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Abstract: Testing an intricate plexus of advanced software system architecture is quite challenging
due to the absence of test oracle. Metamorphic testing is a popular technique to alleviate the test
oracle problem. The effectiveness of metamorphic testing is dependent on metamorphic relations
(MRs). MRs represent the essential properties of the system under test and are evaluated by their fault
detection rates. The existing techniques for the evaluation of MRs are not comprehensive, as very
few mutation operators are used to generate very few mutants. In this research, we have proposed
six new MRs for dilation and erosion operations. The fault detection rate of six newly proposed
MRs is determined using mutation testing. We have used eight applicable mutation operators and
determined their effectiveness. By using these applicable operators, we have ensured that all the
possible numbers of mutants are generated, which shows that all the faults in the system under test
are fully identified. Results of the evaluation of four MRs for edge detection show an improvement in
all the respective MRs, especially in MR; and MRy, with a fault detection rate of 76.54% and 69.13%,
respectively, which is 32% and 24% higher than the existing technique. The fault detection rate of
MR; and MR3 is also improved by 1%. Similarly, results of dilation and erosion show that out of
8 MRs, the fault detection rates of four MRs are higher than the existing technique. In the proposed
technique, MR; is improved by 39%, MRy is improved by 0.5%, MRy is improved by 17%, and MRg
is improved by 29%. We have also compared the results of our proposed MRs with the existing MRs
of dilation and erosion operations. Results show that the proposed MRs complement the existing
MRs effectively as the new MRs can find those faults that are not identified by the existing MRs.

Keywords: image processing; metamorphic relations; metamorphic testing; mutation testing

1. Introduction

In the domain of computer graphics, the importance of Image Processing Applica-
tions (IPAs) is growing fast in our daily lives [1]. IPAs utilize algorithms to analyze the
characteristics of an image using various methods and techniques. Digital images can
be rotated, scaled, translated, and sheared by using geometric transformation. Also, in
binary and grayscale images, different morphological operations such as erosion, dilation,
skeletonization, and opening and closing operations are used for filtering, thinning, and
pruning of the images [2].

Nowadays, IPAs are widely used in safety and mission-critical systems such as medical
radiology, biometric systems, surveillance systems, etc. [1]. In medical radiology, machine
learning and deep learning approaches are frequently used for automated diagnostics for
patients using medical images such as MRI, CT Scan, ultrasound, etc. This diagnostic
process involves some pre-processing steps, such as edge detection, and post-processing
steps, such as dilation and erosion operations. Any defects in these operations will mate-
rially affect the diagnostics results. Testing of the software used in these critical systems
is vital to ascertain the credibility of the results produced by these systems. Software
testing is a common method to test and verify the quality of IPA software [3]. In software
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testing, an oracle is a mechanism that ascertains whether the software has been successfully
executed for a test case or not. The Software is run for a specific test case, and the result
(actual output) is compared with the anticipated result (expected output). If the output
differs from what was anticipated, the program is said to be faulty [4]. Testing of IPAs is
especially challenging due to the test oracle problem. For example, in image processing,
edge detection is an operation that is used to compute the edges of the image. If we want
to check whether the edges computed by the edge detection operator are correct or not,
then we do not have the reference image (expected output) for comparison. This is the
well-known oracle problem where the expected results are not obvious.

Among many solutions to test the oracle problem, metamorphic testing (MT) is the
most popular technique that tackles the oracle problem in software testing of IPAs [5].
MT was first proposed by Chen et al. in 1998 [6]. In MT, we need source test cases that
manifest the unexpected behavior in the system under test (SUT) [7]. The source test cases
are generated through traditional test case generation techniques such as random test case
generation, coverage criterion, etc. From these source test cases, a set of new test cases
known as follow-up test cases are constructed using metamorphic relations (MR) [8]. MT
defines some MRs, which consist of an input relation and an output relation. If the output
results of the source and follow-up test cases obtained from SUT satisfy the output relation,
then the program is highly reliable. Otherwise, the program will have logical errors [9].
The steps involved in MT are shown in Figure 1.

Qutput of
Source Test | | I
-—c-l Program ¥ Source

Cases
| Test Cases

Metamorphic

. Compare for
Transformation

Pass/Fail

Metamorphic
Relations

Follow-ugs Test Qutput o
| Program —# Follow-Up

Cases
Test cases

Figure 1. Process of metamorphic testing.

The reliability of our test results is a function of the efficacy of MT, which is dependent
on the effectiveness of MRs. One of the important metrics used to evaluate MRs is the
fault detection rate of that particular MR. The fault detection rate shows that either the
selected test cases are able to detect faults or not (can we find violations of MRs for the
corresponding test cases?) [10]. The fault detection rate is measured as the number of faults
detected by the selected source test cases divided by the number of faults detected by the
total number of test cases [11].

In our proposed framework, we have studied the fault detection capabilities of MRs.
For the evaluation of MRs, we have initially selected four existing MRs of edge detection
operation proposed by Sim et al. [12]. We have proposed six MRs for dilation and erosion
operationsWe have also ascertained the fault detection capabilities of our proposed MRs
(four general and two specific) for dilation and erosion operations.

The existing literature shows that Mayer and Guderlei [13] first proposed four general
MRs for Euclidean distance transform. These four MRs (rotation at 90 degrees, transposition,
reflection at ordinate, and reflection at abscissa) are generally applicable to all image
processing operations. Furthermore, Jameel et al. [14] furthered the research by using two
of these four to ascertain the fault detection rate of dilation and erosion MRs. In total,
these authors have presented eight MRs (two general and six specific) for dilation and
erosion operation. Jameel et al. [14] used only two general MRs, i.e., reflection at ordinate
and reflection at abscissa. However, the fault detection rate of the remaining two MRs
(rotation and transposition) is not determined. Therefore, we have proposed rotation and
transposition MRs for dilation and erosion operations to ascertain the fault detection rate
of these two MRs. The associative property is specific to the dilation operation. We have
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changed the order of associative property to check whether the new arrangement satisfies
the dilation operation or not. This result leads us to present a new MR for dilation operation.
Image translation is an operation of image processing. We have checked this operation on
both dilation and erosion and come to know that it only satisfies the erosion operation. In
this way, we have proposed a new MR for erosion operation.

After the selection and identification of MRs, we generated the source test cases
through a criterion proposed by Jafari et al. [15]. In the paper, we (the authors) have
discussed in detail how source test cases are generated using the black box testing technique
(equivalence class testing) and the white box testing technique (coverage criterion). We have
used 95 test cases of MRI brain images for our experiments taken from www.kaggle.com.
Later, follow-up test cases are generated using source test cases and MRs. Both the source
and follow-up test cases are given to the SUT. In this paper, we have the following three
SUTs, i.e., edge detection, dilation, and erosion. The relation between the outputs of both
the source and follow-up test cases is checked. If the MR holds between the outputs of two
test cases, then the SUT has no faults; otherwise, the SUT is faulty.

Afterward, mutation testing is performed to evaluate MRs. Mutation operators always
play an important role in generating the mutants. In existing literature [12,14,16,17], only
a few mutation operators are used that have generated a very small number of mutants.
The authors did not discuss the effectiveness of mutation operators or which operator
is effective enough to generate and kill a maximum number of mutants. We have used
nine mutation operators and evaluated which operator is most effective in generating and
killing a maximum number of mutants.

In the mutation process, we ran the original program on source test cases and then
ran the original program on the follow-up test cases. The outputs of both the test cases are
recorded for comparison. In the second phase of testing, we ran the same two test cases on
the mutated program. The outputs of these test cases are also recorded for comparison. If
outputs of both original and mutated test cases satisfy their related MR, then it shows that
the mutant is not killed; otherwise, the mutant is killed. Afterward, the mutation score is
calculated to check the fault detection rate of each MR. If the mutation score is near 1, then
it shows that the MR is strong, or else the MR is weak enough to find the violation.

