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Abstract: Image manipulation is easier than ever, often facilitated using accessible AI-based tools.
This poses significant risks when used to disseminate disinformation, false evidence, or fraud, which
highlights the need for image forgery detection and localization methods to combat this issue. While
some recent detection methods demonstrate good performance, there is still a significant gap to be
closed to consistently and accurately detect image manipulations in the wild. This paper aims to
enhance forgery detection and localization by combining existing detection methods that complement
each other. First, we analyze these methods’ complementarity, with an objective measurement of
complementariness, and calculation of a target performance value using a theoretical oracle fusion.
Then, we propose a novel fusion method that combines the existing methods’ outputs. The proposed
fusion method is trained using a Generative Adversarial Network architecture. Our experiments
demonstrate improved detection and localization performance on a variety of datasets. Although our
fusion method is hindered by a lack of generalization, this is a common problem in supervised learn-
ing, and hence a motivation for future work. In conclusion, this work deepens our understanding of
forgery detection methods’ complementariness and how to harmonize them. As such, we contribute
to better protection against image manipulations and the battle against disinformation.

Keywords: multimedia forensics; image forgery detection; image forgery localization; fusion;
complementariness

1. Introduction

Manipulating images is easier than ever using tools such as Adobe Photoshop or
recently accessible AI-based tools. This has raised significant concerns about the spread of
deceptive content, which poses risks when used for misinformation, as false evidence, or
for other fraudulent purposes. The potential misuse of manipulated images underscores
the pressing need for robust image forgery detection methods. These methods serve as a
crucial line of defense in safeguarding the integrity of visual information and mitigating
the social ramifications of image-based deception.

While substantial progress has been made in the development of image forgery de-
tection techniques [1,2], a considerable gap remains in their capacity to effectively detect
forgeries in real-world scenarios. That is, manipulated images found in the wild are often
subjected to alterations that were not seen in a detection method’s training set. For example,
methods targeting deepfake (face) forgery detection only [3–5] may not be able to detect
other types of fakes, such as splicing or copy-move attacks. In other words, generaliza-
tion is a major challenge of image forgery detection methods. Additionally, the detection
performance is hindered by post-manipulation processing, such as decreasing the quality
due to compression when shared on social media. Robustness against such (intentional or
unintentional) attacks is another major challenge of forgery detection techniques.

Each individual detection method has its own target use case, strengths and limitations.
They often operate under specific assumptions and are trained on a certain manipulation
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trace or forgery type. As a result, forensic investigators have to run and interpret multiple
detection methods, which increases their required skill level and makes the investigation
harder. Because of the complementary assumptions and methodologies of existing methods,
one can expect a boost in performance when combining multiple methods to maximize the
number of utilized forensic clues [1]. Additionally, interpreting a single output requires
less skill than interpreting multiple outputs.

Existing fusion methods that combine image forgery detection methods typically
have some limitations [6–12]. First, they may not provide generic frameworks to easily
add existing forgery detection methods. This would be particularly interesting when new
high-performing methods are developed later, and may, therefore, greatly increase the
overall performance of the fusion model. However, some existing fusion methods perform
a unique post-processing workflow on each individual method [8], adapt the individual
method [7], or target the fusion method on different versions of the same methodology
or architecture [6,11,12]. This hurdles the later addition of new individual methods to
the fusion framework. Second, existing fusion methods often do not include recent deep-
learning based methods that demonstrated better performance than the conventional
methods that are used instead. Third, existing fusion methods select complementary
methods based on their complementary forgery traces. However, they may lack an objective
measurement of their complementariness on evaluation datasets. These limitations of
existing fusion methods are further discussed in Section 2.2.

This paper explores the synergy of complementary image forgery detection methods
and proposes a novel fusion approach to enhance their performance. The main contribu-
tions are the following. First, we objectively measure the complementariness of existing
forgery detection and localization methods on several evaluation datasets. Second, we
propose a novel fusion method based on a deep-learning architecture that combines the
heatmaps of existing forgery localization methods. We take special care to provide a generic
fusion approach in which new detection methods can be added in a later stage, without the
need to develop a unique post-processing workflow for them. Additionally, we include
both conventional and more recent high-performing data-driven detection methods. As
such, we tackle the limitations of existing fusion methods.

The rest of this paper is organized as follows. First, Section 2 discusses related image
forgery detection and fusion methods. Then, we measure and analyze the complementari-
ness of existing forgery detection methods in Section 3. Subsequently, Section 4 proposes a
novel fusion method. The performance of the proposed fusion method is experimentally
evaluated in Section 5. Finally, the paper is concluded in Section 6.

2. Related Work

This section first provides an overview of the classes of existing image forgery detection
and localization algorithms in Section 2.1, with a specific focus on the algorithms utilized
in the proposed fusion method. Additionally, existing fusion methods are discussed
in Section 2.2.

2.1. Image Forgery Detection and Localization Methods

Image forgery detection methods can be classified based on the type of forensic clue
or artifact that they exploit. The two main forensic types are acquisition artifacts and
compression artifacts.

