
Citation: Rana, S.; Gerbino, S.;

Crimaldi, M.; Cirillo, V.; Carillo, P.;

Sarghini, F.; Maggio, A.

Comprehensive Evaluation of

Multispectral Image Registration

Strategies in Heterogenous

Agriculture Environment. J. Imaging

2024, 10, 61. https://doi.org/

10.3390/jimaging10030061

Academic Editor: Pierre Gouton

Received: 12 January 2024

Revised: 15 February 2024

Accepted: 23 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Comprehensive Evaluation of Multispectral Image Registration
Strategies in Heterogenous Agriculture Environment
Shubham Rana 1 , Salvatore Gerbino 1,* , Mariano Crimaldi 2 , Valerio Cirillo 2 , Petronia Carillo 3 ,
Fabrizio Sarghini 2 and Albino Maggio 2

1 Department of Engineering, University of Campania “L. Vanvitelli”, Via Roma 29, 81031 Aversa, Italy;
shubham.rana@unicampania.it

2 Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100,
80055 Naples, Italy; mariano.crimaldi@unina.it (M.C.); valerio.cirillo@unina.it (V.C.);
fabrizio.sarghini@unina.it (F.S.); albino.maggio@unina.it (A.M.)

3 Department of Biological and Pharmaceutical Environmental Sciences and Technologies, University of
Campania “L. Vanvitelli”, Via Antonio Vivaldi, 43, 81100 Caserta, Italy; petronia.carillo@unicampania.it

* Correspondence: salvatore.gerbino@unicampania.it

Abstract: This article is focused on the comprehensive evaluation of alleyways to scale-invariant
feature transform (SIFT) and random sample consensus (RANSAC) based multispectral (MS) image
registration. In this paper, the idea is to extensively evaluate three such SIFT- and RANSAC-based
registration approaches over a heterogenous mix containing Triticum aestivum crop and Raphanus
raphanistrum weed. The first method is based on the application of a homography matrix, derived
during the registration of MS images on spatial coordinates of individual annotations to achieve
spatial realignment. The second method is based on the registration of binary masks derived from
the ground truth of individual spectral channels. The third method is based on the registration of
only the masked pixels of interest across the respective spectral channels. It was found that the MS
image registration technique based on the registration of binary masks derived from the manually
segmented images exhibited the highest accuracy, followed by the technique involving registration
of masked pixels, and lastly, registration based on the spatial realignment of annotations. Among
automatically segmented images, the technique based on the registration of automatically predicted
mask instances exhibited higher accuracy than the technique based on the registration of masked
pixels. In the ground truth images, the annotations performed through the near-infrared channel
were found to have a higher accuracy, followed by green, blue, and red spectral channels. Among the
automatically segmented images, the accuracy of the blue channel was observed to exhibit a higher
accuracy, followed by the green, near-infrared, and red channels. At the individual instance level,
the registration based on binary masks depicted the highest accuracy in the green channel, followed
by the method based on the registration of masked pixels in the red channel, and lastly, the method
based on the spatial realignment of annotations in the green channel. The instance detection of wild
radish with YOLOv8l-seg was observed at a mAP@0.5 of 92.11% and a segmentation accuracy of 98%
towards segmenting its binary mask instances.

Keywords: binary mask; homography matrix; masked pixels; MS (multispectral); SIFT (scale-invariant
feature transform)

1. Introduction

The primary challenge faced in the registration of images with distinct spectra during
close-range imaging using multispectral (MS) cameras is misalignment among different
spectral channels [1]. Subsequent tasks such as information identification, extraction,
and feature detection become more challenging because of these distortions [2–5]. An
ideal solution to this issue would be a reliable, accurate, and simple-to-use registration
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approach that accounts for the disparity in perspective of individual sensors. A much-
needed addendum for improving such misalignment is intra-subject registration, which
involves fine-tuning annotation coordinates to overlap with each other, thereby achieving
the registration of the pixels of interest.

In contrast to a single-lens imaging system, multi-lens imaging systems may comprise
one or more cameras that utilize multiple image sensors and lenses to capture individual
spectral ranges. Nevertheless, the original MS images from a multi-lens imaging system
present significant band misregistration errors such as lens distortion, varied positions, and
viewing angles of every lens [6]. These distortions and ghosting effects in the original MS
images lead to geometrical distortions, which must be rectified through band co-registration
for accurate spectral analysis in remote sensing [7]. In our experiment, MicaSense RedEdge-
M was used to acquire close-range agricultural images. The MicaSense RedEdge-M features
a multi-lens design that allows users to capture specific narrowband spectral data using
individual lenses with band-pass filters [8]. However, registering these images can be
challenging due to differences in scale, orientation, and perspective.

Registering MS images is useful for change detection, where changes in shape, size,
and area can be analyzed from multiple spectral channels collected over a period. By
incorporating additional spectral information, it is possible to enhance the discrimination
of different objects and features within images [9–11]. This makes it possible to identify
and classify crops more accurately, which improves the process of image segmentation [12].
Close-range MS imaging involves capturing images of the same field within sub-meter
distances on crops using different spectral bands. A single-lens imaging system employs
one image sensor which can obtain multiple spectral bands by either altering the sensor
filter [13] or employing the Fabry–Perot interferometer (FPI) technique [14].

David Lowe devised the scale-invariant feature transform (SIFT) algorithm in 1999,
which was employed in computer vision to detect, describe, and match features in im-
ages [15,16]. One of its applications includes aligning two or more images through the
identification and matching of corresponding features or keypoints in the images [17,18].
The accuracy of SIFT has been established to be one of the highest among feature detector
descriptor algorithms for scale and rotation variations. It also has greater accuracy for
image rotation than other algorithms and has been determined to be the most precise
algorithm across all geometric transformations [19–22]. This technique can be particularly
useful for improving MS image registration and alignment while utilizing binary masks,
which can be used to segment and extract specific regions of interest from MS images.