This paper makes the following contributions:

e  We have proposed six new MRs for dilation and erosion operations and ascertain the
effectiveness of these MRs while also assessing improvements in them using mutation
testing.

e  We have compared our six proposed MRs with the eight existing MRs for dilation and
erosion operations.

e In existing literature, only two mutation operators are used for the evaluation of
edge detection and morphological image operations. We have used nine mutation
operators to improve the effectiveness of edge detection and morphological image
operation (dilation and erosion) MRs. We have also compared the result of our
proposed framework with the existing techniques.

e  We have also checked the effectiveness of mutation operators to determine which
operator is more effective in generating and killing a maximum number of mutants.

This paper is organized as follows; Section 2 discusses the related work. Section 3 de-
scribes the existing and newly proposed MRs. Section 4 discusses the proposed framework
for the evaluation of MRs. In Section 5 experiment design is narrated. Section 6 discusses
the results and discussion whereas Section 7 describes the conclusion.

2. Related Work

In literature review, we have covered those papers where MRs are evaluated to
improve the effectiveness of MT. MT is a common technique to improve the test oracle
problem where it is hard to assess the output correctly when an arbitrary input has been
given to the SUT [18].
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Many researchers have used different image processing operators, such as edge detec-
tion, image region growth, dilation and erosion, and used their properties as metamorphic
relations. The effectiveness of these MRs is checked through mutation testing. Sim et al. [12]
proposed a framework to determine the effectiveness of MT. To conduct the experiments,
collections of images are needed for the generation of test inputs. Unlike model-generated
images, camera-captured images (real images) from published image libraries are selected
randomly. Mutation testing is used to evaluate the fault detection rate of MT. Single op-
erator faults and stride implementation faults are seeded into the Sobel edge detection
program. In single-operator faults, two types of operators are used: logical operator replace-
ment (LOR) and relational operator replacement (ROR). Results show that MT is capable
of detecting faulty edge detection programs up to 90%. Jameel et al. [14] discussed the
oracle problem in IPAs and showed how SUT properties could be used as MR. The authors
have studied some properties of morphological image operations. The effectiveness of
MRs can be analyzed through mutation testing. In order to conduct the experiments, input
images are selected randomly. Mutation testing is used to show the effectiveness of the
above-mentioned MRs. Therefore, errors are deliberately added to the Mex C code. The
mutation score tells the number of killed mutants. The mutant is said to be killed if an
MR is able to detect the bug. It is concluded that for bug identification, specific images are
needed instead of general input images such as Lena. Jiang et al. [19] applied MT to the
image region growth program. Mutation testing is used to find the effectiveness of MRs.
In this paper, MT is applied to test the aerospace image processing software. A segmental
symbolic evaluation method is used to generate the input data. The original program
implemented in C language is executed sequentially with three mutant programs. The
program is said to be faulty if an MR violation can be seen after the validation of output
relations.

Many researchers have been fascinated by the use of MT techniques in machine
learning algorithms as well. Jameel et al. [20] used support vector machine (SVM) to
automate the interpretation of the output results of test oracle requirements. These authors
have designed a comparative study to gauge the effectiveness of their proposed scheme
against the latest MT oracle technique and the traditional statistical oracle method. Thirty-
five distinctive errors are introduced to the original program written in C language to
create 35 unique resultant programs. For evaluation purposes, these authors have created
the output images from these 35 versions of the image dilation program for pass or fail
criteria. Half of the selected images are used to train SVM using various features (wavelet
features, binary features, hough features, statistical features) of dilated images to analyze
their effectiveness. The results confirmed that SVM was better in terms of the lowest
classification error than the other two techniques. Chan et al. [21] integrated the pattern
classification technique with MT. A trained classifier (C4.5) is employed for the test oracle
by labeling pass/fail. The passed test outputs may also show false positive/negative
failures, which are then processed for additional testing. This proposal has proven to be
efficient and effective.

MT techniques have also been used with structural testing. Ding et al. [17] used
a discrete dipole approximation program (ADDA) implemented in FORTRAN and C++
to check the effectiveness of MT. In this paper, statement coverage is used to check the
effectiveness of test cases, whereas mutation testing is used to check the effectiveness of
MT. Due to the unknown test output relations, the MRs of this program are considered
weak and inadequate. Ding and Hu [16] developed a method for the adequacy of MRs.
Coverage criterion, mutation analysis, and mutation tests for testing MRs are critical
factors in evaluating the adequacy of MRs. An image processing program that is used to
reconstruct a 3D biological cell is used to explain the author’s proposed theory. A case
study is performed using a complex Monte Carlo program to gauge the effectiveness of
this proposed framework. The results prove the utility of their proposed method for the
testing of other scientific software as well. Table 1 shows the summary of related work.
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Table 1. Summary of related work.

Image Generation

Ref Papers SUT Method Testing Method Mutation Operators
. Randomly selected
Sim et al. [12] Sobel Edge Detection from published image Mutation Testing LOR, ROR
Program 1 :
ibraries
Jameel et al. [14] Dilation and Erosion Randomly Selected Mutation Testing ROR
Programs
. Segmental symbolic
Jiang et al. [19] Image Region Growth evaluation Mutation Testing Milu operators
program
method
Jameel et al. [20] Dilation Program Ground truth images Mutation Testing ROR
are chosen randomly
Mesh Simplification
Chan et al. [21] Program of Image Randomly Selected Mutation Testing MuJava operators
Rendering
Discrete Dipole .
Ding et al. [17] Approximation Random Generation Structura}l Testmg and ABS, ROR
Mutation Testing
Program
Monte Carlo Program . -
. and 3D Structure Random or Category Structural Testing and Modify coefficient,
Ding etal. [16] Reconstruc-tion Based Selection Mutation Testin add constant, AOR,
8 COR, CRP, SDL
Program

After studying the literature, some of the research gaps are identified and are given below:

e Inliterature, test cases are selected and generated randomly. Random selection leads
to an unfair distribution of parametric values, which ultimately affects the testing
process.

e In existing techniques, MR evaluation is conducted through mutation testing. This
evaluation is not comprehensive, as only a few mutation operators are used to check
the fault detection rate of MRs. The total number of mutants generated through these
mutation operators is quite low which makes the testing weak.

e Inexisting literature, no work has been conducted to check the effectiveness of muta-
tion operators. It is not highlighted that which operator is more valuable to generate
and kill maximum number of mutants.

3. Metamorphic Relations

In MT, the central element is the set of MRs, which are the necessary properties of the
SUT or the algorithm [22]. MR plays a significant role in MT as it validates the relations
between the test outputs of a program having a test oracle problem. Generally, MR is the
property of a function (f) having inputs X1, Xp, X3, .. . Xn, Where n is greater than 1. Their
corresponding outputs are f(xy), f(xp), f(x3), . . . f(xn) [23]. The identification of MRs requires
expert knowledge in the field of Image Processing (IP) as well as guidance provided by the
experiences (Mayer et al. [13], Jameel et al. [14]).

In this paper, we have worked on the MRs of edge detection and two morphological
image operations, i.e., dilation and erosion.

3.1. MRs for Edge Detection

We have used the MRs of edge detection proposed by Sim et al. [12]. The complete
details of these MRs are given in [12,15]. The MRs are shown in Table 2.

Table 2 shows the MRs for edge detection where E is the Sobel edge detection, and Im
is the input image.
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Table 2. MRs for edge detection.