Acquisition artifacts originate from the image capture process. Methods exploiting
these artifacts focus on anomalies introduced during the transformation of a physical scene
into a digital image. Camera lenses, for instance, possess inherent imperfections. These
imperfections are harnessed for forgery detection [13,14]. Furthermore, the demosaicing
process, which interpolates data from Color Filter Arrays (CFAs), introduces correlation
patterns into the resulting image pixels. Any manipulation can distort this correlation
pattern, thereby providing a potential signature of tampering [15]. Moreover, methods
exploiting photo-response non-uniformity (PRNU) noise have been developed to iden-
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tify both camera models and manipulations by analyzing inconsistencies in the unique
patterns left by the camera sensor [16]. While exploiting the PRNU noise is effective, it
requires multiple images from the same camera, which may not always be feasible in
practical scenarios. Noiseprint [17] overcomes this limitation by extracting a camera model
fingerprint without extensive data from a specific camera. That is to say, during training,
Noiseprint used a large dataset of cameras to learn a camera model fingerprint, but during
inference, one image was sufficient. Noiseprint is a machine learning algorithm trained
using a Siamese network, and the training set contains only real data, hence there is no
bias towards specific forgery types that were seen during training. This is what one calls
one-class learning. As such, Noiseprint is a practical and generalizable solution. Similar
to Noiseprint, SpliceRadar [18] also uses camera model features in a one-class learning
architecture. Moreover, EXIF-SC [19] also uses one-class learning, and aims to determine
whether every part of the image content is self-consistent with its EXIF metadata.

A second common approach in image forgery detection involves examining anoma-
lies in JPEG compression artifacts. JPEG is a widely used image compression standard.
Mismatches in JPEG blocks and the corresponding grid are signs of manipulation [20–22].
Conventional detection methods have relied on statistical analysis of these coding artifacts,
leading to the creation of handcrafted models. However, the applicability of these models
in real-world scenarios remains a challenge due to their assumptions and limitations. An
alternative approach involves double quantization or double JPEG compression artifact-
based methods [23–26]. These methods assume that the authentic region is compressed
twice, while the manipulated region is compressed only once. This concept has been
explored using both conventional methods and deep-learning approaches, where neural
networks are trained to automatically extract relevant features. For example, Comprint
extracts a compression fingerprint using deep learning, in which inconsistencies suggest
manipulation [11]. This is similar to Noiseprint [17], with the difference that it uses com-
pression traces rather than acquisition artifacts. More recent advancements, such as the
Compression Artifact Tracing Network (CAT-Net), have employed deep learning and large
training sets to exploit both acquisition and JPEG compression artifacts, operating in both
the spatial and Discrete Cosine Transform (DCT) domain, offering improved detection
capabilities [27]. However, finding sufficient training datasets that cover and general-
ize to real-world circumstances is a main unsolved challenge in image forgery detection
and localization.

In general, deep-learning-based methods have demonstrated high performance. How-
ever, there is still a significant gap to close to reach 100% accuracy, especially under
in-the-wild circumstances.

2.2. Fusion Methods

A key challenge of fusion is identifying algorithms that complement each other, leading
to improved overall robustness and reliability of localization and detection. Several fusion
approaches have been proposed in the literature, and they can be categorized as either
feature-level or pixel-level fusion.

2.2.1. Feature-Level Fusion

Feature-level fusion occurs at the same level where image forgery detection and lo-
calization algorithms extract suitable low-level features from the image. An example of
feature-level fusion is Comprint + Noiseprint [11]. Comprint and Noiseprint are com-
plementary strategies, with Comprint exploiting compression artifacts and Noiseprint
targeting camera-based acquisition artifacts. To fuse the methods, their localization algo-
rithm is adapted by concatenating the features (i.e., fingerprints) of both Comprint and
Noiseprint, and applying expectation-maximization on the concatenated feature array.
Comprint + Noiseprint outperforms the individual Comprint and Noiseprint methods. Al-
though feature-level fusion may perform well, such approaches often encounter challenges
related to feature selection and management of a large number of features when combining
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a significant amount of algorithms [1]. Additionally, it is not straightforward to add other
existing methods, as this may require transforming those methods into features in the
same latent space. As such, pixel-level fusion methods may provide an easier framework
for fusion.

2.2.2. Pixel-Level Fusion

In pixel-level fusion, the output heatmaps of the individual forgery localization meth-
ods are combined. For example, Korus and Huang proposed to run forgery localization
at multiple scales and combine those results [6]. Similarly, Li et al. fused a statistical
feature-based approach with a complementary copy-move detection by combining the
corresponding tampering possibility maps [7]. Additionally, Liu and Pun proposed a
deep fusion network in which two complementary base networks were trained, and subse-
quently combined in a fusion network [12]. The base networks are complementary because
they are each trained on different forgery traces (noise and compression). These methods
have in common that it is not straightforward to add other existing methods, since they
adapt the individual methods, or target the fusion method on different versions of the same
methodology or architecture.

Iakovidou et al. proposed a knowledge-based fusion approach that combines several
selected conventional detection algorithms [8]. These algorithms were selected based on
their performance and based on the complementarity of their assumptions. This fusion
method first refines the individual localization heatmaps by normalizing, binarizing, con-
necting, and filtering them. Then, statistical features are extracted from these refined maps
to automate the evaluation of their usefulness in a fusion unit. The fusion takes into account
estimates of the methods’ interpretability, inter-compatibility, reliability (based on previous
experiments), and confidence. The fusion approach primarily focused on conventional
detection algorithms, while better-performing data-driven algorithms were not evaluated.
Additionally, this fusion approach incorporates certain hard-coded heuristics and assump-
tions about the selected input algorithms, which limits its practical adaptability to adding
new forgery detection algorithms.