This paper provides a certain reference to other scholars to advance their research on
weed detection algorithms based on computer vision and achieve intelligent weed control
and related areas of research and application [23]. There has been a similar work based on
proximal sensing and feature-based MS image registration following different geometric
transformations in plants imaged in a greenhouse environment using the same sensor [24].
Another experiment based on Parrot Sequoia MS images performed co-registration without
assumptions based on scene structure and just required dense matching between two
spectrally similar channels [7]. The weed Raphanus Raphanistrum, also known as wild
radish, belongs to the family of Brassicaceae, whose infestation in the cropping of wheat
is a subject of research interest [25,26]. Wild radish poses a significant threat to winter
crops, including wheat, as it is one of the most aggressive and competitive broad-leaved
weeds. Despite the availability of various chemical and non-chemical control methods, the
prevalence and spread of wild radish seem to be on the rise [27]. It is a highly troublesome,
aggressively invasive, and enduring weed. Its abundant seed generation, harmful effects
on other crops, herbicidal resistance, seed inactivity, and variability in appearance and
genetics make it challenging to control [28–30]. The excessive dependence on herbicides
for weed control has led to its resistance to these chemicals. Therefore, incorporating
computer vision strategies based on detection and segmentation is crucial for improving its
management [23].
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We are specifically interested in the evaluation of three different registration strate-
gies based on SIFT and RANSAC over close-ranged sub-meter MS images to evaluate
intra-subject registration. This paper compares these methods through a qualitative and
quantitative perspective at a spectral level. The datasets of weed identification and detec-
tion and leaf classification are summarized, and the problems faced in field weed detection
under different conditions are analyzed.

2. Materials and Methods

Our work focuses on three different approaches to the evaluation of MS image regis-
tration. The first method is based on the registration of individual spectral channels to a
reference spectral channel using SIFT and random sample consensus (RANSAC) [31], at a
time, and utilizes the homography matrix, derived during registration for the realignment
of all the annotations performed across respective spectral channels. This means that
spatial readjustment is performed on the coordinates of the annotations across the four
spectral channels using the homography matrices obtained during the registration of every
spectral band. The second method is based on segmentation-based registration [32] of
binary mask images obtained from the annotated ground truth, which are registered using
SIFT and RANSAC. In this method, every binary mask image corresponding to a spectral
channel was registered to the binary mask image of the reference spectral channel. The
third method is based on the mask-based registration of the pixels of interest derived from
the annotated ground truth. In this method, only the masked pixels are registered using
SIFT and RANSAC.

Interestingly, there has been a limitation of studies in the evaluation of the impact of
segmentation over subsequent registration [32]. In the context of realignment of annotations,
registration of binary mask images, as well as registration of pixels of interest derived
from the annotated ground truth to overall achieve the registration of MS images, SIFT
was used to detect and extract feature points, and then RANSAC was used to estimate the
transformation between the two sets of feature points.

A state-of-the-art instance segmentation model, YOLACT (You Only Look at Coeffi-
cients) [33], was chosen to train the annotated MS images for evaluation of the predicted
masks. YOLACT can quickly and accurately segment instances in images by dividing the
task into two parallel subtasks: generating prototype masks and predicting mask coeffi-
cients. YOLACT utilizes these coefficients to linearly weight the prototype masks, resulting
in high-quality instance masks.

Registration of the MS images based on pixels of interest masked through predicted
binary mask images post-trained with YOLOv8 provides us room for comparative eval-
uation with manually segmented images and registered pixels of interest using the three
methods described above. In our experiments, the overall emphasis is laid on exploiting
these multiple ways of applying SIFT and RANSAC towards the registration of MS images
based on annotated pixels of interest masked through binary masks across different spectral
channels. The goal is to comprehensively evaluate the registration of annotated pixels of
interest across manually and automatically segmented MS images.

The perspective homographic transformation was used in our experiment as images
containing objects of interest appear misaligned across different spectral channels due to
foreshortening and inter-sensor separation [34,35]. An affine transformation usually has six
degrees of freedom and can perform translation, rotation, scaling, and skewing operations.
It preserves parallel lines, ratios of distances along parallel lines, and angles [36,37]. A
perspective transformation has eight degrees of freedom and can model projective dis-
tortions [38,39].It can perform all the operations of an affine transformation plus account
for distortion caused by changes in viewpoint or camera position. If the images have
significant differences in perspective or viewpoint, or if the task requires accounting for
projective distortions, a perspective realignment is likely to be a better choice [40–42]. If
the images only need to be translated, rotated, or scaled, an affine transformation may
be sufficient.
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The overall methodology (Figure 1) is a holistic picture of the three sub-methodologies
adopted in this research. It begins with MS image acquisition over which mask annotations
are performed using the VGG (Visual Geometry Group) VIA (VGG Image Annotator). This
dataset is further classified into three categories. The first cluster consists of the annotated
MS images with the spatial coordinates of wild radish annotations contained in JSON
(JavaScript Object Notation). The second cluster consists of the binary mask images. The
third cluster consists of the pixels of interest masked using the raw MS images and the
binary mask images. In Step A, the homography matrix is calculated using raw MS images,
which is then used to align the spatial coordinates of the annotations contained in the JSON
(JavaScript Object Notation) in Step B. Therefore, Step B is the registration of MS images
based on the spatial realignment of annotations. Step C is the registration of MS images
based on the registration of binary mask images (.PNG format), wherein the input comes
from the second cluster of the dataset. Step D is the registration of MS images based on the
registration of masked pixels, wherein the input comes from the third cluster of datasets.
Step E is a deep learning framework in which the annotated MS images are trained over
the YOLOv8l-seg model to automatically predict wild radish masks. These automatic
predictions are then subjected to morphological erosion before being provided as input
to Step C and Step D. These images are further masked before being fed back to Step D.
Finally, an accuracy assessment is performed over the binary mask outputs coming from
Steps B, C, and D to evaluate the quality of registration achieved with these methods, and
overall, compare manual and automatic segmentation.
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Figure 1. Overall methodology comprising of individual sub-techniques.

