection. One is that
if there is no overlap between the two detection boxes, IOU = 0, which means that the
two detection boxes can no longer participate in deep learning training. Secondly, it can
be possible for two detection boxes to have different degrees of overlap but yield the same
IOU. This means that IOU does not give accurate feedback on the degree of overlap between
the detection boxes, as shown in Figure 4a.

With the aim of improving the above two problems effectively, DIOU [22] is used to
better refine the positioning of the bounding box. DIOU can effectively address the issues
of slow convergence and regression localization accuracy that exist in IOU, and its formula
is defined as Equation (1).

LDIOU = 1 − DIOU = 1 − (IOU − ρ2(b, bgt)

c2 ) = 1 − IOU +
ρ2(b, bgt)

c2 (1)
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where ρ2(b, bgt) denotes the distance between the centers of the prediction box b and the
ground truth bgt, and c denotes the diagonal length of the smallest region that contains both
the prediction box and the ground truth, as shown in Figure 4b. Since the DIOU loss func-
tion has the characteristic of being able to minimize the distance between two prediction
boxes directly, it converges and regresses faster than IOU. DIoU improves the traditional
IoU [32] metric by addressing the insensitivity of IoU to the distance between bounding
boxes. By introducing a penalty term in the loss function based on the center distance of the
bounding box, DIoU provides a more comprehensive and accurate measure of bounding
box similarity, which leads to better performance in target detection tasks. Using DIOU as
the loss function of the improved Faster R-CNN can make the model pay more attention
to hard-to-detect targets during the training process, which is especially important for the
detection of small and irregularly shaped targets.
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(2) OHEM
During the object detection training process, the activation maps from the trunk

network are input into the RPN, at which time a large number of candidate proposal
boxes are generated. Generally, the IOU threshold is set to 0.5 and proposal boxes with
an IOU above 0.5 are retained as positive samples, while those below 0.5 are treated as
negative samples. This leads to significantly more positive samples than negative ones. As
a result, the model may overlook difficult negative samples that are challenging to detect.
These difficult samples can contribute higher loss values, improving the overall detection
performance of the model.

In order to enable more difficult samples to be used in the dynamic process of training,
OHEM is introduced into the improved Faster R-CNN [20]. Figure 5 illustrates the working
principle of OHEM. OHEM [33] improves the training effect of the model by dynamically
selecting and processing those difficult samples that the model currently has difficulty clas-
sifying during the training process. Specifically, it first detects the input image during each
training session and selects the samples with higher loss as difficult samples according to
the loss value. These difficult samples are then utilized for backpropagation and parameter
updating so that the model learns to correctly classify difficult cases faster, thus improving
its overall performance. The OHEM training strategy in the dynamic process of training
can send the target samples that are difficult to detect into the network again for deep
learning training. This makes the network more sensitive to the detection target, which in
turn improves the target detection accuracy.
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(3) Soft-NMS
NMS is a very important algorithm in target detection. Its basic idea is to sort the

proposal boxes by their confidence scores and retain the one with the highest score. In this
process, if the overlap between two proposal boxes exceeds a set threshold (generally 0.5),
the box with the lower score is discarded, and the one with the higher score is retained.
Therefore, The NMS score is based solely on the classification confidence, without consider-
ing the localization accuracy of the bounding box. This means that the classification and
localization confidences are not positively correlated.

To effectively address some of the limitations of NMS, Soft-NMS is adopted in the
improved Faster R-CNN [21]. Its linear weighted equation is defined as Equation (2).

Si =


Si IOU(M, bi) < Nt

Si(1 − IOU(M, bi) IOU(M, bi) ≥ Nt

(2)

Here, Si is the proposal box confidence score and M is the proposal box with the
highest score. The set of all proposal boxes during training is denoted by b, the area of
overlap between M and the proposal boxes in set b is denoted by IOU(M, bi), and Nt is
the IOU threshold set at the beginning. The difference between Soft-NMS and NMS is the
way overlapping bounding boxes are handled. Traditional NMS directly removes other
bounding boxes that overlap with the highest scoring box above a certain threshold, which
may result in some correct detections being mistakenly removed. In contrast, Soft-NMS
does not remove these overlapping bounding boxes, but gradually reduces their scores.
Soft-NMS works by attenuating the scores proportionally to the degree of overlap between
the bounding box and the highest-scoring box [34]. The larger the overlap, the more the
score is attenuated. In this way, Soft-NMS is able to retain more valuable detection results,
reduce missed detections, and improve the accuracy of target detection.

