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Abstract: Detecting micron-sized particles is an essential task for the analysis of complex plasmas
because a large part of the analysis is based on the initially detected positions of the particles.
Accordingly, high accuracy in particle detection is desirable. Previous studies have shown that
machine learning algorithms have made great progress and outperformed classical approaches. This
work presents an approach for tracking micron-sized particles in a dense cloud of particles in a
dusty plasma at Plasmakristall-Experiment 4 using a U-Net. The U-net is a convolutional network
architecture for the fast and precise segmentation of images that was developed at the Computer
Science Department of the University of Freiburg. The U-Net architecture, with its intricate design
and skip connections, has been a powerhouse in achieving precise object delineation. However, as
experiments are to be conducted in resource-constrained environments, such as parabolic flights,
preferably with real-time applications, there is growing interest in exploring less complex U-net
architectures that balance efficiency and effectiveness. We compare the full-size neural network, three
optimized neural networks, the well-known StarDist and trackpy, in terms of accuracy in artificial
data analysis. Finally, we determine which of the compact U-net architectures provides the best
balance between efficiency and effectiveness. We also apply the full-size neural network and the the
most effective compact network to the data of the PK-4 experiment. The experimental data were
generated under laboratory conditions.

Keywords: dusty plasma; image analysis; neural networks; U-Net; paricle tracking

1. Introduction

Fundamentally, plasmas are ionized gases where electrons can move freely within the
gas [1]. The density of positive and negative charge carriers in plasmas is approximately
equal. When particles are introduced into a low-temperature and low-pressure discharge
plasma, it is termed as a dusty or complex plasma. These plasmas, in addition to electrons,
ions, and neutral gas atoms, also include micron-sized particles [1]. The high mobility
of electrons in low-temperature plasma leads to the negative charging of micro-particles.
They collect charged plasma particles. The structures and dynamics of large micro-particle
systems, containing up to 106 particles, can be easily observed with laser illumination due to
the significant interparticle distance, typically exceeding 100 µm [1,2]. This creates a dilute
and transparent particle system that can be effectively analyzed using cameras. The PK-4
experiment (“Plasmakristallexperiment 4”) is designed specifically to investigate complex
plasma in a DC discharge that occurs in an elongated glass tube. A detailed description
of PK-4 can be found in the reference [3]. This work is an extension of previous work [4]
originally reported in the 30th International Conference on Mixed Design of Integrated
Circuits and Systems—MIXDES 2023. To analyze particle behavior in the plasma, their
positions must first be determined. Since each image contains several particles, the method
should be able to track multiple particles in one image.
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Approaches to particle detection ranged from local-maxima finding to linear filtering,
linear and nonlinear model fitting, and centroid estimation schemes [5]. In the previously
employed method, image preparation involves utilizing a bandpass and a threshold value.
The selection of an optimal threshold is crucial for images containing features (particles)
and background (noise) in image processing [6]. An optimal threshold is crucial, as
emphasized in studies like Sezgin and Sankur [7]. Given the fundamental focus of Mohr
et al. (2019)’s work on complex plasmas [6], we chose to employ Otsu’s method [8] as a
thresholding technique in line with their research. While other thresholding techniques
are available (for an overview, see, e.g., Sezgin and Sankur [7]), our choice aligns with
the approach and findings of D. Mohr et al. (2019) [6]. Their findings demonstrated
that most alternative techniques often result in inaccurate binarizations. Background
pixels are mistakenly identified as signals and set to white. For more details, refer to
D. Mohr et al. (2019) [6]). If a particle spans multiple pixels in an image, we can determine
its position with sub-pixel accuracy by calculating the weighted average position of these
pixels [9]. The point determined in this manner is termed the center of mass, representing
the position of a particle. The method was developed based on the open-source library
“trackpy” [9]. Recently, data-driven alternatives employing deep learning have significantly
enhanced quantitative digital microscopy, offering the potential for accurate and rapid
image analysis. Midtvedt et al. (2021) [10] have developed a dedicated tool for particle
localization, tracking, and characterization, extending to cell counting and classification.
In another study, Midtvedt et al. (2022) [11] concentrated on object recognition in the
realm of digital microscopy, where machine learning has made substantial progress in
overcoming the limitations of classical approaches. Notably, the U-net architecture was
employed. Furthermore, Huang et al. (2019) [12] have successfully applied machine
learning approaches to image-based analyses of complex plasmas. These insights are
intended for enhancing particle localization in complex plasmas. This work focuses on
a multi-particle tracking approach using a U-net. The U-net is a convolutional network
architecture designed for rapid and precise image segmentation, developed at the Computer
Science Department of the University of Freiburg [13]. However, as experiments are
slated for resource-constrained environments, such as parabolic flights, with a preference
for real-time applications, there is a growing interest in exploring less complex U-net
architectures that strike a balance between efficiency and effectiveness. Considering the
limited resources, the U-net [4] presented in previous work is now slated for optimization.
The primary strategy is to reduce the depth of the U-net to optimize the architecture,
considering FLOPS and MACCs. A smaller number of layers results in fewer parameters
and, consequently, a reduced computational load. We will design three different compact
architectures. Subsequently, we will determine which of the compact U-net architectures
provides the best balance between efficiency and effectiveness. Next, we will compare
the full-size neural network, the optimized neural network, a well-known neural network
called StarDist [14], and trackpy [9] in terms of accuracy in analyzing artificial data. StarDist
is a neural network architecture designed for image segmentation tasks, particularly applied
to instances where objects exhibit star-shaped structures. Developed by Schmidt et al. in
2018 [14], StarDist employs a U-net-based architecture and is trained specifically for object
detection in microscopy images. It utilizes a polygonal representation of object shapes,
making it well-suited for applications like cell nucleus segmentation [14]. For these analyses
to be meaningful, the methods should accurately detect particle positions. We also apply
the two U-net architectures to experimental data.