2.1. Dataset
2.1.1. Image Acquisition

The dataset (Figure 2a–e) consists of 80 raw and 80 labeled MS images containing a mix
of bread wheat and wild radish. Manual acquisition of MS images was carried out over an
experimental farm situated in the Department of Agricultural Sciences, University of Napoli
Federico II, Portici, Italy (Figure 3: appx. lat.: 40◦48′52.1139′′ N, long.: 14◦20′48.4242′′ E;
elevation 80.422 m above the sea level). The acquisition was performed on 18 January 2022
using a MicaSense RedEdge-M camera (Figure 3). The sensor was kept at 1 m using a
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gimble for the acquisition of images. For each scene, the camera saves five files, one per
spectral channel, resulting in five files per scene. So, there are 16 image scenes captured
over five spectral channels, thereby totaling up to 80 images. The resolution of the images
is 1280 × 960 pixels with a radiometric resolution of 8 bits. The war and annotated dataset
can be accessed at [43]. The sensor specifications are illustrated in Table 1.
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Figure 3. Locational information of the bread wheat farm in Department of Agronomy, University
of Napoli Federico II (study area marked in red polygon). Source: Imagery @2020 Airbus, Maxar
Technologies, Google Earth.

Table 1. Technical Specifications of MicaSense RedEdge-M.

Spatial resolution 0.07 cm/pixel at 1 m altitude

Frame rate 1 image/second

Wavelength (nm) Red (668 nm), green (560 nm), blue (475 nm),
near-IR (840 nm), RedEdge (717 nm)

2.1.2. Annotation of MS Images

Pixel annotations were performed over the raw MS images using VIA (VGG Image
Annotator, https://gitlab.com/vgg/via, accessed on 29 January 2024), which is open-source
labeling software that was developed at the Visual Geometry Group (VGG), University

https://gitlab.com/vgg/via
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of Oxford [44]. This software is designed to operate independently, without necessitating
any form of installation or configuration on a personal computer. The annotations were
subsequently exported in the form of JavaScript Object Notation (JSON).

2.1.3. Software

The codes to perform SIFT- and RANSAC-based image registration, extraction of
homography matrices, registering images based on spatial realignment of annotations,
registering binary masks to achieve image registration, registering pixels of interest to
achieve image registration, extraction of individual and semantic segmentation masks
based on annotations, object detection and segmentation based on training YOLOv8l-seg
network, prediction of mask instances using trained weights, and morphological dilation
of segmentation masks were scripted in Python v3.11.

2.2. Homography Matrix Estimation: Step A
2.2.1. Keypoint Detection and Feature Extraction

When estimating the homography matrix using RANSAC and the direct linear trans-
form (DLT), the first step is to detect keypoints and extract features from the images [39,45,46].
This is carried out using the SIFT algorithm, which finds keypoints in an image by looking
for locations that are invariant to changes in scale and orientation (Figure 4). These loca-
tions are identified by finding extrema in the difference-of-Gaussian function applied to
the image at multiple scales. Once the keypoints are detected, their orientation is assigned
based on the dominant gradient direction in the local neighborhood of the keypoints. This
ensures that the keypoint descriptor is invariant to rotation [16]. Once the keypoints are
detected, the next step is to match features from these keypoints.
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2.2.2. Feature Matching

After the features were extracted from two images, the next step was to match the
features between them. This was achieved by comparing the descriptors of keypoints
in the moving image with those in the reference image (Figure 4). Brute-force matcher
exhaustively compares every feature descriptor in one image with every feature descriptor
in the other image [47,48]. Once the keypoints and their features were matched, a set of cor-
responding point pairs was obtained. These point pairs were further evaluated for filtering
and subsequently used to estimate the homography matrix between the two images.

2.2.3. Ratio Test and Filtering

To remove the incorrect matches, Lowe’s ratio test was used. This test involves finding
the two best-matching descriptors in the second image for each descriptor in the first
image based on the smallest distance [49]. The ratio of the distances between the best and
second-best matches was found to be good below a certain threshold of 0.75. Beyond this
threshold, the matches were filtered out as they were found to be ambiguous. Applying this
test, we were left with a set of potential correspondences between the two images (Figure 4).
However, theoretically, these correspondences may still contain outliers or mismatches [16].

2.2.4. Homography Estimation

RANSAC is an algorithm used to estimate the homography matrix that maps the
coordinates of keypoints in one image to their corresponding coordinates in another image.
The aim of RANSAC is to identify a set of matches that are most likely to be correct and use
them to estimate the homography matrix. It works together with the direct linear transform
to calculate the homography matrix by eliminating incorrect point correspondences that
could lead to an inaccurate outcome [50]. This is necessary to overcome incorrect matches
due to noise or other factors. RANSAC works by iteratively selecting a random subset
of matches, estimating a tentative homography matrix based on these matches, and then
testing the remaining matches against this matrix to identify inliers [31]. In this way, a
tentative matrix with the most inliers is chosen as the final homography matrix. In our
experiment, we typically set the error threshold to 0.75 when calculating the distance
between matched keypoints, as matches that are farther apart were found to be outliers
(Figure 4). Additionally, we set the number of iterations to be proportional to the number
of matches, as more matches require more iterations to find the best set of inliers. Once the
final homography matrix was estimated, it was used to warp the moving image so that it
aligned with the reference image.