2.1.4. Multi-Scale Training

The MST [23] method can enhance the model’s adaptability and generalization ca-
pabilities when detecting a variety of target sizes. An image pyramid called MST [35] is
used in the training process of CNN. As shown in Figure 6, image training is achieved
by randomly inputting images of different scales within a given segment of image size,
which enables the target detection model to adapt to targets of different scales. In the
testing phase, the same image at different scales is input for multiple detections. Finally,
Soft-NMS is employed to integrate all detection results, which enables the detection model
to cover as many targets as possible at multiple scales and improves the robustness of the
detection model. During the feature extraction phase, the generated activation map will be
significantly smaller than the original image. This can make it challenging for the model to
focus on the details of small targets. Therefore, by providing the model with larger and
richer images, its detection capabilities can be enhanced effectively [36]. In this paper, MST
is used to train the improved Faster R-CNN. The training samples have image lengths
ranging from 380 to 640, and image widths spanning 300 to 450.
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2.2. Evaluation Metrics

To assess the model’s detection capabilities, several widely used evaluation metrics
are used here [37,38]. These metrics include Average Precision (AP), F1 Score (F1), Log
average miss rate (LAMR), and mean Average Precision (mAP). The specific formula is
given in Equation (3).

XTP represents the number of targets accurately identified by the model, XFP indicates
the number of targets mistakenly identified by the model, and XFN denotes the number of
targets missed by the model. AP is the area surrounded by the PR curve. LAMR is used to
measure the miss rate of the target. mAP is used as a comprehensive evaluation metric,
and its value is the average of the APs of all detection categories.

precision(P) =
XTP

XTP + XFP
× 100%

recall(R) =
XTP

XTP + XFN
× 100%

AP =
1∫

0
p(r)dr

F1 =
2PR

P + R
× 100%

LAMR =

(
1
M

M
∑

i=1
log(MRi)

)

mAP =

K
∑

i=1
APi

K
× 100%

(3)

3. Experiments and Results

In this chapter, we first introduce the datasets used in the experiments. Then, we
provide a detailed explanation of the data augmentation methods applied to these datasets.
Next, we conduct experiments on datasets with different proportional distributions and
present the recorded results.

3.1. Data and Preprocessing
3.1.1. Data Collection

To accentuate the model’s performance more prominently, this experiment uses the
Pascal VOC [18] dataset, which contains a total of 20 detection categories. Each target has
three types: large, medium, and small, which can fulfill the purpose of detecting different
multi-scale targets, as illustrated in Table 1. The Pascal VOC 2007 dataset provides rich
object classes and diverse scenes, which makes it an important benchmark for evaluating
target detection and other computer vision tasks [39]. It covers a wide range of categories
from humans and animals to vehicles and indoor objects, with diverse lighting conditions,
viewing angles, and occlusions, which makes it an important tool for testing the robustness
and generalizability of algorithms. The numbers 1–20 for subsequent related experiments
correspond to the detection targets in the table.
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Table 1. Dataset distribution of Pascal VOC 2007.

Object Classes Train Validation Test Total

Pottedplant 133 112 224 469
Chair 224 221 417 862
Sofa 111 118 223 452

sheep 48 48 97 193
bottle 139 105 212 456

diningtable 97 103 190 390
Bird 180 150 282 612
boat 81 100 172 353

aeroplane 112 126 204 442
motorbike 120 125 222 467
tvmonitor 128 128 229 485

person 1025 983 2007 4015
train 127 134 259 520

bicycle 116 127 239 482
Cow 69 72 127 268
Dog 203 218 418 839
Cat 163 174 322 659
Bus 97 89 174 360
Car 376 337 721 1434