Some recent fusion methods perform supervised deep-learning directly on the heatmaps
(i.e., the individual methods’ outputs). For example, Operation-wise Attention Fusion
(OwAF) [9] improves upon the work of Iakovidou et al. [8], by combining conventional
methods in a simple CNN architecture for supervised learning. In numerous cases, the
fusion outperforms the individual algorithms, as well as the older fusion algorithm [8].
Similarly, Siopi et al. proposed a multi-stream fusion network that combines two existing
complementary conventional detection algorithms (one based on noise and one based on
compression) [10]. The input image and the output heatmaps of the selected methods
are processed by different encoder stream networks, and the encoding outputs are subse-
quently fused. These fusion methods make it more practical to add new existing detection
methods to the set of input methods. However, a limitation of these models is their lack
of generalization to manipulations unseen during training, which is a common problem
in supervised learning [28]. Consequently, it occasionally yields worse results compared
to the best individual input detection algorithm. Furthermore, the absence of data-driven
algorithms in the fusion is a recurring observation among existing fusion methods, despite
their demonstrated superior performance over conventional detection algorithms.

In summary, the current state-of-the-art does not offer a universal solution that ad-
dresses all challenges in image forgery detection and localization. Existing fusion algo-
rithms exhibit several limitations, as they often rely on predefined heuristics and do not
cover recent data-driven algorithms. Additionally, the complementariness of the individual
methods is never objectively measured but is only motivated based on the assumptions
that they make. Hence, further advancements in this field are needed to develop more
robust and effective fusion approaches.
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3. Selection & Complementariness of Image Forgery Detection Methods

This section discusses the selected image forgery detection methods and measures
their complementariness. Note, that we objectively measure the complementarity, which is
novel compared to previous fusion methods that typically select complementary methods
solely based on the complementary assumptions that the individual methods make (i.e.,
they are based on complementary forensic clues).

This section is organized as follows. First, the experimental setup of this analysis
is described in Section 3.1. Then, the results of this analysis are reported and discussed
in Section 3.2.

3.1. Experimental Setup
3.1.1. Image Forgery Detection Algorithms

In this study, we evaluate a subset of conventional detection algorithms (ADQ1, DCT,
BLK, CAGI) that were also chosen in state-of-the-art fusion methods [8,9]. Additionally,
we add more recent, high-performing, data-driven algorithms (Noiseprint, Comprint,
Comprint + Noiseprint, and CAT-Net). It is noteworthy that Comprint + Noiseprint in
itself is already a feature-level fusion method. All selected algorithms are listed in Table 1.
Some algorithms are based on JPEG compression artifacts, whereas others on camera-based
acquisition artifacts.

Table 1. Selection of input algorithms that are evaluated on their performance and complementarity,
and used in the proposed fusion method.

Input Type

Algorithm Artifact RGB Other

ADQ1 [23] JPEG ✓ DCT analysis
DCT [22] JPEG ✓ DCT analysis
BLK [20] JPEG ✓ -
CAGI [21] JPEG ✓ -
Noiseprint [17] camera-based ✓ -
Comprint [11] JPEG ✓ -
Comprint + Noiseprint [11] camera-based & JPEG ✓ -
CAT-Net [27] JPEG & DCT ✓ DCT filter

3.1.2. Evaluation Datasets

We selected a diverse set of datasets containing manipulated images, on which we
evaluated the (complementary) performance of the selected forgery detection methods.
These datasets cover a wide range of manipulations, created by both traditional editing
software and artificial intelligence (AI) techniques. In total, we selected seven datasets,
listed in Table 2, each presenting different challenges and characteristics. Additionally,
some subsets of those datasets are used for training (see Section 5.1.1).

Table 2. Datasets used for the evaluation of image forgery detection methods and training of the
proposed fusion method.

Dataset #fake #real Format Notes Usage

IMD2020 [29] 2010 414 PNG &
JPEG Various forgery types Training & Evaluation

OpenForensics [30] 18,895 N/A JPEG Synthetic face swapping Training & Evaluation
FaceSwap [31] 879 1651 JPEG Face swaps with FaceSwap-app Training & Evaluation
VIPP [32] 62 69 JPEG Uses double JPEG compression Evaluation
DSO-1 [33] 100 100 PNG Only splicing Evaluation
Coverage [34] 100 100 TIF Only copy-moves Evaluation
NC2016 [35] 546 874 JPEG Splicing, copy-moves and inpainting Evaluation



J. Imaging 2024, 10, 4 6 of 20

3.1.3. Performance Metrics

To evaluate the performance of the image forgery localization methods on the eval-
uation datasets, we measure the pixel-level forgery localization performance using the
F1 score. The F1 score is the harmonic mean of the precision and recall, and is calculated
as follows:

F1 =
1

1
precision

+
1

recall

=
2TP

2TP + FN + FP
(1)

In Equation (1), TP, FP and FN represent the number of pixel predictions that are True
Positives, False Positives, and False Negatives, respectively. Note, that a higher F1 score
(i.e., closer to 1) is better than a lower one (i.e., closer to 0). To classify pixels as either real or
fake, the corresponding value in the heatmap needs to be compared to a certain threshold.
To eliminate the threshold’s influence on the calculation, the maximum F1 score across all
possible thresholds is reported in this paper. Additionally, it is essential to account for cases
where the heatmap’s polarity is inverted relative to the ground truth. To address this, we
consider both the original and inverted heat maps, and report the maximum F1 score.