2. Experiment

The Plasmakristall 4 experiment is characterized by the fact that the plasma is ignited
by a direct current discharge. This makes it possible to study complex plasmas in different
plasma environments [3].
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A model of PK-4 has been on the International Space Station since late 2014. The
details are described in ref. [3]. We will briefly outline the important components. The
plasma chamber is an elongated U-shaped glass tube with a total length of 86 cm and
a diameter of 3 cm. Two cameras are available for the observation of the micron-sized
particles, which can be moved in longitudinal and in radial direction of the plasma chamber
(x- and y-direction in Figure 1). At the ends of the glass tube, the high-voltage electrodes are
mounted. The high-voltage power supply operates in DC or AC mode (polarity switching)
with a frequency up to 5 kHz. The DC current can be adjusted between 0.5 and 3 mA. The
electric field strength of the longitudinal DC field in the positive column of the discharge
was measured using Langmuir probes on the ground, in the absence of micro-particles, to
be about 2 V/cm, nearly independent of the DC current [3]. The gas, usually neon or argon
with pressures between 10 and 200 Pa, is filled in by gas flow up to 10 sccm through the
cylindrical electrode and can be pumped out through the other cylindrical electrode by a
turbo molecular pump [2]. After igniting the plasma, the micro-particles are injected from
the dispensers through ports at the side legs of the glass tube. The Particle Observation
laser is used to illuminate the particles whose scattered light can be detected by the cameras.
The laser emits green light with a wavelength of 532 nm and has an output power of up
to 240 mW [3]. The light from the laser is fanned out to illuminate a plane perpendicular
to the z-direction [3]. The scattered light from the micro-particles is recorded by a CCD
camera (2 Megapixel, 35 frames per second [fps] at full resolution) and a CMOS camera
with a larger field of view and a higher frame rate and resolution (xiQ MQ042MG-CM,
4 Megapixel, 90 fps at full resolution, 1 pixel corresponds to 11.4 µm) [2]. They can scan the
tube 20 cm in the horizontal direction as well as 3 cm perpendicular to it. The DC mode
can be used to trap and stop the micro-particles (Figure 2).

Figure 1. Schematic of the PK-4 plasma chamber provided by the Thoma research group of the
JLU Gießen.