2.3. Spatial Realignment of Pixel Annotations: Step B

After calculation of the homography matrices (Figure 4) for each spectral channel
in relation to its RedEdge counterpart, these matrices were used to realign the spatial
coordinates of each annotation across all four spectral channels. In this manner, the spatial
attributes of the annotations contained in the ‘all_points_x’ and ‘all_points_y’ fields are
updated in the JSON file (Figure 5). Subsequently, a new set of binary masks was obtained
using the spatially updated annotations and an updated JSON file. In this way, registration
of MS images based on re-referencing of updated annotation coordinates was achieved
(Figure 6).
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2.4. Registration Based on Binary Mask Images: Step C

In this method, firstly, the binary masks were obtained using annotated MS images.
Subsequently, the features were detected and matched between the binary masks of each
spectral channel and its corresponding RedEdge conjugates across all image scenes using
SIFT and RANSAC (Figure 4). In this step, the keypoint estimation and feature detection
were carried out for the binary mask images across all four spectral channels. The corre-
spondences found here were then used to estimate the transformation required to align the
masks, thereby registering the binary mask images (Figure 7).
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2.5. Registration Based on Masked Pixels: Step D

The pixels of interest were masked using the binary masks obtained after conversion
in Step C focused on image registration based on binary masks and raw MS images of the
dataset (Figure 7). Subsequently, only these non-zero pixels of interest were registered using
SIFT and RANSAC methods as described in Figure 4. The implementation is described in
Figure 8.
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2.6. Deep Learning Pipeline for Training Annotated MS Images: Step E

A group of deep learning models created for object recognition is represented by the
YOLO (You Only Look Once) series. The most recent version, YOLOv8, was designed by the
same team as YOLOv5, and it keeps the same architectural design. The YOLOv8 network
performs additional tasks apart from object recognition and tracking, particularly instance
segmentation, image categorization, and keypoint detection [51]. YOLOv8 supports five
distinct model sizes (n, s, m, l, and x), each of which increases in depth and width from
left to right. YOLOv8l-seg was chosen for the reason of optimum compatibility with
our available computational resources. The YOLOv8l-seg network’s design is influenced
by the YOLACT network’s principles [33], allowing it to segment objects in real time
while maintaining a high segment mean average precision. In this study, the training and
prediction of wild radish instances were carried out using the YOLOv8l-seg model.

The dataset was prepared to allot 60 images for training, 8 for testing and 12 for
validation. Subsequently, a YAML configuration file was created to associate the rela-
tionship between training data, annotations, and weights. A configuration of 200 epochs
was chosen for training. The best training weight obtained after training was used to
predict the mask instances, which were subsequently fed to Steps C and D (Figure 9) of the
overall methodology.
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2.7. Morphological Dilation of Predicted Masks

The predicted instance masks were now subjected to morphological dilation, which is
a technique that enlarges bright regions and shrinks dark regions. Since dilation enhances
the size and shape of objects in a binary image. The degree and direction of this enhance-
ment depend on the size and shape of the structuring element. It was used to increase
the radius of segmentation [52] so that the pixels of interest are adequately masked for
registration purposes.

2.8. Registration of Predicted Masks

The predicted and dilated instance masks obtained in Section 2.10 across the four
spectral channels from the testing and validation datasets are now registered to their
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respective binary RedEdge conjugate across all image scenes using SIFT and RANSAC.
In this step, the keypoint estimation and feature detection were carried out among the
predicted and trained datasets. The correspondences found here were then used to estimate
the transformation required to align the predicted masks, thereby registering them.

2.9. Registration of Masked Pixels from Predicted Masks

The predicted and dilated instance masks obtained in Section 2.10 across the four
spectral channels from the testing and validation datasets are now used for masking the
pixels of interest over the raw MS images (Step D). Subsequently, these non-zero pixels
are registered using the SIFT and RANSAC to alter the spatial coordinates of the pixels
throughout the four spectral channels with respect to the RedEdge channel.

2.10. Accuracy Assessment
2.10.1. Intersection over Union (IoU)

Intersection over union is used for assessing the accuracy of the image registration
process, which involves the alignment of two images or more with one another. It is
based on the measure of similarity in which the intersections of the two sets of pixels are
divided by the union of the same two sets of pixels [53]. In the context of the registration of
images, the IoU (Equation (1)) can be used for measuring the overlaps between the images
registered. When two images have been registered, they should ideally have a large overlap,
i.e., the same structure or feature should be found in both. The IoU provides measurable
measures of the overlap and may be used as a measure of the quality of registrations [54].
Specifically, it can be used to evaluate the accuracy of the registration by comparing the
registered image to a ground truth or reference image. The IoU between the registered
image and the ground truth image can be computed, and a high IoU value indicates that
the registration is accurate. However, IoU is often preferred because it provides a more
intuitive measure of overlap between the registered images. Mathematically, it is calculated
as follows [55]:

IoU =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

(1)

where A and B are binary image masks, TP indicates true positive, FN indicates false
negative, and FP signifies false positive.