Note, that in this section, we only measure the pixel-level localization performance,
and we do not (yet) consider the image-level detection performance. When evaluating
the proposed fusion method in Section 5, the image-level detection performance metric is
described and additionally evaluated.

3.1.4. Theoretical Oracle Fusion & Complementary F1 Delta Metric

To evaluate how complementary a set of forgery localization methods are, we define
two new concepts: the theoretical oracle fusion, and the Complementary F1 Delta metric.

The theoretical oracle fusion is the maximum F1 score of all methods, taken for each
image separately. In essence, it is an oracle that, for each image in a certain dataset, knows
which is the best-performing forgery localization method, and selects that one as its output.
In other words, a different algorithm may be selected for each image. As such, the oracle
fusion can be seen as a target score of a fusion algorithm on a certain dataset.

The Complementary F1 Delta is a measure of complementariness between two de-
tection methods. It calculates the improvement in F1 score between using one of the two
methods as a reference algorithm, on the one hand, and the theoretical oracle fusion of
both methods, on the other. When the Complementary F1 Delta is zero, it means that the
reference method performs equal or better than the second method for every image in the
dataset. A larger Complementary F1 Delta signifies that the two detection methods are
more complementary, and hence each shows strengths in different scenarios.

3.2. Performance & Complementariness Results

We measured the pixel-level forgery localization performance (F1 score) of each forgery
detection method on each evaluation dataset. Additionally, we measured the Complemen-
tary F1 Delta for each combination of two methods. These results are shown in Appendix A,
i.e., in Tables A1–A7 for the VIPP, IMD2020, DSO-1, OpenForenics, FaceSwap, Coverage,
and NC2016 dataset, respectively. These tables highlight the three largest Complimen-
tary F1 Delta values for each row in bold, underline and italics, respectively. The same
highlighting is used for the column with F1 scores.

From the tables in Appendix A, we notice that the recent CAT-Net method performs
best on all datasets, except for the DSO-1 dataset where Comprint + Noiseprint performs
best. This showcases that these more recent data-driven detection methods perform better
than conventional detection methods. Recall that existing fusion methods often limit
themselves to combining existing conventional detection methods. Hence, including these
newer, high-performing data-driven methods is one of the contributions of our work.

Regarding the complementariness of CAT-Net, we can see the Complementary F1
Delta when combining CAT-Net with each of the other methods in the first row of each
table in Appendix A. On all datasets, combining CAT-Net with Comprint + Noiseprint



J. Imaging 2024, 10, 4 7 of 20

results in the largest localization performance improvement (except for OpenForensics,
where combining CAT-Net with Comprint performs slightly better). For example, on
the FaceSwap dataset in Table A5, the individual F1 score of CAT-Net is 0.449, and the
individual F1 score of Comprint + Noiseprint is 0.412. By combining these two methods
using the theoretical oracle fusion, we can increase CAT-Net’s F1 score by 0.130. This
demonstrates the complementarity of these two high-performing methods.

Although the tables in Appendix A showcase the complementarity of each two meth-
ods, they do not consider the fusion of all methods. Therefore, we additionally show the
localization performance of theoretical oracle fusion of all methods, in Table 3. This table
shows the F1 scores of each individual method (again), in addition to the best performance
of fusing just two methods, and the performance of fusing all methods, using the theoret-
ical oracle. Moreover, the last row of the table shows the performance of the proposed
fusion method, which is irrelevant in this section, and is further discussed in Section 5.2.1.
Note, that in this table, we highlight the three largest values for each column in bold,
underline and italics, respectively. It is no surprise that the first and second largest values
of each column are the oracle fusion rows, as these take the image-wise maximum of the
individual methods.

Table 3. The average forgery localization performance (F1 score) of every method on every
dataset, the theoretical improvement of oracle fusion, the simple fusion methods, and the proposed
fusion method. We highlight the three largest values for each column in bold, underline and italics.

Algorithm F1 Score
VIPP IMD2020 DSO-1 OpenForensics FaceSwap Coverage NC2016

CAT-Net [27] 0.717 0.850 0.675 0.948 0.449 0.573 0.487
ADQ1 [23] 0.503 0.292 0.420 0.483 0.282 0.211 0.206
BLK [20] 0.431 0.263 0.456 0.263 0.106 0.242 0.233
CAGI [21] 0.437 0.297 0.512 0.294 0.184 0.298 0.293
DCT [22] 0.432 0.313 0.347 0.423 0.191 0.222 0.183
Comprint [11] 0.496 0.297 0.763 0.630 0.351 0.349 0.398
Comprint + Noiseprint [11] 0.581 0.437 0.813 0.711 0.412 0.368 0.439
Noiseprint [17] 0.556 0.396 0.810 0.671 0.347 0.332 0.413

Best oracle fusion of 2 methods 0.807 0.857 0.877 0.961 0.579 0.616 0.594
Oracle fusion of all methods 0.830 0.864 0.914 0.965 0.653 0.653 0.626

Maximum 0.700 0.776 0.822 0.924 0.435 0.488 0.514
Minimum 0.673 0.637 0.793 0.897 0.558 0.478 0.476

Proposed fusion method 0.733 - 0.753 - - 0.538 0.510

From Table 3, we notice that the F1 score can be improved by combining two methods,
and even more so when combining all selected methods. For example, CAT-Net has the
best individual localization performance on the NC2016 dataset (F1 score of 0.487). The
best oracle fusion of 2 methods increases this F1 score to 0.594 (by combining CAT-Net
with Comprint + Noiseprint, see Table A7). Moreover, the oracle fusion of all methods
brings the performance to an F1 score of 0.626. This is a significant boost in performance,
demonstrating the potential of fusing all methods. Hence, in Section 4, we propose a
practical fusion method that combines all these detection methods.