To study the particles in microgravity, experiments can be performed either on board
the ISS or during parabolic flights. The I. Physikalisches Institut of the Justus-Liebig-
Universität (JLU) in Gießen focuses on laboratory investigations of complex plasmas and
plans/tests experiments for the ISS using the PK-4 experiment. For this purpose, the JLU
has an identical model known as the Science Reference Model (SRM). This is used to plan
experiments and largely automate processes. In addition, experiments are also performed
with a parabolic flight model of the PK-4 in parabolic flight. This is almost identical to the
SRM, but can be modified for more advanced experiments, which is not possible with the
SRM. For example, other particle types can be used, or components such as cameras can be
modernized. Various parabolic flight experiments have been conducted in the past with
the support of the German Aerospace Center (DLR).
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Figure 2. Schematic representation of DC trapping procedure. Steps: 1—ignition of the DC
plasma, 2—microparticle injection, 3—microparticles arrival into the PO camera field of view, and
4—the discharge in the polarity-switching mode. The graphic was created based on the work of
Pustylnik et al. [3].

For the parabolic flights, the aircraft A310 ZERO-G of the company Novespace is used.
Microgravity with a duration of about 22 s per parabola will be realized on three flight
days in 31 parabolas each. The parabolic flight model consists of two racks (Figure 3a), one
containing an integrated base plate (Figure 3b), another one containing the computers for
experiment control and recording. The integrated base plate was used as the engineering
model for the ISS project and is to a large content identical with the one of the flight
model [2]. The micron-sized particles were injected into the plasma at the beginning
of the microgravity phase of a parabola, which then move into the field of view of the
cameras. Once the particles arrive into the field of view, the DC discharge is switched to
the polarity-switching mode with a duty cycle of δ = 0.5 [3]. After this, the micro-particles
experience zero net force and are trapped [3]. Once the particles are trapped, they will
be observed and photographed by the cameras. In order to perform further analyses on
the plasma, the positions of the particles in the plasma have to be determined from the
images. Conventional methods were used for this purpose in previous investigations. In
the following, a machine learning approach will be investigated, which could potentially
replace the conventional method in future investigations.

Figure 3. (a) The PK-4 parabolic flight experiment unit in the aircraft A310 Zero-G. (b) The integrated
base plate accommodated in the left rack [2].

3. U-Net Architecture

Developed by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in 2015 [13],
the U-Net represents a special neural network, which is primarily designed for image
segmentation tasks. It excels at partitioning an image into multiple segments or regions
of interest, making it particularly suitable for tasks where precise delineation of objects
or structures in images is required, such as medical image segmentation or semantic
segmentation in computer vision. The U-Net architecture has a U-shaped structure with a
contracting path (encoder) and an expansive path (decoder) (see Figure 4). It incorporates
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skip connections that preserve spatial information and allow the network to perform
accurate segmentation. It has a specific focus on spatial preservation and the precise
localization of objects.

Figure 4. Schematic representation of an U-Net architecture.

The encoder is the initial part of the U-Net. It takes the input data and maps it to a
lower-dimensional representation, the so called latent space. The encoder accomplishes this
through a series of layers, where each layer performs mathematical transformations on the
input data. These transformations pack the information step by step into a more compressed
format. The U-Net’s latent space is often called the “middle layer” or “bottleneck”. While it
does capture abstract representations of the input image, its primary purpose is to facilitate
segmentation rather than feature extraction or dimensionality reduction. The expansive
path, also known as the decoder, aims to generate a high-resolution segmentation map
from the feature representations obtained in the contracting path. Unlike traditional CNN
architectures, the U-Net employs a series of up-convolutions (transposed convolutions or
deconvolutions) to upsample the feature maps. Moreover, the expansive path incorporates
skip connections that concatenate feature maps from the contracting path. These skip
connections enable the U-Net to preserve fine-grained spatial information and are essential
for accurate segmentation. The U-Net’s output is segmentation masks, where each bright
pixel in the mask can be assigned to a particle position.

3.1. Simplifying the Architecture

The traditional U-Net architecture, celebrated for its outstanding accuracy and fine-
grained segmentation through contracting and expansive paths connected by skip connec-
tions, is depicted in Figure 5. This U-Net comprises numerous layers, encompassing a total
of 389,521 parameters. However, this intricate structure poses a computational challenge,
especially in resource-constrained settings like parabolic flights. Consequently, there is an
increasing demand for models that can provide precise results without sacrificing speed or
resource efficiency. Less complex U-Net architectures aim to fulfill this demand by simpli-
fying the original design while preserving essential features for effective segmentation.