2.10.2. Normalized Coefficient of Correlation (NCC)

The normalized coefficient of correlation is based on the measure of the similarity
of two images being recorded at the same time. It is based on the statistical measure of
the linear relation between the pixel intensity values in the image [56]. The normalized
coefficient of correlation, also referred to as a normalized correlation coefficient, measures
the relative similarity of two images, by calculating the correlation of the intensity values of
the two images. However, it is not considered by the difference between the mean values
and the standard deviations of intensity values [57,58].

The normalized correlation coefficient takes these differences into account by normal-
izing the coefficient of cross-correlation between the two image images and the product
corresponding to the average deviation of the values of intensity (Equation (2)). This
normalization allows the coefficients of correlation to range from −1 to 1, where closer
to 1 indicates a greater degree of similarities between two images. Mathematically, it is
calculated as follows:

δc(i1, i2) =
iT
1 i2

∥ i1 ∥ ∥ i2 ∥ (2)

where δc represents cosine similarity measure based matching score of vectors i1 and i2,
and ||. || represents the norm operator.
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2.10.3. YOLOv8l-Seg Evaluation Metrics

The YOLOv8l-seg’s ability to accurately identify instances within an image was as-
sessed using the average precision (AP) metric, as outlined in the MS COCO challenges [59].
AP is determined by the area under the precision (P) and recall (R) curves (Equations (3)
and (4), respectively), and it is typically computed for each class within an image and
then averaged to yield the mean average precision (mAP). In this study, as the wild radish
class is the sole instance of interest, the AP can be considered equivalent to the mAP
(Equation (5)). The F1 score is computed as the harmonic mean of precision and recall,
and it demonstrates how the model achieves a balance between accurate detection and
thorough coverage. When evaluating segmentation tasks, precision (P), recall (R), AP, and
F1 score are calculated as follows [60,61]:

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

mAP =
∫ 1

0
P(R)dR (5)

F1Score = 2 × P × R
P + R

(6)

where TP (true positive) represents the number of accurate predictions in all pixels, FP
(false positive) signifies the number of incorrect predictions in all pixels, and FN (false
negative) indicates the number of pixels that were not identified as part of the corresponding
instance. The evaluation metrics, mean average precision (mAP), particularly mAP50 and
mAP95 are distinguished by the intersection over union (IoU) between predicted masks and
ground-truth.

Another metric is a confusion matrix, which is a square matrix containing information
about the actual and predicted classifications carried out using a classification model. It is a
tool used in the field of machine learning to evaluate the performance of a classification
algorithm. It provides a summary of the predictions made by a model on a set of test data
for which the true values are known [62].

3. Results
3.1. Evaluation of MS Image Registration Quality

The binary masks obtained in Sections 2.3–2.5 were tested over metrics such as IoU
and NCC to evaluate the MS image registration quality achieved through three techniques:
spatial realignment of annotations, registration based on binary masks, and registration
based on masked pixels (Table 2). Figure 10 represents two-dimensional boxplots of the
three techniques containing samples from 80 annotated images across blue, green, red,
near-infrared, and RedEdge spectral channels. The boxplot in Figure 10a shows that the
mean IoU for the registration based on binary masks is the highest, recording a mean value
of 0.8314 in comparison to the mean IoU observed for the registration based on masked
pixels and spatial realignment of annotations, which are 0.8183 and 0.8055, respectively.
There are three outliers observed in the case of registration based on binary masks with
two outliers occurring in the range of 0.6–0.7 and only one outlier occurring in the range
of 0.5–0.6. In the case of registration based on masked pixels, a total of five outliers are
observed, with two outliers occurring in the range of 0.6–0.7 and the remaining three
outliers occurring in the range of 0.5–0.6. However, in the case of registration based on the
spatial realignment of annotations, five outliers are observed, with four outliers occurring
in the range of 0.6–0.7 and one outlier occurring in the range of 0.5–0.6. This demonstrates
that the registration method based on binary masks performed the best, followed by the
registration method based on masked pixels, and lastly, the registration method based on
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spatial realignment of annotations. A tabular representation (Table 2) of the mean IoU
across the above-mentioned methods is presented below.

Table 2. Mean values of different metrics for comparison of registration applied on annotations,
binary masks, and masked pixels.

Method Intersection over Union Normalized Coefficient
of Correlation

Registration based on spatial
realignment of annotations 0.8055 0.8900

Registration applied on binary masks 0.8314 0.9059

Registration applied on
masked pixels 0.8183 0.8971
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The boxplot in Figure 10b shows that the mean NCC for the registration based on
binary masks is the highest, recording a mean value of 0.9059 in comparison to the mean
NCC observed for the registration applied on masked pixels and spatial realignment of
annotations, which are 0.8971 and 0.8900, respectively. There are three outliers observed in
the case of registration based on binary masks with two outliers occurring in the range of
0.75–0.8 and only one outlier occurring in the range of 0.7–0.75. In the case of registration
based on masked pixels, a total of five outliers are observed, with two outliers occurring in
the range of 0.75–0.8 and the remaining three outliers occurring in the range of 0.7–0.75.
However, in the case of registration based on spatial realignment of annotations, five
outliers are observed, with four outliers occurring in the range of 0.75–0.8 and the last
outlier observed below 0.7. This, again, demonstrates that the registration method based
on binary masks performed the best, followed by the registration method based on masked
pixels, and lastly, the registration method based on spatial realignment of annotations.
Table 2 presents the mean NCC across the above-mentioned methods.