MR Mathematical Property
MR;: Counter clock wise rotation at 90 degree C(E(Im)) = E(C(Im))
MR;: Transposition T(E(Im)) = E(T(Im))

MR3: Reflection at the ordinate My (E(Im)) = EMx(Im))

MRy: Reflection at abscissa My (E(Im)) = E(My(Im))

3.2. MRs for Dilation and Erosion

In this section, we have described the existing and proposed MRs for the dilation and
erosion operations.

3.2.1. Existing MRs for Dilation and Erosion

The existing MRs proposed by Jameel et al. [14] for dilation and erosion operations
are given in Table 3.

Table 3. Existing MRs for dilation and erosion.

MR Mathematical Property
R;1: Reflection at the ordinate Refy.q (Output(I)) = Output(Ref,.q(I))
Ry: Reflection at abscissa Ref,.q (Output(I)) = Output(Ref,,4(I))
ds (I) =& (IC)
R3: Duality E(I) = 85(1°)
where c is the complement of an image I.
Ry4: Non-inverses 0s(Es(I)) # 1 # Es(3s(1))
Rs: Size of image object changes Sizeop;(8s(1)) > Sizegp;(1) and Pixjisel C Pixiig;ds (1)

Rg: No. of objects in image changes Numberp,; (85(I)) < Numbery(I)

5s(I) = 1®S = ST =5/(S)
&(I) # &1(S)

Rg: Translation invariance ds+x(I) = 8s(I) +x

R7: Commutative

Table 3 shows the MRs for dilation and erosion operations. The details of these MRs
are given in [14].

3.2.2. Proposed MRs for Dilation and Erosion

We have proposed six new MRs for dilation and erosion operations. Our proposal
consists of four general and two specific MRs of dilation and erosion. In Table 4, we have
discussed our proposed MRs with their mathematical properties. The details of these MRs
are given below:

Table 4. Proposed MRs for dilation and erosion.

Proposed MRs Explanation
Where, Im is the input Image, C(.) is the counter clockwise rotation at 90 degree,
Counter clock wise rotation at 90 degree Js is the dilation and & is the erosion operation. The image output of counter-clock

MR : C(65(Im)) = 6(C(Im))
MR; : C(Es(Im)) = €(C(Im))

wise rotation at 90 degree followed by morphological operations should be similar
to image output of morphological operations followed by counter-clock wise
rotation at 90 degree.

Transposition
MRj : T(6s(Im)) = &5
MRy : T(Es(Im)) = €

(T(
s(T

I
(

m)
Im))

Where, T(.) is the transpose of an image. The image output of transposition
followed by dilation and erosion should be similar to image output of dilation and
erosion followed by transposition.
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Table 4. Cont.

Proposed MRs

Explanation

Enhanced Associative Property
MRs: (A®B)®C=(A®C)DB

Where, A is the input image. B and C are the structuring elements. Image dilated
with structuring element B and then dilated with structuring element C should
give same results when we first dilate the image with structuring element C and
then dilated with structuring element B. This property is specific to dilation as
erosion does not fulfill this property.

Image Translation

MRg : Trans(€s(Im)) = Es(Trans(Im))

Where, Trans(.) is the image translation. The output of image translation followed
by erosion should be similar to the output of erosion followed by image
translation. This property is not applicable on dilation operation.

4. Evaluation of Metamorphic Relations

In this section, we have discussed the historical evaluations of MRs from the existing
literature. We have also suggested a new method to evaluate MRs in our proposed framework.

The evaluation of MRs in MT involves assessing how well these relations can effec-
tively guide the generation of additional test cases and help verify the correctness of a
software system. The source and follow-up test cases are executed, and their outputs are
verified against the relevant MRs, of which any violation implies that the software under
test is faulty. The MRs are considered strong and do not satisfy the relation easily. The
higher the number of test cases that satisfy the MR, the weaker the MR. Suppose we have a
program P that computes the sin function. There are two MRs to compute the sin function.

MR;: sin x = sin (180 — x)

MR;: sin x = sin (x + 360)

The MR that satisfies the relation on maximum test cases is considered weak and vice
versa. For all positive values of x, MR; is better than MR; as MR; satisfies the relation for
all positive values, and thus, MR, will always be a weak MR.

The evaluations of MRs based on a random selection of source test cases using existing
techniques are not comprehensive with respect to the truly random generation of source test
cases. The available sample population from which random source test cases are selected is
missing many types of image characteristics such as dimension, resolution, bit depth, type
of image, etc.

Sim et al. [12] and Jameel et al. [14] selected the images randomly from various
published image libraries available online. Each library has a set of images with only
one or two image characteristics. If we create a new library using all the images from
these libraries, many image properties will still be missing. By selecting the test cases
randomly from these libraries, it is probable that all the selected test cases may cover only
one property of the image while ignoring the others. This will definitely affect the testing
process because of the lack of diversity in test images.

Furthermore, in existing literature, mutation testing is used for the evaluation of MRs.
As discussed earlier, mutation operators play a dominant role in generating a significant
number of mutants. In existing techniques, Sim et al. [12] used two mutation operators, i.e.,
ROR and LOR, whereas Jameel et al. [14] used only one mutation operator (ROR) for the
generation of mutants. These two operators only produce a maximum of 33 mutants, which
is not a significant number for the purpose of evaluation. So, more mutation operators
should be needed for the extensive evaluation of MRs. Figure 2 shows the evaluation
process of our proposed framework.
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Figure 2. Evaluation process of MRs.

4.1. Source Test Case Generation

The foremost step is the generation of source test cases (original test cases). In litera-
ture, source test cases are generated either through some traditional test case generation
techniques as discussed earlier or through some tool such as EvoSuite (it generates source
test cases automatically through coverage criterion) [5]. Nowadays, few researches are
emerged in the direction of generation and selection of source test cases that are effective in
fault detection [24].

As discussed in the literature, the general source test case generation criterion is to
generate the test cases randomly. It is a probability that randomly generated test cases may
cover only one characteristic of the image while ignoring the other ones. Sim et al. [12]
also suggested that considering the characteristics of the image can improve the mutation
score of MRs. Keeping this in mind, we have proposed a source test case generation
criterion in our previous paper. In this criterion, we have generated the source test cases
through equivalence class testing and coverage criterion. In equivalence class testing, we
have considered the attributes of images and grouped them into five distinct classes such
as horizontal dimension, vertical dimension, resolution, bit depth, and image type. The
details of the formation of source test cases are given in [15]. We have used the same (95)
test cases for our experiments. Afterward, the adequacy of source test cases is checked
through program coverage (statement coverage and branch coverage). If the test cases
(accumulatively) do not achieve 100% coverage, then we need more test cases to achieve
100% branch coverage.

4.2. Metamorphic Testing

In IP, it is hard to test a program without a test oracle, as the outcome is not predictable.
In MT, we can detect that either the test case has passed or failed by generating new
test cases for further evaluation. The steps of MT are discussed in Figure 1. In MT, MR
transforms the existing source test cases into new test cases known as follow-up test
cases [25]. When the follow-up test cases are generated, both test cases are given to the
SUT. By executing the SUT, the output data is generated for each test case [23]. Processing
of SUT is conducted by comparing the output relation of source and follow-up test cases.
The satisfaction of MR shows that the SUT is not faulty, whereas the dissatisfaction of MR
shows that the SUT is faulty.
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4.3. MR Evaluation Using Mutation Testing

Evaluation of MRs is an indication of their fault detection capabilities. The greater the
fault detection capabilities, the greater the ability to detect more faults from a program. We
have checked the fault detection rate of these MRs through mutation testing.