Figure 5. Structure of the U-Net architecture.
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The key approach involves diminishing the depth of the U-Net. A reduced number
of layers leads to fewer parameters, thereby decreasing computational demands. This
modification proves especially beneficial for tasks where a shallower architecture remains
capable of capturing essential features. Using lightweight convolutional blocks serves to
substantially streamline the model’s complexity while preserving satisfactory segmentation
quality. Diligent reduction in the number of skip connections contributes to simplifying
the architecture. However, this adjustment should be executed with caution to guarantee
the retention of pertinent contextual information. In accordance with this strategy, three
distinct architectures were devised.

3.1.1. Simplified U-Net 0

The contracting path is comprised of two convolutional layers, followes by a max-
pooling layer. The initial convolutional layer has 16 filters and utilizes the ReLU activation
function, with padding set to ’same’ to preserve spatial dimensions. The second convolu-
tional layer mirrors the first, effectively doubling the number of feature maps. Max-pooling
layers, with a pool size of 2 × 2, halve the spatial dimensions. The bottleneck involves
two convolutional layers, each with 32 filters, followed by the ReLU activation function.
This step condenses information into a latent representation. On the expansive path,
the feature maps undergo upsampling and are concatenated with feature maps from the
contracting path. In contrast to the original architecture, we replaced transposition opera-
tions (Conv2DTranspose, see Figure 5) with upsampling operations (UpSampling2D, see
Figure A1) to enhance the network’s efficiency. Transposition operations combine train-
able upsampling and convolution, providing flexibility but potentially incurring higher
computational costs. On the other hand, upsampling operations perform fixed upsampling
without trainable parameters, making them more efficient albeit less adaptable.

Following each upsampling layer, two convolutional layers with 16 filters and ReLU
activation are applied. Concatenation merges the upsampled feature maps with the corre-
sponding feature maps from the contracting path. This skip connection is instrumental in
enabling the network to recover spatial details. Consequently, we managed to reduce the
architecture to a size of 25,633 parameters (see Figure A1).

3.1.2. Simplified U-Net 1

In our case, the task is relatively straightforward, requiring the model to capture a more
limited range of complex features. Therefore, we make use of the simplified U-Net 0 archi-
tecture once again, maintaining a constant number of eight filters for each layer. The ReLU
activation function is used for each layer, and padding is set to ‘same’ to preserve spatial
dimensions. Following each convolutional layer, an identical convolutional layer is added,
effectively doubling the number of feature maps. Max-pooling layers with a pool size of
2 × 2 reduce the spatial dimensions by half. The bottleneck consists of two convolutional
layers with eight filters each, followed by ReLU activation functions. The expansive path
involves upsampling the feature maps and concatenating them with feature maps from the
contracting path. After each upsampling layer, two convolutional layers with eight filters
and ReLU activation are applied. Concatenation combines the upsampled feature maps
with the corresponding feature maps from the contracting path. This network, designed in
this manner, consists of 6481 parameters (see Figure A2).

3.1.3. Simplified U-Net 2

The next network is designed with increased depth. In analogy to the simplified
U-Net 1, the number of filters remains constant. The contracting path comprises three
convolutional segments, each followed by a max-pooling layer with a pool size of 2 × 2.
Each convolutional segment consists of two identical convolution layers with eight filters
activated by the ReLU activation function. Padding is set to ’same’. The bottleneck
comprises two convolutional layers with eight filters each, followed by ReLU activation
functions, compressing the information into a latent representation. The expansive path
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consists of three upsampling segments, each comprising an upsampling layer followed by
two identical convolutional layers. Concatenation combines the upsampled feature maps
with the corresponding feature maps from the contracting path. The network designed in
this way consists of 9409 parameters (see Figures 6 and A3).

Figure 6. Structure of the simplified and more compact U-Net architecture.