3.2. Evaluation of Registration Quality at Spectral Level

The datasets obtained in Sections 2.3–2.5 were tested to evaluate registration quality
at the spectral level. Table 3 is a behavioral exhibition of annotation quality observed
across different wavelengths, i.e., blue, green, red, and near-infrared before registration was
performed with respect to their conjugate RedEdge pairs, the reference. It was observed that
the near-infrared channel exhibited the best quality of registration in comparison to other
spectra over the metrics IoU and NCC. The registration method based on binary masks
fared the best in comparison to the ones based on masked pixels and spatial realignment of
annotations, thereby recording a mean IoU of 0.8726 and a mean NCC of 0.9170.

Table 3. Registration quality across individual spectral channels.

Cumulative Performance Spatial Realignment of
Annotations

Registration Based on
Binary Masks

Registration Based on
Masked Pixels

Spectral
Channels IoU NCC IoU NCC IoU NCC IoU NCC

Blue 0.8206 0.8996 0.8091 0.8929 0.8364 0.9094 0.8162 0.8965

Green 0.8408 0.9128 0.8266 0.9043 0.8476 0.9155 0.8481 0.9173

Red 0.7509 0.853 0.7415 0.8474 0.7690 0.8654 0.7421 0.8462

Near-infrared 0.8614 0.9252 0.8449 0.9155 0.8726 0.9170 0.8667 0.9284

3.3. Evaluation of Registration Quality at Instance Level

The annotations obtained in Section 2.1.2 were utilized to generate individual wild
radish instance masks. Subsequently, these masks across all wavelengths were cloned for
evaluation using the three registration methods described earlier. The quantitative behavior
(Table 4) of these instance masks across different spectral channels, i.e., blue, green, red,
and near-infrared while being registered with their conjugate RedEdge instance pairs, the
reference. It was observed that the green channel exhibited the best quality of registration
for individual instances as far as registration was performed using binary masks where
a mean IoU of 0.9339 and a mean NCC of 0.9668 were recorded. The green channel also
exhibited the best performance in the category of registration based on spatial realignment
of instance annotations, recording a mean IoU of 0.8969 and a mean NCC of 0.9457 as
compared to other spectral channels. However, the red channel recorded the best intra-
category performance with a mean IoU of 0.9159 and a mean NCC of 0.9573 in the category
of registration based on masked instance pixels. Spectrally, the red channel recorded the
least standard deviation of 0.013 for mean IoU, and 0.0118 for mean NCC. Overall, the best
registration method for individual instances was observed to be the registration based on
binary masks.
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Table 4. Mean values of IoU and NCC for registration applied on individual wild radish instances
across all spectral bands.

Spectral
Channels

Registration Based on
Spatial Realignment of

Annotations

Registration Based on
Binary Masks

Registration Based on
Masked Pixels

IoU NCC IoU NCC IoU NCC

Blue 0.8962 0.945 0.8961 0.9453 0.8081 0.892

Green 0.8969 0.9457 0.9339 0.9658 0.7539 0.7539

Red 0.8894 0.9413 0.8872 0.9282 0.9159 0.9573

Near-
infrared 0.8249 0.9046 0.9326 0.9652 0.8871 0.9407

Cumulative
average 0.8768 0.9341 0.9124 0.9511 0.8412 0.8859

3.4. Evaluation of Overall Registration Quality for Predicted Instances

The predicted mask instances, obtained from the testing and validation datasets after
training the YOLOv8l-seg model on annotated MS images (as described in Section 2.6),
were subjected to morphological dilation (Section 2.7) before being registered using the
methods described in Sections 2.4 and 2.5. Table 5 is a holistic representation of registration
performances based on predicted binary masks and predicted-and-masked pixels. It was
observed that the registration based on predicted binary masks performed marginally
better, thereby recording a mean IoU of 0.7188 and a mean NCC of 0.8099. However, the
mean IoU for registration based on predicted-and-masked pixels was recorded to be 0.7185
with a mean NCC of 0.8016.

Table 5. Mean values of IoU and NCC for registration applied on predicted wild radish instances
across all spectral bands.

Method IoU NCC

Registration based on
predicted binary masks 0.7188 0.8099

Registration based on
predicted and masked pixels 0.7185 0.8016

3.5. Evaluation of Registration Quality for Predicted Instances across Individual Spectral Channels

The testing and validation datasets containing predicted mask instances (Section 2.6)
were then evaluated at the spectral level. Table 6 represents the performance of previously
described registration methods applied on predicted binary masks and predicted-and-
masked pixels. It was observed that the registration based on binary masks performed
the best in the blue channel, recording a mean IoU of 0.7481 and a mean NCC of 0.8525.
However, the mean IoU and mean NCC observed with registration based on predicted-
and-masked pixels were recorded to be 0.7378 and 0.8462, respectively, being the highest
for the green channel. Overall, the registration based on predicted binary masks performed
better than the registration based on predicted-and-masked pixels, thereby recording a
cumulative mean IoU of 0.7195 and mean NCC of 0.8336.
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Table 6. Mean values of IoU and NCC for registration applied on predicted wild radish instances
across individual spectral bands.