horse 139 148 274 561
total 2501 2510 4952 9963

3.1.2. Data Augmentation

Before training the model, after analyzing the dataset, it was found that the dataset was
very uneven and that the image size was not uniform. Therefore, the dataset needed to be
processed in the preprocessing stage. Image augmentation is a widely adopted technique
to expand the dataset and strengthen the model’s robustness [40,41]. Data distribution
can be changed regularly by image enhancement techniques, weakening the features of
unimportant objects. There are two types of commonly used image enhancement methods.
One is image enhancement based on image processing techniques and the other is deep
learning based image enhancement algorithms. This paper adopts the first one, which
mainly includes rotation, flipping, random cropping, and mosaic stitching. In this case,
mosaic stitching is the proportional recombination of four images from the training set
into a new image. This enhances the object’s contextual background, allowing the model
to learn richer features from a single image. The effect of data enhancement is shown in
Figure 7. After data enhancement, the dataset was expanded from 9963 to 15,000 images.
The image size is uniformly resized to 400 × 400.
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3.2. Results

All experiments are conducted on the Colab cloud server platform, using a Tesla T4
graphics card with 16 GB of video memory and Windows as the operating system. The
deep learning framework used is PyTorch 1.9, with 100 training epochs and all images
uniformly resized to 400 × 400. To improve model robustness and efficiency, the expanded
dataset is divided into three categories, A, B, and C [30], and the proportional allocation of
the dataset in each category is depicted in Table 2.

Table 2. Proportional distribution of the three datasets.

Data Set Train Validation Test

A (8:1:1) 12,000 1500 1500
B (7:1.5:1.5) 10,500 2250 2250

C (6:2:2) 9000 3000 3000

The improved Faster R-CNN is first applied to the training set of three datasets and the
results are recorded. During the training process, model error is minimized by adjusting
various training parameters over 100 iterations of training. At last, the improved Faster
R-CNN is trained using test data from the three datasets. Figure 8 shows the experimental
result curves and data distributions during the training process.

By observing the changes and positions of the curves, we know that the accuracy curves
of dataset A are steadily increasing and located at the top of the three curves. This indicates that
the improved Faster R-CNN has the best performance on dataset A. Meanwhile, the loss value
curve of dataset A decreases steadily. The fluctuation is small, located at the bottom of the three
curves, and gradually tends to be stable. This also indicates that the improved Faster R-CNN
has stronger stability and robustness on dataset A. The variation of these curves can be seen in
Figure 8a,c,e,g. Accordingly, by observing the data distribution of the experimental results, it
can be found that, compared to the training and testing sets of datasets B and C, the accuracy
values of dataset A are more centrally distributed and have higher positions, while the loss
values are at lower distribution positions and more compactly distributed. The improved
Faster R-CNN is adequately trained on dataset A with better generalization performance. This
is because 80% of the images in dataset A are used for training so that the model can extract
richer information about image features. Based on these experimental results, dataset A is used
for all subsequent experiments.
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4. Discussion
4.1. Comparison of Trunk Networks

In this section, comparative experiments [24] are conducted for VGG16, ResNet34,
ResNet50, and ResNet101. A total of 15,000 images of dataset A are divided in the ratio
of 8:1:1, and SGD is employed to optimize the model [42]. The momentum is 0.9, the
learning rate is 0.001, and the F1 threshold is 0.5. After 100 epochs, the model training
curve converges, indicating that the model has reached an optimal solution. The improved
Faster R-CNN improves the capability of target detection by combining different trunk
networks. Table 3 shows the experimental results on the test set.

Table 3. Predictive performance of different trunk networks.

Methods mAP@0.5 (%) F1 (%) LAMR (%)

VGG16 72.7 55.3 31.4
ResNet34 73.3 56.4 30.8
ResNet50 73.8 56.2 30.2
ResNet101 74.9 57.2 29.5

As can be seen in Table 3, the trunk network with a residual structure has stable detection
performance in the multi-scale target category. With the increase of network layers, the
detection accuracy of ResNet50 surpasses that of VGG16 and there are fewer missed detections
for targets. Since the residual unit module inside the ResNet101 network is connected by a
multilevel residual network, this makes it better able to capture the local feature information
of multi-scale targets. ResNet101 has the best detection effect, with mAP@0.5 reaching 74.9%
and the LAMR reaching 29.5%. Therefore, from Table 3, it can be seen that the improvement
of the Faster R-CNN trunk network is effective. ResNet101 performs better in multi-scale
target category detection, and the miss rate for small targets is lower.