Mutation operators play an important role in generating mutants in mutation testing.
Previously, very few mutation operators were used, which did not even highlight the
effectiveness of these operators. We have used nine mutation operators to check which
operator is most effective for generating and killing a significant number of mutants. Our
work is relevant to [12,14], so we have compared the mutation operators used in our
proposed framework with these two techniques. The mutation operators used in the
existing techniques [12,14] and in the proposed framework are given in Table 5.

Table 5. Mutation operators are used in existing techniques and in the proposed framework.

Mutation Operators in Existing Techniques Mutation Operators in Proposed Framework

AOD—Unary arithmetic operator deletion
AOR—Arithmetic operation
replacement

LOR—Logical operator replacement
ROR—Relational operator
Replacement

OIL—One iteration loop
RIL—Reverse iteration loop
SIR—Slice index remove
SDL—Statement deletion
ZIL—Zero iteration loop

ROR—Relational operator replacement
LOR—Logical operator replacement

If the output of source and follow-up test cases satisfies the relation, then mutation
testing can be performed by seeding the faults into the original program to check for MR
violation. The process of checking the original and mutated program is explained through
an example. Suppose we have two test cases, t; (source test case) and t'; (follow-up test
case), that have to be tested under the original program p. The outputs of tests t; and t';
can be recorded as r; and r’;. Afterward, the same test cases, t; and t';, can be run on the
mutated program p’ with mutant m. Record the outputs as r; and r'5. If both (r1, r'1) and
(r, ') satisfy their related MR, then the mutant m is not killed [19]. Otherwise, the mutant
is killed. After mutation testing, the mutation score is to be calculated. The mutation score
indicates the fault detection rate of each MR. In the existing literature, i.e., [12,14,16,19],
all the MRs are evaluated by seeding faults manually in the code or through a tool that
calculates the mutation score automatically through the traditional mutation testing ap-
proach. We have seeded the faults manually and checked the relation manually on both the
programs (original and mutated) for the calculation of the mutation score.

The mutation score indicates the fault detection rate (FDR) of MR. For the calculation
of the mutation score, we have examined the mutants manually and have removed all the
equivalent mutants. The formula for the mutation score is given below:

Number of killed Mutants

FDR =
Total Number of Non-equivalent Mutants

x 100% (1)

According to the formula, if the mutation score is 1 then it means that MR is strong
(high fault detection rate) whereas a 0 score would show MR is weak (low fault detection
rate). We can also say that if the mutation score is near 0, the MR is weak enough to find
the violation, while on the other hand, if the mutation score is near 1, the MR is strong.

4.4. Advantages of Proposed Framework

e In the proposed fraework, we have used nine applicable mutation operators to as-
certain the effectiveness of MRs. The higher the number of mutation operators used,
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the higher the number of faults detected. The use of these operators contribute to the
improvement of software quality, the effectiveness of test suites, and improvement in
test coverage.

e  We have proposed new MRs in the field of IP. Overall, proposing new metamorphic
relations in image processing contributes to the advancement of testing methodologies,
algorithm validation techniques, and research practices, ultimately leading to more
reliable, robust, and efficient image processing systems and applications.

5. Experiment Design

In this section, we have discussed the details of SUT used for our experiment: source
code, dataset, original test cases, coverage criterion, and mutation operators used.

5.1. Proposed Evaluation
The subject programs in this paper consist of the following;:

e  Sobel edge detection program
e Dilation and erosion programs

The properties of edge detection and morphological operations are used as MRs. In
IP, edge detection plays a vital role in identifying the immediate changes in grayscale
images. Identifying the edges of the images can be invaluable for different real-world
applications [26]. Similarly, dilation and erosion are the main morphological operations
that increase or decrease the region of the image according to the structuring element [2].
The inputs and outputs of the edge detection program, a dilation and erosion program, are
given in Figure 3.

Figure 3. (a) Input image. (b) Output of edge detection. (c) Input image. (d) Output of dilation. (e)
Input image. (f) Output of erosion.
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Figure 3 shows the sample inputs of MRI brain images and their expected output
images after performing edge detection, dilation operation and erosion operation.

5.2. Source Code

We have used a well-structured code of Sobel edge detection and dilation and erosion
operations written in Python version 3.8.3 for our implementation. The code of edge
detection consists of 41 statements and 10 branches. Similarly, the code of dilation and
erosion consists of 46 statements and 12 branches, respectively. The sources of the above
codes are given in Table 6.

Table 6. Sources of source code.

Operation Source
Sobel Edge https:/ /towardsdatascience.com/edge-detection-in-python-a3c263
Detection a13e03 “(access on 23 April 2021)”
Dilation https:/ /python.plainenglish.io/image-dilation-explained-easily-e0
85c47fbac2 “(access on 17 May 2022)”
Erosion https:/ /medium.com/analytics-vidhya/2d-convolution-using-

python-numpy-43442£f5{381 “(access on 17 May 2022)”

5.2.1. Pseudocode of Dilation/Erosion Operation

FUNCTION dilation(image, kernel_size, kernel):

n, m = shape_of(image)

transpose_kernel = transpose(kernel)

create empty array edges_img with shape (n, m)
x=y=0

WHILE y <m + 1 — kernel_size DO

IF x <n + 1 — kernel_size THEN

local_pixels = get_subarray(image, X, y, kernel_size)
val = minimum(local_pixels + kernel)

IF val > 255 THEN

set edges_img[x + (kernel_size//2), y + (kernel_size//2)] = 255
ELSE IF val < 0 THEN

set edges_img[x + (kernel_size//2), y + (kernel_size//2)] =0
ELSE

set edges_img[x + (kernel_size//2), y + (kernel_size//2)] = maximum/minimum
(local_pixels)

END IF

increment x by 1

ELSE

increment y by 1

setxto 0

END IF

END WHILE

Convert edges_img to uint8 data type
RETURN edges_img

END FUNCTION

FUNCTION display(images):

titles = [‘original’, “‘After Dilation’]

FOR i FROM 1 TO length_of(images) DO
CREATE a new figure

SET title of the figure to titles][i]

DISPLAY the i-th image with gray colormap
END FOR


https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03
https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03
https://python.plainenglish.io/image-dilation-explained-easily-e085c47fbac2
https://python.plainenglish.io/image-dilation-explained-easily-e085c47fbac2
https://medium.com/analytics-vidhya/2d-convolution-using-python-numpy-43442ff5f381
https://medium.com/analytics-vidhya/2d-convolution-using-python-numpy-43442ff5f381
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SHOW all figures

END FUNCTION

SET path to image file path

LOAD image from path

images = [image]

APPEND dilation(image, 5, ones(5,5)) to images
DISPLAY images

5.2.2. Pseudocode of Edge Detection Operation

FUNCTION sad():

vertical_filter = [[-1,—2,—1], [0,0,0], [1,2,1]]

horizontal_filter = [[—1,0,1],[—2,0,2], [—1,0,1]]

path = “path_to_image.jpg”

img = read_image(path)

n, m, = dimensions_of_image(img)

edges_img = copy_of(img)

x=y=0

WHILEy <m +1 — 3 DO:

IFx<n+1—3THEN:

local_pixels = get_local_pixels(img, x, y)

vertical_transformed_pixels = vertical_filter * local_pixels
vertical_score = sum_of_elements(vertical_transformed_pixels)/4
horizontal_transformed_pixels = horizontal_filter * local_pixels
horizontal_score = sum_of_elements(horizontal_transformed_pixels)/4
edge_score = square_root_of((vertical_score"2) + (horizontal_score"2))
edges_img[x + 1,y + 1] = [edge_score] * 3

x=x+1

ELSE:

y=y+1

x=0

END IF

END WHILE

edges_img = edges_img/edges_img.max()
display_image(edges_img)

save_image(‘output_path.jpg’, edges_img)

IF _name =="

sad()

.