Spectral
Channels

Registration Based on Predicted
Binary Masks

Registration Based on Predicted
and Masked Pixels

IoU NCC IoU NCC

Blue 0.7481 0.8525 0.7171 0.8313

Green 0.7223 0.8357 0.7378 0.8462

Red 0.6723 0.8009 0.6751 0.8019

Near-infrared 0.7353 0.8456 0.7144 0.8298

Cumulative
mean 0.7195 0.8336 0.7111 0.8273

3.6. Error Map

Figure 11 represents a 3-dimensional scatter plot depicting the error percentage of
non-overlapping pixels across the three registration approaches under study. The lowest
bias was observed in the registration applied on binary masks with a recorded mean value
of 0.3292. However, the outliers in the case of registration applied to masked pixels and
annotations were observed to be 0.3526 and 0.3616, respectively. Therefore, the registration
technique based on spatial realignment of annotations fared as the least accurate as com-
pared to the other two. In the registration based on automatically segmented binary mask
instances, the mean error of non-overlapping annotations after registration was observed
to be 0.2811. Whereas, among the masked and segmented pixels, the registration exhibited
a mean error of non-overlapping pixels of 0.2814.
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3.7. Performance of YOLOv8l-Seg towards Prediction of Wild Radish Mask Instances

YOLOv8l-seg demonstrated an effective segmentation approach towards annotated
MS images where the wild radish instances were based on pixel annotations. Figure 12
represents the model’s performance metrics recorded post-completion of the training
process. The mean precision (P) calculated at the bounding box level was recorded to
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be 0.9127. The mean recall (R) value calculated at the bounding box level was recorded
to be 0.9278. The mean average precision (mAP50 or mAP0.5) at a 50% IoU threshold,
considering both the wild radish class and the background class was recorded to be 0.9332.
The mean average precision (mAP50-95) across 50% to 95% IoU thresholds, considering
both the wild radish class and the background class was observed to be 0.706. However, the
P, R, mAP50, and the mAP50-95 in the case of binary mask predictions were observed to be
0.9021, 0.916, 0.9211, and 0.554, respectively. The confusion matrix (Figure 13) demonstrates
that 98% of wild radish labels were correctly predicted with the classifier (Figure 14).
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4. Discussion

Our study aimed to comprehensively evaluate three MS image registration strategies
for proximal remote sensing of weeds in close-ranged MS images. These strategies were
focused on harnessing SIFT and RANSAC applied towards spatial realignment of pixel
annotations, registration based on binary masks, and masked pixels. These techniques
enabled the registration of close-range non-georeferenced MS images acquired with Mi-
caSense RedEdge-M sensor over 16 consequent image scenes containing wild radish weed
infestation among bread wheat crops. Every scene consisted of manual acquisition across
five different spectra, summing up to 80 images in total. To facilitate weed detection and
segmentation from MS images, the modus operandi solicited an optimized approach for
effective alignment and overlap of annotations across all registered spectral channels to-
wards integration of the spectral information to gain more complex and detailed scene
representation [35].

The decision to use a perspective transformation over an affine transformation for
image registration was based on the very nature of the images being registered where
significant differences in perspective or viewpoint were observed. Using perspective
warping, points from one plane were mapped to another to overcome projective distor-
tions [40]. It was observed that perspective warping could also perform all the operations
of an affine transformation plus account for distortions caused by changes in viewpoint or
camera position.

Section 1 discusses the overall performance of three registration strategies and elab-
orates on the performance of each technique with a specific focus at the spectral level.
Section 2 elaborates on the performance of these techniques at the instance level across
different spectra. Section 3 highlights the performance of these techniques on automatically
predicted instances of wild radish. Section 4 discusses the error observed in the form of
non-overlapping wild radish instances across the three underlying registration strategies.
The concluding section confers the performance of the deep learning model YOLOv8l-seg
towards the generation of pixel-level masks for all the detected wild radish instances.
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4.1. Overall Performance of Different Registration Strategies

It was observed that registration of MS images based on the registration of binary
masks was overall recorded as the best-performing technique, securing the highest mean
segmentation accuracy of 0.8314 and a mean normalized correlation coefficient of 0.9059
(Figure 10, Table 2, Section 3.1). The segmentation quality was observed to be the highest in
the near-infrared channel, recording a mean segmentation accuracy of 0.8726 and a mean
normalized correlation coefficient of 0.9170 (Table 3, Section 3.2). The highest cumulative
segmentation accuracy of 0.8614 and cumulative mean normalized correlation coefficient
of 0.9252 were observed across near-infrared spectral channel, making it the most suitable
spectrum for annotation purposes (Table 3, Section 3.2). Moreover, the brighter appearance
of vegetation observed in near-infrared and RedEdge spectra is due to the reflectance
by chlorophyll that facilitates manual annotation. This behavior is particularly due to
chlorophyll, which absorbs most of the light in the visible range but is transparent to light
with wavelengths above 700 nm [63,64]. Therefore, the RedEdge spectrum was chosen as a
reference for all registration methods.

4.2. Performance of Registration Strategies over Individual Instances across Spectra

The registration of individual MS wild radish instances based on the registration of
corresponding individual binary mask instances was found to be the most accurate method
for individual instance registration. A cumulative mean segmentation accuracy of 0.9124
and a cumulative mean normalized correlation of 0.9511 were observed across instances
(Table 4, Section 3.3). The green channel also recorded the overall best performance as
compared to other spectral channels, where individual wild radish instances were registered
to secure a mean segmentation accuracy of 0.9339 and a mean normalized correlation of
0.9658. This second-best registration for MS instances was based on the masked wild radish
pixels in the red channel, recording a mean segmentation accuracy of 0.9159 and a mean
normalized correlation of 0.9573, thereby making it a categorical winner in the red channel.
Individual instances derived from spatially realigned pixel annotations were also observed
to exhibit a fair registration potential in the green channel. The least standard deviation
was observed for registration performed in the red channel. Therefore, registration of MS
images based on binary masks has shown a strategic edge over the other two registration
methods even when individual pixel instances were registered instead of registering a
binary mask image containing multiple instances.