Figure 9 compares the detection results of the four trunk networks. Focusing on the
first two columns, when using ResNet101 as the feature extractor, detection performance
is notably improved compared to the other trunk networks. The target detection scores
are generally higher, the target localization is more accurate, and there are no target
misdetections or missed detections. VGG16 and ResNet50 mistakenly detected the ponytail
as a person, while ResNet34 missed the couch and did not detect the chair in the upper right
corner. In the third resultant image containing only small targets, ResNet101 can accurately
detect the person and the occluded bicycle in the image. This further demonstrates better
detection performance when using ResNet101.
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4.2. Comparison of Different Object Detectors

To demonstrate that the proposed method has better detection effectiveness and accuracy,
experiments are also performed on the test set of the expanded dataset for RetinaNet [43],
Faster R-CNN [8], Mask R-CNN [44], YOLOv4 [45], and Cascade R-CNN [9]. The SGD
optimizer is used to optimize the model with a momentum of 0.9 and a learning rate of 0.001,
with the learning rate decaying 0.1 times every 20 epochs. By continuously adjusting the
training parameters, after 100 epochs, the training curves of each comparison model gradually
level off. This indicates that the model training process is relatively smooth. Table 4 shows the
mean values of each metric for the 20 targets detected by the six comparison models on the
test set. Figure 10 shows a comparison of the metric values and their data distributions for the
20 detection targets of the six comparison models on the test set.

Table 4. Experimental mean results for six comparison models.

Methods mAP@0.5 (%) F1 (%) LAMR (%) T (s)
RetinaNet 75.6 58.5 29.2 0.155

Faster R-CNN 72.7 55.3 31.4 0.147
Mask R-CNN 75.8 58.2 28.5 0.153

YOLOv4 76.5 59.2 27.2 0.132
Cascade R-CNN 76.2 59.7 28.1 0.139

This Paper 77.8 60.6 26.5 0.163

Table 4 shows the mean values of each metric for the 20 targets detected by the
six comparison models on the test set. Figure 10 shows a comparison of the metric values
and their data distributions for the 20 detection targets of the six comparison models on the
test set. The improved Faster R-CNN improves mAP@0.5 to 77.8%, F1 to 60.6%, and the
LAMR to 26.5%. Compared to the other five detection models, the proposed method has
better performance. Specifically, compared with the original Faster R-CNN, the mAP@0.5 is
improved by 5.1%, the F1 is improved by 5.3%, and the LAMR is reduced by 4.9%. This
indicates that the proposed method is effective in improving the detection rate of small
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targets as well as reducing the miss rate. In terms of detection speed, the proposed approach
is 0.016 s slower than Faster R-CNN. The potential reason may be due to the increase in
the number of anchor boxes in the RPN, which has resulted in a longer overall detection
time for the proposed approach, slightly decreasing speed but obtaining more accurate
detection results. This helps to achieve a balance between time and accuracy.
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Observing Figure 10a,b, it can be seen that 15 AP values of the proposed approach
are located in the first position, and the data distribution of the prediction results is more
centralized than the other compared models. This indicates that the overall detection accuracy
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of the model is higher. From Figure 10c,d, it can be seen that 17 F1 values are in the leading
position, among which two F1 values exceed 0.8, and the distribution intervals of the F1 values
are relatively higher. This indicates that the model is more adaptable when facing multi-scale
target categories. As shown in Figure 10e,f, the prediction results of the proposed approach
all have LAMR values below 0.5, and the miss rate is also reduced for small targets such as
pottedplant (1), sheep (4), and bottle (5). The reason for this may be that the bounding box
optimization mechanism, as well as the introduced multi-scale training strategy, plays a role.
The data distribution interval of the LAMR is also relatively lower. This indicates that the
model is able to focus on small targets that are difficult to detect when performing multi-scale
target category detection, and the model is more robust and stable. Figure 11 shows the
visualization of the detection image after mosaic data enhancement. Compared to the other
detection models, although the proposed approach is not the best in each target category, the
overall effect is excellent. The very small car in the upper right corner, as well as the occluded
chair in the lower left corner, can be accurately detected, and both target detection scores are
relatively quite high. This demonstrates that the proposed approach can better adapt to the
different sizes and shapes of targets in different multi-scale detection target environments and
improve the accuracy of small target detection.
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4.3. The Ablation Experiments and Analysis