4. Network Training Details

The U-Nets can undergo training to classify predetermined patterns using labeled
training data, a process known as supervised learning. However, in the case of experimen-
tally collected data on complex plasmas, which may consist of multiple phases, applying
labels to train the networks is impractical. Therefore, the networks need to be trained with
artificial data. During training, the predictions of each input are compared with their labels,
and the weights are readjusted accordingly. With each iteration of this process, the accuracy
of the neural network improves. An often encountered challenge is the phenomenon
known as “overfitting”. In a specific example, a U-Net model is trained to transform the
input into a binarized representation. In this representation, each pixel within 4.5 pixels of
a particle in the input is set to 1, while every other pixel is set to 0. According to [15], the
network is compiled using binary cross-entropy. Cross entropy is a mathematical concept
used to measure the dissimilarity or “distance” between two probability distributions,
often representing predicted and true data. In this context, it assesses how well the model’s
predictions align with the true labels. Binary cross entropy is a specific form of cross en-
tropy designed for binary classification tasks, where there are only two possible outcomes,
typically denoted as classes 1 and 0.

Replicating the optical properties of the PK-4 experiment, the appearance of a particle
is simulated using the open source package “deeptrack” [10]. The training set consists of
synthetic images with dimensions of 512 × 512 pixels. Each image includes a minimum
of 40 and a maximum of 350 particles. The particles are simulated as point scatterers, and
their positions in the camera plane adhere to a normal distribution. The standard deviation
for this distribution is set to 5 pixel units along the axis normal to the camera plane. Each
particle is imaged using a fluorescence microscope with numerical aperture NA between
0.6 and 0.8 and illuminating laser wavelength of 532 nm. The noise is simulated as poisson
noise with an signal to noise ratio in the range of 5 to a maximum of 200. Here, the range of
noise is in line with the well-known Rose criterion (Rose [16] (p. 97)), which states that a
signal-to-noise ratio of at least 5 is required for reliable detection [6].

Poisson noise is a basic form of uncertainty associated with the measurement of light,
inherent to the quantized nature of light and the independence of photon detections. To
enhance the training of the U-Net architecture, data augmentation is a powerful technique.
Applying various transformations to the existing training dataset, data augmentation is
used to create additional synthetic training examples. These transformations maintain the
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semantic content of the data while introducing diversity through variations in factors like
rotation, scaling, translation, and noise. The key idea is to expose the model to a broader
range of input variations, making it more robust and better at generalizing to unseen
data. The image is finally normalized by rescaling it to be contained between two random
numbers within (0, 1).

During training, we employ learning rate scheduling. In deep learning, using a fixed
learning rate can result in divergence or slow convergence. Learning rate scheduling
enables the adjustment of the learning rate throughout the training process. We initiate
training with an initial learning rate of 0.001 and decrease it to 0.0001 after the first 5 epochs.
This approach is designed to facilitate faster convergence in the initial training phases with
a higher learning rate, while a lower learning rate later on aids in fine-tuning and stabilizing
the model’s performance, bringing it closer to the optimal solution. The validation set
consists of 100 images. After 100 epochs, the network achieves approximately 98% accuracy
in analyzing test data.

5. Results on Artificial Data

To compare the U-Net architectures with trackpy and StarDist, we generated artificial
data with a signal-to-noise ratio ranging from 5 to 200 (see Figure 7). Initially, we assess
the analysis time required by the methods. We compare the time needed for datasets of
various sizes, which include 256 × 256 images. Additionally, we evaluate the analysis time
for images of different dimensions, such as 64 × 64, 128 × 128, 256 × 256, 512 × 512, and
1024 × 1024 pixels. It turned out that the analysis based on StarDist takes about ten times
longer than using the other methods. To keep the graph clear, StarDist is not listed in Figure 8.

Figure 7. Extract of the train data. Artificial 512 × 512 pixel images, with different signal to noise ratios.

Examining Figure 8, it becomes evident that the larger the dataset, the more distinct
the differences in analysis times. The simplified U-Net architectures consistently exhibit the
shortest analysis times, with simplified U-Net 1 and simplified U-Net 2 standing out. On
average, analyses based on these architectures take almost half the time compared to other
methods. When considering the image format, trackpy demonstrates faster performance
for small images, while the U-Net architectures become more efficient as the image format
increases. This suggests that operations directly applied to the image are faster for small
formats, while creating masks and subsequent detection become more efficient for larger
images. The computational complexity of the architectures directly influences their running
speed, commonly measured by the floating-point operand FLOPs [17]. To compare the
U-Net architectures, the FLOPs indicator is utilized (refer to Figure 9). FLOPs are calculated
for each layer, such as convolution layers, following a specific formula:

FLOPs = 2HW(CinK2 + 1)COut, (1)
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where H = height, W = width, Cin = number of channels of the input feature map,
K = kernel size and COut = number of output channels [17].