_main_":

5.3. Dataset

For our study, a diversified collection of MRI brain images is taken from https://www.
kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download (access on
17 February 2024). The dataset consists of 1500 images having brain tumors and 1500 images
having no brain tumors. The basic three types of images used as test cases are shown in

Figure 4.


https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download
https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download
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(a) (b) ()

Figure 4. (a) T1 Weighted image. (b) T2 Weighted image. (c) Flair image.

5.4. Source Test Cases

We have selected 95 source test cases through black box testing technique (strong
equivalence class testing) and coverage criteria (statement coverage and branch coverage);
a criterion proposed in our previous paper [15].

5.5. Source Test Cases

The coverage of source test cases is checked through statement coverage and branch
coverage, respectively. The coverage detail is given in Table 7.

Table 7. Coverage details.

Edge Detection Dilation Program Erosion Program
Program

No. of Test Cases 95 95 95

No. of Statements 41 46 46

No. of Covered Statements 41 46 46
Statement Coverage (%) 100% 100% 100%

No. of Branches 10 12 12

No. of Covered Branches 10 12 12
Branch Coverage (%) 100% 100% 100%

As shown in Table 7, 95 test cases (accumulatively) cover 100% code coverage in all
three programs, so we do not need more test cases for our test suite.

5.6. Mutation Operators

Mutation operators cover a wide range of potential faults or mutations that can
occur in the code. They encompass various types of changes that may affect the behavior
of the program. Each mutation operator targets a specific kind of fault. For example,
some operators might mutate arithmetic operators, while others might mutate relational
operators or logical operators. For our study, the mutation operators used in Python
language are taken from GitHub—mutpy/mutpy: MutPy is a mutation testing tool for
Python 3.x source code. There are twenty traditional and seven experimental operators.
The list of traditional and experimental operators is as follows:

AOD—arithmetic operator deletion
AOR—arithmetic operator replacement
ASR—assignment operator replacement
BCR—break continue replacement
COD—conditional operator deletion
COl—conditional operator insertion
CRP—constant replacement
DDL—decorator deletion
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EHD—exception handler deletion
EXS—exception swallowing
IHD—hiding variable deletion
IOD—overriding method deletion
IOP—overridden method calling position change
LCR—logical connector replacement
LOD—logical operator deletion
LOR—Ilogical operator replacement
ROR—relational operator replacement
SCD—super calling deletion
SCI—super calling insert

SIR—slice index remove

Experimental mutation operators:

CDI—class method decorator insertion
OIL—one iteration loop

RIL—reverse iteration loop

SDI—static method decorator insertion
SDL—statement deletion

SVD—self variable deletion

ZIL—zero iteration loop

The use of mutation operators is dependent on the source code of a program. We
have used all the mutation operators that are applicable according to our source code. The
mutation operators used in this research are given below:

AOD — Unary arithmetic operator deletion
AOR — Arithmetic operation replacement
LOR — Logical operator replacement

ROR — Relational operator Replacement
OIL — One iteration loop

RIL — Reverse iteration loop

SIR — Slice index remove

SDL — Statement deletion

ZIL — Zero iteration loop

6. Results and Discussions

In this section, we will discuss the MR evaluation results of our testing methodology
in detail.

6.1. Effectiveness of Mutation Operators

In this section we have assessed the effectiveness of mutation operators by calculating
the percentage of mutants generated and mutants killed. Mutation score of each operator
shows the FDR of each mutation operator. The formula of mutation score depicted in
Equation (1) is used to calculate the fault detection rate of each mutation operator. The
percentage of generated mutants is calculated by the formula given in Equation (2).

No. of M generated by each op * 100
Total no. of M generated by all the op

M generated = 2

In Equation (2), mutant is denoted by “M” and mutation operator is denoted by “op”.

6.1.1. Effectiveness of Mutation Operators Used in Edge Detection

Table 8 shows the effectiveness of mutation operators in terms of mutants generated
and mutants killed by each operator for edge detection.
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Table 8. Effectiveness of Mutation Operators Used in Edge Detection.
Mutation Operators Number of Mutants % of Generated Mutants Killed by FDR of Mutation
P Generated Mutants Each MR Operators
MR: 6 MR;: 100%
. MR;: 6 MRy: 100%
AOD 6 3.70% MR3: 6 MR3: 100%
MRy: 6 MRy: 100%
MR;: 73 MRy : 74.48%
MR;: 74 MR;: 75.51%
AOR 98 60.49% MR3: 62 MR3: 63.26%
MRy: 62 MRy: 63.26%
MR;: 2 MR;: 100%
o MRy: 2 MRy: 100%
col 2 1.23% MR3: 2 MR3: 100%
MRy: 2 MRy: 100%
MR;: 22 MR;: 73.33%
. MRy: 22 MRy: 73.33%
ROR 30 18.51% MR3: 22 MR3: 73.33%
MRy: 22 MRy: 73.33%
MR;: 1 MR;: 50%
o MR;: 1 MRy: 50%
OIL 2 1.23% MR3: 1 MR3: 50%
MRy: 1 MR:50%
MR;: 1 MR;: 50%
o MRj: 2 MRy: 100%
RIL 2 1.23% MR3: 0 MR3: 0%
MRy: 0 MRy: 0%
MR;: 4 MR;: 100%
. MRy: 4 MRy: 100%
SIR 4 2.46% MR;: 4 MR3;: 100%
MRy: 4 MRy: 100%
MR;: 13 MR;: 81.25%
o MRj: 13 MR;: 81.25%
SDL 16 9.87% MR3: 13 MR3: 81.25%
MR,: 13 MR 81.25%
MR;: 2 MR;: 100%
. MRy: 2 MRy: 100%
ZIL 2 1.23% MR3: 2 MR3: 100%
MRy: 2 MRy: 100%

In the existing technique of Sim et al. [12], a total of 31 mutants have been generated
by using only two mutation operators, i.e., ROR and LOR. In our proposed framework, we
have employed nine mutation operators to generate a total of 162 mutants. It is observed
that mutation operators such as AOD, CO]I, ZIL, and SIR have shown 100% mutation scores
in all four MRs. But their percentage with respect to generated mutants is very low, i.e.,
3.70%, 1.23%, 2.46%, and 1.23%, respectively. The effectiveness is dependent on two factors,
i.e., mutation score and number of mutants generated. The operator that scores a high
percentage in one of the two factors and scores very low in the other is not as effective as
the one having moderate scores in both factors. So, the AOR operator is the most effective
operator because its lowest mutation score is 63% (MRy), and the highest mutation score is
74% (MR7), whereas its percentage to generate mutants is 60.49%. RIL is the least effective
operator because its lowest mutation score is 0% (MRy), and the highest mutation score is
100% (MR;), whereas its percentage to generate mutants is only 1.23%. SDL operator has
achieved a good mutation score of 81.25%, followed by ROR having a mutation score of
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73.33% against each MR, whereas their percentage to generate mutants is 9.87% and 18.51%,
respectively. The effectiveness of SDL and ROR is almost similar because the mutation
score of SDL is 12% higher than ROR, whereas the percentage of the ROR operator in terms
of mutation generation is 10% higher than the SDL operator.

6.1.2. Effectiveness of Mutation Operators Used in Dilation and Erosion

Now, we will discuss the effectiveness of mutation operators used in dilation and
erosion operations for the proposed MRs. Table 9 shows the FDR (mutation score) and
percentage of mutants generated by each mutation operator used in dilation and erosion
operations.