In summary, this section demonstrated the potential of fusing existing image forgery
detection and localization methods. It should be noted that we analyzed the performance
using a theoretical oracle fusion, which cannot be applied in real-world scenarios. Instead,
it serves only as a demonstration of fusion potential and aids in measuring the complemen-
tariness of existing methods. As such, we motivate combining the selected methods in our
proposed fusion method, in Section 4.
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4. Proposed Fusion Method

In this section, we propose a novel pixel-level fusion method that combines the
outputs of the selected image forgery detection and localization methods listed in Table 1,
in addition to the investigated image.

We interpret the problem of fusing multiple heatmaps into a single heatmap as an
image-to-image translation task. A widely adopted deep-learning architecture for address-
ing image-to-image challenges is the Generative Adversarial Network (GAN) [36–40]. In
our context, a conditional Generative Adversarial Network (cGAN) serves as the founda-
tion of the proposed fusion algorithm. A GAN consists of two fundamental models: a
Generator (G) and a Discriminator (D). These two models engage in a competitive dynamic,
with the generator striving to generate the fused heatmaps as close as possible to the ground
truth, while the discriminator aims to distinguish the difference between the ground truth
and fused heatmaps. In the context of GANs, the goal is to learn a transformation from
a random noise vector z to an output image y, denoted as G : z → y. However, given
our objective of using heatmaps as input, the utilization of a conditional GAN (cGAN) is
more fitting. This type of GAN utilizes additional conditional information, x, resulting in
G : {x, z} → y, in which x is the concatenation of the heatmaps and original image [41]

In the following sections, we delve into the employed training methodologies and
architectures (Section 4.1). Subsequently, we discuss how the fusion algorithm is used
during inference (Section 4.2).

4.1. Training Methodology

Our proposed fusion method is based on a similar training objective as typical cGANs,
such as the Pix2Pix method. Pix2Pix is a widely used model in image-to-image transla-
tion [42]. In general, the main objective of a cGAN is to identify the optimal generator (G∗)
capable of generating outputs that closely resemble the distribution of real data (i.e., the
ground truth forgery masks). In our proposed method, finding the optimal generator G∗ is
formulated as follows:

G∗ = arg min
G

max
D

LcGAN(G, D) + λLL2(G). (2)

In other words, G seeks to minimize the cGAN loss against the adversarial D, which in
contrast strives to maximize the loss.

In Equation (2), we combine the typical loss function of a cGAN LcGAN with the L2
loss LL2(G). These loss functions are expressed as follows:

LcGAN = Ex,y[log D(x, y)] +Ex,z[log (1 − D(x, G(x, z))], (3)

LL2(G) = Ex,y,z[||y − G(x, z)||2]. (4)

By including the L2 loss, the generator has an additional goal of producing images
that closely resemble the ground truth. Note, that we utilize the L2 loss, which is in contrast
to Pix2Pix which uses the L1 loss [42]. In Pix2Pix, the L1 loss was chosen to minimize image
blurring. However, blurriness has less impact on performance in our forgery localization
task. Instead, using the L2 loss intensifies the penalty for generating noisy heatmaps,
amplifying regions with significant errors and disregarding parts with negligible error, due
to the quadratic nature of the L2 distance.

It is additionally worth noting that the actual input no longer involves random noise
(z), as this approach was found to be ineffective [42]. Instead, noise is introduced through
dropout, applied across multiple layers of the generator [42]. This is conducted both during
training and inference (the latter is further discussed in Section 4.2).

The generator and discriminator are individually discussed in depth in Sections 4.1.1
and 4.1.2, respectively.
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4.1.1. Generator

The high-level process of training the generator is visualized in Figure 1. The generator
loss consists of two parts.

Figure 1. The training procedure of the generator.

First, it aims to minimize the difference between the generator’s output (fused heatmap)
and the discriminator’s expectations. This is achieved by using a sigmoid-cross-entropy loss
of the discriminator’s output and an array of ones (which signifies the discriminator’s
expectation for every patch to originate from the ground truth). A low score indicates
effective deception of the discriminator and vice versa.

Second, the generator aims to minimize the difference between the fused heatmap and
the ground truth. This is achieved by using the L2 loss, also known as the Mean Squared
Error (MSE), between the fused heatmap and the ground truth. The overall loss is the sum
of the sigmoid-cross-entropy loss and the MSE (the latter first multiplied by lambda, which
is set to λ = 100, as conducted in Pix2Pix [42]). This combined loss adapts the generator’s
neural network weights during training, causing it to become better at generating good
fused heatmaps.

The generator’s architecture is based on U-Net [43], with some modifications. The
U-Net architecture involves two main parts: an encoder which iteratively downsamples
the previous layers, and a decoder which iteratively upsamples the layers back to the
original resolution. Each iterative component contains convolution, batch normalization
and Rectified Linear Unit (ReLu) layers. Moreover, the first three upsample components
include a dropout layer in between the batch normalization and ReLu. This dropout
accounts for randomness, as discussed in Section 4.1. Additionally, skip connections link
the corresponding decoder and encoder blocks at the same resolutions. These connections
concatenate their channels, allowing information to be shared between them.