The FLOPs do not depend directly on the number of parameters. Networks with the
same number of parameters can have a different number of FLOPs due to different network
depth or width.

In addition, we compare the architectures using the improved indicator multiply-
accumulate operations (MACCs) (see Figure 9). For a conv layer with kernel size K, the
number of MACCs is:

MACC = K2 · Cin · HOut · WOut · COut, (2)

where K = kernel size, Cin = number of channels of the input feature map, HOut = height of
the output, WOut = width of the output and COut = number of output channels [17].

Figure 8. Time analyzing data sets of different sizes or image sizes at given noise level of 100.

Figure 9. Statistical indicators for computational complexity.

Observing Figure 9, the simplified U-Net 1 and 2 stand out prominently. In direct
comparison, these architectures remain remarkably compact, even with large input images.
For images sized 2048 × 2048 pixels, the number of FLOPs is approximately one-fifth
of the FLOPs of the full-size U-Net. Similarly, the number of MACCs is only one-tenth
of the MACCs of the original U-Net. Consequently, these architectures are significantly
less complex than the full-size model. Beyond the compactness of the architectures, their
accuracy is pivotal in the analysis. Therefore, the average percentage of correctly detected
particles at a given noise level is compared, considering the number N of incorrectly
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detected particles. Predicted particles are considered correct only if their deviation from
the actual position is within 5% of the particle diameter.

Figure 10 shows that trackpy [9] detects more particles at higher noise levels compared
to neural networks. However, assessing the mean number N of incorrectly detected parti-
cles reveals the method’s relative inaccuracy and tendency to detect particles somewhat
randomly. In strong noise conditions, the full-size U-Net performs well, with few mis-
detected particles, identifying approximately 87% of the sought particles. The simplified
U-Net architectures are less accurate in significant noise. Specifically, simplified U-Net 2
behaves similarly to trackpy, with an increase in misclassifications as image noise rises.
Starting from a signal-to-noise ratio greater than 50, the simplified U-Net 0 detects particles
as reliably as the full-size U-Net, with fewer false detections as noise decreases. For all
methods, fewer particles are falsely detected as the noise decreases. While the number
of false detections for the simplified U-Net 1, starting from a signal-to-noise ratio of 50,
is almost identical to the number for the full-size U-Net, the count of correctly detected
particles is slightly lower than that for the full-size U-Net and the simplified U-Net 0.
Performance differences may stem from the varying complexity of these model architec-
tures, enabling more complex ones to robustly segment and detect particles compared to
simpler architectures. Notably, the simplified U-Net 2 demonstrates commendable results,
suggesting an optimal balance between efficiency and effectiveness. This is particularly
relevant as data from parabolic flight campaigns typically have a signal-to-noise ratio of
around 100. In contrast, the StarDist [14] model seems less suitable for detecting particles
in a complex plasma. Despite having the fewest misclassifications, it only detects around
half of the sought-after particles, even with a high signal-to-noise ratio (SNR). Trackpy,
on the other hand, exhibits a lower percentage of correctly detected particles as noise
decreases compared to the U-Net architectures, although its mean misdetected particles
count is significantly lower. The observed performance differences could be attributed to
the varying adaptability of the methods to changing conditions, particularly in terms of
subpixel accuracy. The potential improvement in accuracy for trackpy might be achieved
through adaptation to changing conditions. On the other hand, neural networks appear to
work more independently in this regard, despite exhibiting a higher count of misclassified
particles, especially with lower noise levels.

Figure 10. Prediction of the methods at a given noise level, taking into account misclassifications.

To enhance the accuracy of neural networks, more extensive training with a diverse set
of training data, including variations in signal-to-noise ratio and background noise, could
be beneficial. This approach may lead to improved generalization and robustness of the
networks across different conditions. An illustrative comparison of predictions between
the full-size U-Net and the simplified U-Net 2 is presented in Figure 11. The visualization
clearly demonstrates that certain particles are detected by the U-Net but missed by the
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simplified U-Net 2, and vice versa. However, with a few exceptions, it can be concluded
that the two networks generally yield quite similar results.