Table 9. Effectiveness of mutation operators used in dilation and erosion operations for pro-

posed MRs.
. Number of Mutants % of Generated Mutants Killed by FDR of Mutation
Mutation Operators Generated Mutants Each MR Operators
MR1: 51 MR1: 53.68%
MRz: 50 MR22 52.63%
o MR3: 51 MR3: 53.68%
AOR 95 73.07% MRy: 53 MRy: 55.78%
MRs: 56 MRs: 58.94%
MRg: 56 MRg: 58.94%
MR;: 1 MR;: 25%
MRjy: 1 MRy: 25%
o MR3; 1 MR3: 25%
COI 4 3.07% MRy: 2 MRy: 50%
MR;5: 1 MRs5: 25%
MRg: 2 MRg: 50%
MR;: 3 MRy: 15%
MR;: 3 MRjy: 15%
ROR 20 15.38% MRS & MR 30%
MRs: 3 MRs5: 15%
MRg: 5 MRg: 25%
MRli 1 MRll 100%
MR;: 0 MR;: 0%
o MR3; 1 MR3: 100%
OIL 1 0.76% MRy: 1 MRy: 100%
MRs: 0 MRs5: 0%
MR(,I 0 MRéI 0%
MR;: 0 MR15: 0%
MR,: 0 MR1y4: 0%
o MR3: 0 MR15Z 0%
RIL 1 0.76% MR4; 0 MR161 0%
MRs: 0 MR17: 0%
MRg: 1 MR1g: 100%
MR;: 1 MR;: 50%
MR;: 1 MR;: 50%
o MRj: 1 MR3: 50%
SIR 2 1.53% MR4; 1 MR4: 50%
MRs: 1 MRs5: 50%
MRg: 2 MRg: 100%
MR;: 1 MR;: 16.6%
MR;: 1 MR;: 16.6%
o MRj3: 1 MR3: 16.6%
SDL 6 4.61% MR;: 1 MRy: 16.6%
MR5Z 1 MR5Z 16.6%
MRg: 1 MRg: 16.6%
MR;: 1 MR;: 100%
MRjy: 1 MRy: 100%
. MRj: 1 MR3: 100%
ZIL 1 0.76% MRy: 1 MRy: 100%
MRs5: 1 MRs5: 100%
MRg: 1 MRg: 100%
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In the literature, Jameel et al. [14] used only one mutation operator for the generation
of mutants and created only 33 mutants, whereas we used eight mutation operators and
produced 130 mutants in total. It is observed from Table 9 that the AOR operator is the
most effective operator because it has generated a maximum number of mutants, i.e., 95,
and its fault detection rate is greater than 50% against each MR. While the FDR of the ZIL
operator is 100%, it has generated only one mutant and has a percentage of 0.76. ROR
has a better percentage of generating the mutants, i.e., 15% and also, a mutation score lies
between 15 to 30%. It is concluded from this section that the AOR operator is the most
effective operator in terms of mutants killed and mutants generated in both the subject
programs of edge detection and dilation and erosion.

6.2. Effectiveness of Metamorphic Relations

The effectiveness of MRs is determined through mutation testing. FDR depicted
in Equation (1) shows the effectiveness of each MR. We have assessed the effectiveness
of existing MRs (edge detection and dilation and erosion) and proposed MRs (dilation
and erosion).

6.2.1. Effectiveness of Edge Detection MRs

The fault detection rate (mutation score) defines the strength of each MR. FDR is
calculated through mutation testing. The FDR of edge detection MRs is given in Table 10.

Table 10. Fault detection rate of edge detection MRs.

MR Total No. of Mutants  No. of Killed Mutants FDR (%)
MRy 162 124 76.54%
MR, 162 126 77.77%
MR3 162 112 69.13%
MRy 162 112 69.13%

We have generated a total of 162 mutants for edge detection manually by introducing
one fault at a time. It is observed from Table 10 that MR, has killed a maximum number
of mutants, i.e., 126, followed by MR;, which has killed 124 mutants. MR3 and MRy have
killed the same number of mutants, i.e., 112 mutants each. The last column in Table 10
shows the FDR (in percentage) of each MR.

6.2.2. Effectiveness of Dilation and Erosion MRs

The FDR of existing operations of dilation and erosion using our proposed framework
are given in Table 11.

Table 11. Fault detection rate of dilation and erosion MRs.

No. of Killed

MR Total No. of Mutants FDR (%)
Mutants
Ry 130 70 53.84%
R, 130 68 52.30%
R3 130 60 46.15%
Ry 130 67 51.53%
Rs 130 52 40.00%
Rg 130 45 34.61%
Ry 130 68 52.30%
Rg 130 65 50.00%

We have generated a total of 130 mutants for dilation and erosion operation. Table 11
shows that R; has killed a maximum number of mutants, i.e., 70, followed by Ry and Ry,
with 68 killed mutants each. Rg has killed the least number of mutants, i.e., 45. After
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calculating the FDR, it is observed that R; has the highest FDR of 53.84%, thus making R;
the most effective MR. Ry and Ry have the second-highest FDR of 52.30% each. R¢ has the
lowest FDR of 34.61%, thus making this MR least effective.

6.2.3. Effectiveness of Proposed MRs

As discussed earlier, for the dilation and erosion operation, we have suggested six
MRs. Four of the six MRs are general and can be used for the majority of IP operations,
while the remaining two MRs are particular to dilation and erosion operations. We have
also assessed the effectiveness of our proposed MRs using our proposed framework. The
FDR of proposed MRs are given in Table 12.

Table 12. Fault detection rate of proposed MRs.

MR Total No. of Mutants  No. of Killed Mutants FDR (%)
MRy 130 58 44.61%
MR, 130 56 43.07%
MRj; 130 58 44.61%
MRy 130 64 49.23%
MRs5 130 62 47.69%
MRg¢ 130 67 51.53%

Table 12 shows that we have generated a total of 130 mutants. It is observed that MRy
has the highest FDR, killing 68 mutants, followed by MRy, which killed 65 mutants. MR;
and MRj have killed 59 mutants each. The FDR of MR; is the lowest because it has killed
57 mutants. It is observed that the FDR of our proposed MRs are neither too high nor too
low but are significant enough to find the violations in all the respective MRs. However,
the most effective MR among the proposed MRs is MR (image translation), which has
the highest FDR of 52.30%, followed by MRy (transposition in erosion operation) with an
FDR of 50%. MR; (counterclockwise rotation at 90 degrees in erosion operation) is the least
effective, with an FDR of 43.84%.

6.3. Comparison of Proposed Framework with Existing Techniques

We have compared the results of our proposed framework with Sim et.al [12] and Jameel
et al. [14]. Table 13 shows the statistics of existing techniques and proposed framework.

Table 13. Statistics of existing technique and proposed framework.

Mutation No. of Mutants

Ref Papers SUT No. of Test Cases Operator Generated Language
Sim et al. [12] Edge detection 30 LOR, ROR 31 C
Jameel et al. [14] Dilation and Random selection ROR 33 Mex C

Erosion

Proposed
framework

Dilation, Erosion,
and Edge detection

AOD, AOR, OIL,  162: edge detection
95 SIR, ZIL, ROR, 130: dilation and Python
SDL, COI erosion

According to the statistics given in Table 13, Sim et al. [12] selected 30 images as
source test cases from different image libraries given in [12]. The images used by the
authors are very limited and not diverse in nature. The Kodak site has 24 images, and
the image compression site has only 15 images. All the images have the same bit depth
of 24 and resolution of 96 dpi. All the images have only two dimensions, 768 by 512 or
512 by 768 (Kodak site) and a single dimension of 700 by 525. Jameel et al. [14] have not
mentioned the source as well as the number of test cases selected for their experiments.
We have used the data set of MRI brain images taken from Kaggle.com. The dataset is
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comprised of 3000 images with diverse image properties. From 3000 images, we have
selected 95 images using equivalence class testing and code coverage. Sim et al. [12] used
two mutation operators and generated only 31 mutants. Jameel et al. [14] used only one
operator and generated 33 mutants. We have used nine mutation operators in the edge
detection program and eight operators in the dilation and erosion program to generate 162
and 130 mutants, respectively.