4.1.2. Discriminator

The high-level process of training the discriminator is visualized in Figure 2. The
discriminator’s loss is separated into two parts.

First, the fused heatmap is presented to the discriminator along with the input images
(i.e., the heatmaps and investigated image). The discriminator’s output is then employed
to calculate the sigmoid-cross-entropy loss against an array of zeros (which, in contrast to
an array of ones, signifies the discriminator’s expectation for every patch to be originating
from the fused heatmap, and not the ground truth). This constitutes the generated loss.
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Figure 2. The training procedure of the discriminator. The dotted box around the discriminator
signifies that the weights of these discriminators are shared.

Second, the ground truth and the input images are jointly supplied to the discriminator.
The discriminator’s output is again utilized to compute the sigmoid-cross-entropy loss, yet
this time against an array of ones (signifying the expectation to be originating from the
ground truth). This constitutes the real loss. The final discriminator loss is the sum of the
generated loss and the real loss.

The discriminator’s architecture is based on a convolutional PatchGAN classifier [42],
in order to classify whether image patches originate from either a fused heatmap or the
ground truth. This architecture consists of multiple downsampling blocks responsible
for creating patches. These downsampling blocks also follow the convolution, batch
normalization, and ReLu structure. Additionally, a layer of spectral normalization [44] is
introduced after each convolutional layer. This spectral normalization layer re-normalizes
the weights of the convolutional layer whenever they are updated, creating a network that
mitigates gradient explosion problems, and decreasing the discriminator’s rapid learning
rate. Consequently, it allows the generator more time to learn during the initial epochs,
where it may struggle.

4.2. Inference Methodology

When applying the model in practice, on real-world images, the fusion model runs in
inference mode. The inference process of our fusion algorithm mirrors that of the Pix2Pix
architecture. Specifically, only the generator component of the algorithm is utilized.

Note, that our proposed model utilizes the dropout layers of the generator during its
inference. This is in contrast to a typical inference protocol, in which dropout layers are not
utilized during inference, but only during training. However, in the context of the random
nature inherent to (c)GANs, the dropout layer continues to be employed during inference.
This was also conducted in Pix2Pix [42].

As such, the fusion algorithm can effectively process new images and produce fused
heatmaps that are well-suited to real-world scenarios.

5. Evaluation of Proposed Fusion Method

This section evaluates the proposed fusion method described in Section 4. First, the
experimental setup is described in Section 5.1. Then, the results of forgery localization and
forgery detection performance are discussed in Section 5.2.
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5.1. Experimental Setup
5.1.1. Training Setup

For this study, the OpenForensics [30], FaceSwap [31], and IMD2020 [29] datasets of
manipulated images are used for training the model. These datasets were chosen due
to their size and wide coverage of diverse forgery types. This leaves the other datasets
listed in Table 2 purely for evaluation purposes. In the selected datasets for training, a
train/validation/test split is made, distributing the data with an 80/10/10 ratio. Images
are randomly selected from the datasets for each split. Additionally, to create a balanced
dataset, we included an equal number of training and validation images from each of
the datasets. Among the three, FaceSwap is the smallest dataset, having 703 training and
88 validation images. As such, the same quantities of OpenForensics and IMD2020 data are
used during training, resulting in a training dataset of 2109 images and a validation dataset
of 264 images. Note, that the test datasets are not artificially limited, and remain 10% of the
size of the full datasets.

For every image in the dataset, both the image itself and all heat maps produced by
the selected input algorithms from Table 1 are utilized as input. It is noteworthy that one
of the input algorithms is Comprint + Noiseprint, which is a feature-level fusion method.
As such, we combine feature-level and pixel-level fusion. Before using these input images
for training, a preprocessing stage is conducted, similar to in Pix2Pix [42]. That is, all
heatmaps and the investigated image are first resized to a resolution of 256 × 256 pixels.
Afterward, the training set is augmented by resizing the images to 286 × 286 and then
randomly cropping them back to the size of 256 × 256. Additionally, random mirroring is
implemented by horizontally flipping the image (left to right). All inputs are concatenated
at the channel level, generating a composite input size of 256 × 256 × 11 pixels for each
image. Eleven channels are the result of concatenating the three RGB channels of the input
image with the 8 channels of the single-channel heatmaps.

The actual training exists out of 40 epochs with a batch size of 1, yielding 2109 steps
per epoch. We adopt the Adam solver, following the parameters used in Pix2Pix [42]: a
learning rate of 0.0002, and momentum parameters β1 = 0.5 and β2 = 0.999.

5.1.2. Evaluation Setup

The datasets used for evaluating the model’s performance are the same as those
discussed in Section 3.1.2, and listed in Table 2. However, the datasets used for the training
of the model have been swapped for the newly-created test split. The other evaluation
datasets remain unchanged.

In addition to the pixel-level forgery localization performance metric (F1 score), we
additionally measure the image-level forgery detection performance to evaluate the fusion
model. As an image-level forgery detection measure, we utilize the Area Under the ROC
Curve (AUC). That is, first, a global statistic is extracted from the heatmap. Next, this global
statistic is compared to a threshold, which determines whether the algorithm predicts the
image to be forged or pristine. To make the evaluation independent of a certain threshold,
the Receiver Operating Characteristic (ROC) curve is used, which illustrates the TP rate
against the FP rate at different threshold values for each dataset. Afterward, the ROC is used
to compute the AUC, which integrates the ROC curve over all threshold values, yielding
a single value from 0 to 1. An AUC of 0.5 indicates random performance. Higher AUC
values indicate better detection capabilities. To ensure the evaluation’s independence from
the choice of the global statistic, the global AUC score is computed as the maximum AUC
among several considered global statistic options, namely the average, median, standard
deviation, 99.5th percentile, and 97.5th percentile. This approach mitigates any potential
bias that might arise from favoring a particular global statistic.