In this section, we set up seven sets of ablation experiments on the test set to verify the
validity of each module. The setting of the ablation experiments is detailed in Table 5. The
SGD optimizer is used to optimize each combined model [42]. The momentum is 0.9 and
the batch size is 64. To mitigate overfitting during training, the regularization parameter is
0.01 and the learning rate is 0.001. The number of training times for each combination of
models is still 100 epochs, and to achieve timely adjustments to the training parameters,
the training results are taken every 10 epochs. When the training curves of each combined
model gradually level off, it indicates that the model can converge stably. The results of the
ablation study are presented in Table 5.

Table 5. Setting of ablation experiments and experimental results.

Method ResNet101 RPN DIOU OHEM Soft-NMS MST mAP@0.5 (%) F1 (%) LAMR (%)

Faster R-
CNN(VGG16) 72.7 55.3 31.4

Faster R-
CNN(ResNet101) ✓ 74.9 57.2 29.5

Improve1 ✓ ✓ 75.2 57.4 29.2
Improve2 ✓ ✓ 75.1 57.3 29.3
Improve3 ✓ ✓ 75.4 57.6 28.9
Improve4 ✓ ✓ 75.0 57.4 29.3
Improve5 ✓ ✓ ✓ ✓ ✓ 75.5 58.1 28.7

This paper ✓ ✓ ✓ ✓ ✓ ✓ 77.8 60.6 26.5

As depicted in Table 5, the addition of the modified RPN to the Faster R-CNN
(ResNet101) increases the mAP@0.5 by 0.3% and the F1 by 0.2%. The introduction of
DIOU improves the mAP@0.5 by 0.2% and the F1 by 0.1%. It can be seen that the
introduction of OHEM increases the mAP@0.5 by 0.5% and the F1 by 0.4%. This shows
its improvement for the problems of sample imbalance and insufficient training of hard
case samples in the target detection task. After replacing NMS with Soft-NMS, the miss
rate is reduced, while performance and accuracy are improved. Finally, by combining
the modules with a multi-scale training strategy, an improved Faster R-CNN is obtained
with a mAP of 77.8%, which is 5.1% higher than the original Faster R-CNN, and the
F1 is improved by 5.3%. It is worth noting that the LAMR of the proposed approach
compared to Improve5 is lower. This improvement is attributed to the efficacy of the
MST [16] in reducing the miss rate and enhancing the model’s recognition capabilities for
small targets. The partial detection results for Faster R-CNN, Improved5, and Improved
Faster R-CNN are shown in Figure 12. A comparison shows that Faster R-CNN is not
very effective in detecting cows and bottles with small sizes and misses some small
targets. While Improved5 improves this phenomenon, the network can detect some
small targets that were originally missed. The best detection was achieved by Improved
Faster R-CNN, which had more accurate edge localization, detected more small targets,
and largely correctly identified overlapping and low-contrast targets. The detection
performance of this model is much stronger.
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5. Conclusions

This paper proposes a novel two-stage object detection model for detecting multi-
scale objects from diverse categories. The model introduces improvements to the Faster
R-CNN and its trunk feature extraction network. DIOU, OHEM, and Soft-NMS are used
to improve the problems of unbalanced positive and negative samples and target miss
rate during model training. The RPN is also optimized and the proposed approach is
trained by employing a multi-scale training strategy. Comparison experiments with trunk
networks verify that using the ResNet101 feature extraction network is more advantageous.
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The validity of the proposed approach is further confirmed by comparison experiments
with other detection models. Ablation experiments are also conducted to verify that the
modules in the proposed approach can indeed be useful. The experiments show that the
proposed method has a mAP@0.5 of 77.8% and an F1 of 60.6%, which are 5.1% and 5.3%
higher than the original Faster R-CNN, respectively. The experimental results show that
the proposed method can improve the accuracy and performance of object detection in a
multi-scale target detection environment. In the future, we will further optimize, extend,
and experiment on more datasets so that the model can be better applied to different types
of object detection scenarios and provide a roadmap for continued advancements in the
field of multi-scale object detection.
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