6.3.1. Comparison Results of Edge Detection

We have compared the results of our proposed framework with Sim et al. [12]. The
comparison results are given in Table 14.

Table 14. Comparison of existing technique and proposed framework.

MR FDR by Sim et al. Technique [12] FDR by Proposed Framework
MRy 45% 76.54%
MR, 77% 77.77%
MR; 68% 69.13%
MRy 45% 69.13%

Table 14 shows that in the existing technique of Sim et al. [12], MR; has the highest
FDR followed by MR3, whereas in the proposed framework, MR; has the highest FDR
followed by MR;. In the existing technique, the FDR of MR; and MRy are the same, i.e.,
45%, whereas in the proposed framework, the FDR of MR3; and MRy are the same, i.e.,
69.13%. In the proposed framework, the FDR of MR; and MRy is far better than the existing
technique, i.e., 76.54% and 69.13%, respectively. The FDR of MR; and MR3 is also improved
by 1%.

6.3.2. Comparison Results of Dilation and Erosion

Jameel et al. [14] evaluated eight MRs of dilation and erosion operation. We have also
evaluated the same MRs using our proposed framework. The comparison results are given
in Table 15.

Table 15. Comparison of existing technique and proposed framework.

MR FDR by Jameel et al. Technique [14] FDR by Proposed Framework
Ry 15% 53.84%

Ry 58% 54.30%

Rs 97% 46.15%

Ry 51% 51.53%

Rs 58% 40.00%

Re 18% 34.61%

Ry 73% 52.30%

Rg 21% 50.00%

Table 15 shows that out of eight MRs, four MRs, i.e., Ry, R4, R¢, and Rg, have improved
FDR using our proposed framework. The FDR of Ry (53.84%), R¢ (34.61%), and Rg (50%)
are far better than the existing technique, having a FDR of 15%, 18%, and 21%, respectively.
In existing techniques, Ry, R3, R5, and R7 have high FDR, i.e., 58%, 97%, 50% and 73%,
because they have used only one mutation operator and considered only one type of fault.
In the proposed framework, the FDR of all the MRs is moderate, neither too high nor too
low, thus making it effective to find the violations in all respective MRs. In the proposed
framework, Ry is improved by 39%, Ry is improved by 0.5%, R¢ is improved by 17%, and
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Rg is improved by 29%. The FDR of some of the MRs in the existing technique is high
because the number of mutants generated is just 31.

6.4. Comparison Results of Proposed MRs with Existing MRs of Dilation and Erosion

In this section, we compare the results of our proposed MRs with those of the existing
MRs. As described earlier, we have used eight mutation operators for the evaluation of
dilation and erosion MRs and have generated 130 mutants in total. The number of mutants
against each mutation operator is depicted in Table 16.

Table 16. Mutants Generated Against Each Mutation Operator.

Mutation Operators No. of Mutants Generated
AOR 95
CaI 4
ROR 20
OIL 1
RIL 1
SIR 2
SDL 6
ZIL 1

In mutation testing, we have used eight mutation operators for the evaluation of
dilation and erosion MRs. In the AOR operator, we have used six types of faults such as
addition (+), subtraction (—), multiplication (*), division (/), exponent/power (**), and
floor division (/ /). It is observed that there are nine arithmetic faults (collectively) that are
identified by the proposed MRs and are not identified by any of the existing MRs. Among
these faults, eight faults are identified by MRy, five faults are identified by MR5, and nine
faults are identified by MR4. So, we can say that MR4, MR5, and MRy are more effective
operators than MR;, MR;, and MR3 because they have identified additional faults not
identified by any of the existing MRs. We have observed the presence of alive mutants
in both existing and proposed MRs. So, by combining both the MRs, the total number of
alive mutants was reduced. Hence, it is concluded that the proposed MRs complement the
existing MRs effectively.

7. Conclusions

Testing of Image Processing Applications (IPAs), of course, is a challenging task
because of the absence of test oracle. Metamorphic testing is an efficient method to deal
with the applications with a test oracle problem. Metamorphic relations play an important
role in metamorphic testing. A metamorphic relation relates two or more inputs with their
expected outputs after execution of the properties of the target program. Properties of
different image processing operations can also be used as metamorphic relations.

In this research, we have proposed six new MRs for morphological image operations
(dilation and erosion). The fault detection rate of newly proposed MRs, along with existing
MRs, is determined through mutation testing. The effectiveness of mutation operators is
also determined by which operator is more effective in generating a maximum number
of mutants and through which operator a maximum number of mutants are killed. AOR
is considered the best operator in both the subject programs as it generates and kills a
maximum number of mutants. We have compared the results of our proposed approach
with the existing techniques of edge detection and morphological image operations. Our
results demonstrate that the mutation score of all the MRs of edge detection has improved,
whereas the MRs of dilation and erosion have shown improvement in four MRs (out of
8). While comparing our proposed MRs with the existing MRs of dilation and erosion
operations, we have come to the conclusion that the proposed MRs complement the existing
MRs effectively as the proposed MRs are able to find those faults that are not identified by
the existing MRs.
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Some of the limitations of this study are:

e In this research, we have used only one dataset for the experiments. We can use more
datasets for convincing testing.

e  One of the limitations of this research is the use of only one algorithm for edge
detection. There are several other edge detection algorithms that can be used to make
the experiments more substantial.

e  We have used only one programming language, i.e., Python. We could use more
languages, such as Java, C++, etc., so that more mutation operators can be used.

The future directions of this research are:

e  In this research, statement coverage and branch coverage are used for code coverage.
In the future, the proposed research for the evaluation of MRs can be strengthened
by using more coverage criteria for improved coverage. The future work involving
coverage criterion may include multiple condition coverage (MCC), where every
combination of conditions” outcomes is tested at least once in a decision; modified
condition/decision coverage (MCDC) where a decision’s potential outcomes are deter-
mined by each condition contained within the decision, all def-use (definition usage)
coverage where all-def coverage is attained when all defs of any variable are covered
and all-uses coverage is attained when a path from each def to each use of that def has
been exercised, etc.

e  The research can also be strengthened by using additional mutation operators that
will cover the fault types not used in the proposed research, such as logical connector
replacement (LCR), break continues replacement (BCR), constant replacement (CRP),
class method decorator insertion (CDI), etc.

Author Contributions: Conceptualization, FJ. and A.N.; methodology, FEJ. and A.N.; software,
F]J.; validation, F]J.; formal analysis, A.N.; investigation, F]J.; resources, E].; data curation, A.N.;
writing—original draft preparation, FJ.; writing—review and editing, EJ. and A.N.; visualization,
A.N; supervision, A.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this research is public and is taken from https:
/ /www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download (accessed
on 22 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

Bolchini, C.; Cassano, L.; Mazzeo, A.; Miele, A. Usability-based Cross-Layer Reliability Evaluation of Image Processing Applica-
tions. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT) 2021, Athens, Greece, 6-8 October 2021.

Raid, A M.; Khedr, WM.; El-dosuky, M.A.; Aoud, M. Image Restoration Based on Morphological Operations. Int. J. Comput. Sci.
Eng. Inf. Technol. (IJCSEIT) 2014, 4, 3. [CrossRef]

Ur Rehman, F; Izurieta, C. An Approach For Verifying And Validating Clustering Based Anomaly Detection Systems Using
Metamorphic Testing. In Proceedings of the IEEE International Conference On Artificial Intelligence Testing (AlTest) 2022,
Newark, CA, USA, 15-18 August 2022.