In addition to comparing the performance of the proposed fusion method to the in-
dividual methods’ performance, and the theoretical oracle fusion performance, we also
compare it to two simple fusion strategies: Maximum and Minimum. These fusion methods
transform the input heatmaps from the image forgery detection methods into a fused
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heatmap. Each pixel value of a fused heatmap is the maximum (or minimum, respec-
tively) of the corresponding pixel values in the input heatmaps. For these simple fusion
methods, we selected only CAT-Net and Comprint + Noiseprint, which are the two best
performing forgery detection methods (as discussed in Section 3.2. We do this because we
noticed noisy fused heatmaps with worse performance when additionally using the other
6 input methods.

Note, that we do not compare the results of our proposed method to related fusion
methods. That is because existing methods fuse other methods than in our work, often only
focusing on conventional methods. Moreover, in many state-of-the-art fusion methods, it
is not straightforward to add new detection methods as input. Even when it is relatively
more easy, it may require re-training those models. Finally, existing fusion methods are
typically not available open-source.

5.2. Results

We discuss the performance of forgery localization and detection in Sections 5.2.1
and 5.2.2, respectively.

5.2.1. Image Forgery Localization Performance

The F1 scores for forgery localization of the proposed fusion method are given in
the last row of Table 3. Recall that, in this table, we highlight the three largest values for
each column in bold, underline and italics, respectively. Additionally, recall that the oracle
fusion models are theoretical and cannot be applied in practice. Instead, they only serve as
a theoretical target that demonstrates the fusion potential. The proposed fusion method
is not evaluated on the full IMD2020, OpenForensics and FaceSwap datasets, as it was
trained on a portion of these datasets. Instead, the F1 score of the test splits of IMD2020,
OpenForensics and FaceSwap are given in Table 4.

Table 4. The average forgery localization performance (F1 score) of every method on every test
dataset (i.e., the test split of those datasets), the theoretical improvement of oracle fusion, the simple
fusion methods, and the proposed fusion method. We highlight the three largest values for each
column in bold, underline and italics. Note, that the training splits of these datasets were used during
training of the proposed fusion method.

Algorithm F1 Score
IMD2020 Test OpenForensics Test FaceSwap Test

CAT-Net [27] 0.863 0.952 0.448
ADQ1 [23] 0.340 0.479 0.322
BLK [20] 0.274 0.256 0.134
CAGI [21] 0.316 0.290 0.211
DCT [22] 0.336 0.418 0.220
Comprint [11] 0.424 0.626 0.421
Comprint + Noiseprint [11] 0.457 0.710 0.466
Noiseprint [17] 0.408 0.667 0.409

Best oracle fusion of 2 methods 0.873 0.961 0.584
Oracle fusion of all methods 0.883 0.965 0.647

Maximum 0.806 0.926 0.439
Minimum 0.672 0.898 0.580

Proposed fusion method 0.869 0.966 0.814

The proposed fusion algorithm demonstrates exceptional localization performance on
the test splits of the IMD2020, OpenForensics, and Faceswap datasets in Table 4. Impres-
sively, it even surpasses the target of theoretical oracle fusion of all methods. Additionally,
it also surpasses the Maximum and Minimum fusion methods.

In contrast to the test splits of the datasets that were used during training, evaluating
the localization performance on previously unseen datasets performs less impressively,
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as presented in Table 3. On those datasets, the proposed fusion method outperforms the
individual forgery localization methods for the VIPP and NC2016 dataset, but scores worse
than the best individual method for the DSO-1 and Coverage dataset. Additionally, the
oracle fusion methods scored higher than the proposed fusion methods in all those datasets.
This demonstrates the lack of generalization on unseen datasets, which is also an issue in
related work that uses supervised learning [9,10].

In our case, the generalization issue may be specifically attributed to the substantial
performance gap between CAT-Net and the other input algorithms, which is especially
prevalent on the IMD2020 and OpenForensics training datasets, while less outspoken on
the FaceSwap training dataset. Consequently, this creates a bias towards the heatmaps
generated by the CAT-Net algorithm. This lack of generalization is also an implication of
using two-class learning in image forgery localization/detection, in contrast to one-class
learning where no fake images are seen during training [1,11,17]. In such two-class learning
methods, obtaining a training dataset that contains all possible forgeries is impractical.
Although the method does not generalize very well to unseen datasets, it should be noted
that the performance of the proposed fusion method is still relatively good. Most notably,
the proposed method performs better than all individual input methods on two datasets
(VIPP and NC2016). On the other datasets (DSO-1 and Coverage), the proposed fusion
method still obtains an F1 score between the top-performing methods, and may hence still
help to provide forensic investigators with a single reliable heatmap, rather than a large
set of heatmaps from all individual methods. As such, the proposed fusion method can be
used in practical applications.