4.3. Performance of Registration Methods over Predicted Instances across Different
Spectral Channels

The MS image registration method based on the registration of predicted binary
mask instances was observed to exhibit a mean segmentation accuracy of 0.7188 and a
mean normalized correlation coefficient of 0.8099. This technique performed marginally
better than the method based on the registration of predicted and masked pixels, where a
mean segmentation accuracy of 0.7185 and a mean normalized correlation coefficient of
0.8016 were observed (Table 5, Section 3.4). Spectacularly, the blue channel was observed
to exhibit the highest mean segmentation accuracy of 0.7481 and a mean normalized
correlation coefficient of 0.8525 for the registration applied to predicted binary masks. The
registration applied over predicted and masked pixels depicted the highest registration
accuracy, particularly in the green channel, displaying a mean segmentation accuracy of
0.7378 and a mean normalized correlation coefficient of 0.8462. Therefore, the registration
of MS images based on the registration of automatic mask instance predictions indicates a
marginal superiority over the registration method based on masked and predicted pixels
in terms of segmentation accuracy and normalized correlation behavior.
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4.4. Error Evaluations across Registration Methods

The mean absolute error percentage of non-overlapping instances observed across
the three registration strategies also demonstrated a marginal superiority of the MS image
registration technique based on binary masks (Figure 11, Section 3.6). This performance
was subsequently followed by the method involving registration based on masked pixels
and subsequently, the registration based on the spatial realignment of annotations. The
MS registration method based on the registration of automatically segmented binary
mask instances demonstrated a marginally lower error percentage of non-overlapping
pixels, again resulting in superiority over the registration method based on masked and
predicted pixels. Additionally, the least number of outliers were observed for the MS image
registration method based on the registration of binary masks (Figure 10, Section 3.1). In a
nutshell, the lowest error percentage of non-overlapping instances was observed for MS
image registration based on the registration of automatically segmented mask instances.

4.5. Automatic Prediction of Wild Radish Instances

The YOLOv8l-seg model’s accuracy for the prediction of wild radish mask instances
was recorded to be 98%. There has been a recent study on heterogeneous MS UAV (un-
manned aerial vehicle) image registration for cotton leaf lesion grading, which used the
EfficientDet neural network for the detection of lesion-affected pixels in true color (RGB)
images, followed by SIFT + template matching-based image registration for RGB and MS
images to automatically segment cotton leaf lesion [65]. The prime difference in our work
with respect to this mentioned study is three registration strategies using SIFT + RANSAC
to achieve registration of MS images through (i) spatial realignment of annotations, (ii) regis-
tration of binary masks, and (iii) registration of masked pixels. There has been an extensive
comparison at the spectral level and individual instance level, using the aforementioned
registration approaches performed on manually and automatically segmented MS images.
Additionally, the nature of the imagery in our case is close-range non-georeferenced MS
images, which were acquired manually at the sub-meter level. Another work, found to
be partially related to our experiment, was based on the registration of close-range and
non-georeferenced MS images acquired in a greenhouse environment. This work compared
spectral performances across different types of geometric transformations [24]. In contrast,
our activity was conducted in field conditions. Moreover, our strategy was based on regis-
tration through annotation realignment, and registration of mask instances and masked
pixels using SIFT + RANSAC. Another similar experiment by [7] claimed not to make any
assumptions about the scene structure and only required dense matching between two
spectrally similar bands, making it applicable to imagery captured from all types of scenes,
regardless of their geometric or radiometric properties. However, it seemed that its scope
lacked testing over absolute sub-meter nadir imagery in a heterogeneous field environment,
where the challenge of perspective distortion arises. In contrast, these issues were the
primary focus of our study and were addressed through strategies based on homographic
refinement for sub-centimeter-sized agricultural weeds of interest.

Figure 15 is a categorical representation of the images containing a few spectral
instances and binary masks derived from registration strategies explained in this article.
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Figure 15. Few instances from the dataset. (a) Moving image (blue channel); (b) ground truth
of moving image; (c) binary mask derived after spatial realignment of annotations; (d) registered
binary mask; (e) pixels masked from ground truth; (f) binary mask derived from registered pixels;
(g) reference image (RedEdge channel); (h) binary mask of reference image; (i) binary mask of one
wild radish instance; (j) binary mask instances predicted with YOLOv8l-seg; (k) registered binary
mask instances; (l) masked wild radish pixels (dilated); (m) masked wild radish pixels (registered).

5. Conclusions

The manually acquired sub-meter images with a five-band MS camera face challenges
of distortion in perspectives and altitudinal jitters leading to non-overlapping features. This
article compared three image registration strategies based on SIFT and RANSAC algorithms
over MS images containing a heterogeneous mix of bread wheat and wild radish. These
MS image registration methods were based on (1) the application of a homography matrix
derived during registration to realign the annotations across different spectral channels
with respect to the reference channel, (2) based on the registration of binary masks derived
from the ground truth of each spectral channel with respect to the reference channel, and
(3) based on the registration of only the masked pixels of interest from each spectral channel
with respect to the reference channel. The results show that the registration method based
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on binary masks is the most accurate, followed by the methods based on masked pixels and
realignment of annotation. The accuracy also varies depending on the spectral channel and
the segmentation technique used. This article also reports the performance of YOLOv8l-seg
towards the detection and segmentation of wild radish weed instances. Additionally, it
compares the aforementioned registration techniques over manually and automatically
segmented images. In the future, this could be a possible part and parcel of a deep learning
pipeline focused on automatic annotation, followed by automatic registration of MS images
acquired in real time. The detection accuracy recorded with mean average precision at
an IoU threshold of 0.5 was observed to be 92.11% with a segmentation accuracy of 98%
towards the segmentation of wild radish binary mask instances.
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