Memon, A.; Banerjee, I.; Nagarajan, A. What Test Oracle Should I Use for effective GUI Testing. In Proceedings of the 18th IEEE
International Conference on Automated Software Engineering, Montreal, QC, Canada, 6-10 October 2003.

Saha, P.; Kanewala, U. Fault Detection Effectiveness of Source Test Case Generation Strategies for Metamorphic Testing. In
Proceedings of the MET "18: Proceedings of the 3rd International Workshop on Metamorphic Testing, Gothenburg, Sweden, 27
May 2018.

Chen, T.Y.; Cheung, S.C.; Yiu, S.M. Metamorphic testing: A new approach for generating next test cases. In Proceedings of the
AST “15: Proceedings of the 10th International Workshop on Automation of Software Test, Florence, Italy, 16-24 May 2015.


https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download
https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download
https://doi.org/10.5121/ijcseit.2014.4302

J. Imaging 2024, 10, 87 22 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Segura, S.; Troya, J.; Duran, A.; Cortes, A.R. Performance Metamorphic Testing: Motivation and Challenges. In Proceedings of
the IEEE/ ACM 39th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track
(ICSE-NIER), Buenos Aires, Argentina, 20-28 May 2017.

Luu, Q.H.; Liu, H.; Chen, TY.; Vu, L.H. Testing Ocean Software with Metamorphic Testing. In Proceedings of the 7th International
Workshop on Metamorphic Testing 2022, Pittsburgh, PA, USA, 9 May 2022.

Hong, T.P; Chiu, C.C.; Su, ].H.; Chen, C.H. Applicable Metamorphic Testing for Erasable-Itemset Mining. IEEE Access 2022, 10,
38545-38554. [CrossRef]

Niu, X.; Sun, Y.; Wu, H.; Li, G.; Nie, C,; Yu, L.; Wang, X. Enhance Combinatorial Testing with Metamorphic Relations. J. Latex CI.
Files 2015, 14, 8. [CrossRef]

Arrieta, A. Multi-Objective Metamorphic Follow-up Test Case Selection for Deep Learning Systems. In Proceedings of the Genetic
and Evolutionary Computation Conference 2022, Boston, MA, USA, 9-13 July 2022.

Sim, K.Y,; Wong, D.M.L.; Hii, T.Y. Evaluating the Effectiveness of Metamorphic Testing on Edge Detection Programs. Int. J. Innov.
Manag. Technol. 2013, 4, 6-10.

Mayer, J.; Guderlei, R. On Random Testing of Image Processing Applications. In Proceedings of the Sixth International Conference
on Quality Software (QSIC’06), Beijing, China, 27-28 October 2006.

Jameel, T.; Chao, L. Test Oracles Based on Metamorphic Relations for Image Processing Applications. In Proceedings of the IEEE
16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), Takamatsu, Japan, 1-3 June 2015.

Jafari, F; Nadeem, A.; Zaman, Q. Evaluation of Metamorphic Testing for Edge Detection in MRI Brain Diagnostics. Appl. Sci.
2022, 12, 8684. [CrossRef]

Ding, j.; Hu, X.H. Application of Metamorphic Testing Monitored by Test Adequacy in a Monte Carlo Simulation Program. Softw.
Qual. ]. 2017, 25, 3. [CrossRef]

Ding, J.; Zhang, D.; Hu, X. An Application of Metamorphic Testing for Testing Scientific Software. In Proceedings of the 1st
International Workshop on Metamorphic Testing, Austin, TX, USA, 14-22 May 2016.

Jiang, M.; Chen, Y.T.; Kuo, E.C.; Towey, D.; Ding, Z. A metamorphic testing approach for supporting program repair without the
need for a test oracle. J. Syst. Softw. 2017, 126, 127-140. [CrossRef]

Jiang, C.; Huang, S.; Hui, Z. Metamorphic Testing of Image Region Growth Programs in Image Processing Applications. In
Proceedings of the IEEE International Conference on Software Quality, Reliability and Security Companion, Lisbon, Portugal,
16-20 July 2018.

Jameel, T.; Mengxiang, L.; Chao, L. Automatic Test Oracle for Image Processing Applications Using Support Vector Machines.
In Proceedings of the 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
23-25 September 2015; pp. 1110-1113.

Chan, WK; Ho, ].C.E; Tse, T.H. Piping Classification to Metamorphic Testing: An Empirical Study towards Better Effectiveness
for the Identification of Failures in Mesh Simplification Programs. In Proceedings of the 31st Annual International Computer
Software and Applications Conference (COMPSAC), Beijing, China, 24-27 July 2007.

Chen, T.Y.; Kuo, F.C; Liu, H,; Poon, PL.; Towey, D.; Tse, T.H.; Zhou, Z.Q. Metamorphic Testing: A Review of Challenges and
Opportunities. ACM Comput. Surv. 2017, 51, 1-27. [CrossRef]

Ding, J.; Wu, T,; Lu, J.Q.; Hu, X.H. Self-Checked Metamorphic Testing of an Image Processing Program. In Proceedings of the
Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement, Singapore, 9-11 June 2010;
pp. 190-197.

Sun, C,; Liu, B.; Fu, A; Liu, Y,; Liu, H. Path-directed source test case generation and prioritization in metamorphic testing. J. Syst.
Softw. 2022, 183, 111091. [CrossRef]

Segura, S.; Towey, D.; Zhou, Z.Q.; Chen, T.Y. Metamorphic Testing: Testing the Untestable. IEEE Softw. 2019, 37, 46-53. [CrossRef]
Swathika, R.; Sharmila, T.S.; Bhattacharya, D. Edge Detection Using Simple Image Arithmetic. In Proceedings of the International
Conference on Computer, Communication, and Signal Processing (ICCCSP), Chennai, India, 22-23 February 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1109/ACCESS.2022.3165656
https://doi.org/10.1109/TSE.2021.3131548
https://doi.org/10.3390/app12178684
https://doi.org/10.1007/s11219-016-9337-3
https://doi.org/10.1016/j.jss.2016.04.002
https://doi.org/10.1145/3143561
https://doi.org/10.1016/j.jss.2021.111091
https://doi.org/10.1109/MS.2018.2875968

	Introduction 
	Related Work 
	Metamorphic Relations 
	MRs for Edge Detection 
	MRs for Dilation and Erosion 
	Existing MRs for Dilation and Erosion 
	Proposed MRs for Dilation and Erosion 


	Evaluation of Metamorphic Relations 
	Source Test Case Generation 
	Metamorphic Testing 
	MR Evaluation Using Mutation Testing 
	Advantages of Proposed Framework 

	Experiment Design 
	Proposed Evaluation 
	Source Code 
	Pseudocode of Dilation/Erosion Operation 
	Pseudocode of Edge Detection Operation 

	Dataset 
	Source Test Cases 
	Source Test Cases 
	Mutation Operators 

	Results and Discussions 
	Effectiveness of Mutation Operators 
	Effectiveness of Mutation Operators Used in Edge Detection 
	Effectiveness of Mutation Operators Used in Dilation and Erosion 

	Effectiveness of Metamorphic Relations 
	Effectiveness of Edge Detection MRs 
	Effectiveness of Dilation and Erosion MRs 
	Effectiveness of Proposed MRs 

	Comparison of Proposed Framework with Existing Techniques 
	Comparison Results of Edge Detection 
	Comparison Results of Dilation and Erosion 

	Comparison Results of Proposed MRs with Existing MRs of Dilation and Erosion 

	Conclusions 
	References