Figure 11. Prediction of both U-net architectures for an extract of the artificial data, where the particles
marked in green were detected correctly, and the particles marked in orange were not detected. The
particles marked in red show the difference between the two networks. The image shown above has
been cropped and inverted for illustration.

6. Using the Trained Network on Experimental Data

The image data of the particles were recorded during a parabolic flight campaign
by Justus Liebig University in the A310 ZERO-G aircraft of Novespace (for more details
see Section 2).

As this is a measurement, there are no truth data available that can be used to verify
the results. The experimental data are comparatively less noisy with respect to Poisson
noise. Accordingly, the simplified U-Net should also produce resilient and solid results. A
look at Figure 12 shows that the images taken during parabolic flight campaigns contain a
large amount of position data, which further emphasizes the need for the most efficient
architecture possible. At first glance, it seems that the two U-Net architectures provide
approximately similar results. On the one hand, the simplified network detects 91% of
the particles that the fullsize network also detects. On the other hand, 19% of the particles
detected by the simplified network are not detected by the full-size net. On closer inspection,
it is noticeable that both neural networks seem to detect particles in places where apparently
none should be found (see Figure 13). These ghost particles seem to occur mainly in the
edge region. This may lead to inaccurate and inconclusive analyses afterwards. This
problem can probably be solved with more extensive training data, which are more similar
to the parabolic flight data.

Figure 12. Prediction of both U-Nets for an extract of the experimental data. The image shown above
should be cropped for illustration (purple rectangle).
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Figure 13. Prediction of both U-Nets for an extract of the experimental data. The image shown above
has been cropped for illustration.

7. Conclusions

We presented an efficient and compact U-Net version for detecting multiple particles
in complex plasmas. The results also demonstrated that the compact neural network
is relatively accurate, especially in low-noise data. Furthermore, the compact network
exhibits relatively fast performance with large datasets or larger-format images. It is worth
emphasizing that the compact U-Net is suitable for small single-board computers with
limited resources due to its low runtime and memory requirements. Accordingly, there
are possible applications for future parabolic flight campaigns to perform initial analyses
during flight. Compared directly to U-Net architectures, trackpy appears to be constrained
by the system’s complexity. The method must be repeatedly adapted to the different
noise levels in order to achieve reliable results. Essentially, the method’s parameters are
crucial for the analysis accuracy, making them a potential source of error. Accordingly, the
settings are a potentially large source of error. On the one hand, the development with deep
learning has shown that these limitations can be largely overcome. A major advantage
of the machine learning approach for particle tracking is that simulated data can often be
used to train the networks. In addition, no presettings have to be made. Thus, the trained
networks can be used universally. However, the networks detected ghost particles in the
experimental data, potentially leading to inaccurate follow-up analyses. This issue should
be considered in future developments, and efforts should be made to correct the error.

In view of further developments, the network could be evolved, corresponding to
recent studies [11,15,18], to trace the particles and reconstruct their three-dimensional
positions or analyze potential string formations [19].

Author Contributions: Conceptualization, N.D. and M.K.; methodology, N.D.; software, N.D.;
validation, N.D.; formal analysis, N.D.; investigation, N.D. and M.K.; data curation, N.D., A.S.S. and
M.H.T.; writing—original draft preparation, N.D.; writing—review and editing, N.D., M.K., A.S.S.,
M.H.T. and M.S.; visualization, N.D.; supervision, N.D.; project administration, M.H.T. and M.S.;
funding acquisition, M.H.T. and M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This project was funded by the German Federal Ministry of Economic Affairs and Climate
Action under contract No. 50WK2270B.

Data Availability Statement: The data presented in this study are available on request from the author.

Acknowledgments: This work is supported by the German Aerospace Agency (DLR). We thank the
German Aerospace Society for providing powerful PCs in accordance with the funding decision,
which facilitated the studies.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.



J. Imaging 2024, 10, 40 13 of 15

Appendix A

Figure A1. Structure of the simplified and more compact U-Net 0 architecture.

Figure A2. Structure of the simplified and more compact U-Net 1 architecture.



J. Imaging 2024, 10, 40 14 of 15

Figure A3. Structure of the simplified and more compact U-Net 2 architecture.
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