When comparing the proposed fusion method to the simple Maximum and Minimum
fusion methods, we make the following observations. For the DSO-1 and NC2016 methods,
the simple fusion methods showcase a slightly better performance. However, for the VIPP
and Coverage datasets, as well as the test splits of IMD2020, OpenForensics, and Faceswap,
the proposed fusion method outperforms the simple fusion methods.

Visual examples of the forgery localization heatmaps can be observed in Figure 3.
These examples demonstrate the ability of the fusion method to successfully learn to
combine the heatmaps of the individual methods into a more accurate fused heatmap.

5.2.2. Image Forgery Detection Performance

The AUC scores for forgery detection are given in Table 5. Note, that the OpenForensics
dataset is not present in the table, as it does not contain real images and can, therefore, not
be evaluated on the binary forgery detection task. Additionally, note that we evaluate the
full datasets (as in Table 3), and not the test splits of the datasets (as in Table 4).

Table 5. Evaluation of the detection performance (AUC) of the proposed simple fusion algorithms
compared to both the input algorithms and the complete fusion threshold of the input algorithms.
We highlight the three largest values for each column in bold, underline and italics.

Algorithm AUC
VIPP IMD2020 DSO-1 FaceSwap Coverage NC2016

CAT-Net [27] 0.807 0.933 0.786 0.661 0.697 0.758
ADQ1 [23] 0.634 0.686 0.654 0.727 0.506 0.603
BLK [20] 0.592 0.553 0.579 0.496 0.508 0.525
CAGI [21] 0.644 0.615 0.650 0.498 0.530 0.558
DCT [22] 0.649 0.611 0.410 0.574 0.505 0.498
Comprint [11] 0.614 0.644 0.960 0.526 0.545 0.566
Comprint + Noiseprint [11] 0.630 0.634 0.960 0.533 0.556 0.597
Noiseprint [17] 0.608 0.543 0.861 0.517 0.534 0.534

Maximum 0.700 0.803 0.881 0.579 0.609 0.672
Minimum 0.734 0.750 0.775 0.738 0.618 0.696

Proposed fusion method 0.790 - 0.792 - 0.671 0.686
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Figure 3. Examples of forged images and the corresponding heatmaps by the input forgery localiza-
tion algorithms and the proposed fusion method.

In Table 5, we notice similar trends as seen in the forgery localization performance
discussion in Section 5.2.1. That is, the proposed fusion method obtains relatively high
AUC values, but does not perform better than the best individual method. Notably, on
DSO-1, a significant gap is observed between the best individual method and the proposed
fusion method. This worse performance can again be attributed to the fusion method
being biased towards CAT-Net heatmaps, as also discussed in Section 5.2.1. That is, on
DSO-1, CAT-Net’s performance is particularly worse than Comprint, Noiseprint, and
Comprint + Noiseprint, whereas it is typically the opposite in the other evaluation datasets
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and in the training datasets. As such, when CAT-Net performs badly, the bias towards
CAT-Net has a particularly negative effect on the observed fusion detection performance.
Despite the fusion method not performing better than the best individual method, it is
still a relatively well-performing method and is positioned in second place for the VIPP,
Coverage, and NC2016 datasets. Moreover, in comparison with the simple fusion methods
(Maximum and Minimum), the proposed fusion method showcases worse AUC values
for the DSO-1 and NC2016 datasets, but better results for the VIPP and Coverage datasets.
This is the same observation we made when discussing the image forgery localization
performance in Section 5.2.1.

In general, this section demonstrated that the proposed fusion method is a viable ap-
proach to combine the outputs of multiple individual methods into a single fused heatmap.

6. Conclusions

This study aims to enhance image forgery detection and localization methods, by
uniting existing forgery detection methods.

We evaluated the performance and complementariness of selected existing methods,
focusing on both conventional and more recent data-driven methods. We objectively
demonstrated the potential to combine multiple detection methods on the basis of the
theoretical oracle performance and Complementary F1 Delta metric, which are novel
concepts proposed for the first time in this paper.

Moreover, we propose a deep-learning-based fusion method that is trained using
cGAN architecture. Our approach shows good results in enhancing forgery localization.
Although it sometimes struggles to generalize on unseen datasets, its performance is
relatively high and can help forensic investigators with the interpretation of the results of
forgery detection and localization methods.

Future work may tackle the generalization issue by utilizing more training data, from a
larger variety of datasets with a larger variety of forgery types. Additionally, the generator
architecture in our proposed framework could be replaced with cutting-edge alternatives
such as vision transformers [45] in order to further refine the performance, which can be
inspired by related work that evaluated the generalization of deep-learning models [28].
Finally, we can improve the overall fusion performance by including new high-performing
methods, such as TruFor [46] and FOCAL [47], which are relatively easy to include in our
proposed fusion framework.

In conclusion, this work contributes to a deeper understanding of image forgery
detection and localization. We showcased their complimentariness, as well as both the
promising results and limitations of fusion. As such, we further protect our society from
misinformation, false evidence, and fraud.
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Appendix A. Performance and Complementarity Tables

Table A1. VIPP dataset: forgery localization performance & Complimentary F1 Delta. We highlight
the three largest values for each column in bold, underline and italics.

Dataset: VIPP [32]

Algorithm F1
Complementary F1 Delta

CAT-Net ADQ1 BLK CAGI DCT Compr Compr Noisepr+ Noisepr

CAT-Net [27] 0.716 - 0.039 0.049 0.019 0.045 0.037 0.091 0.088
ADQ1 [23] 0.503 0.246 - 0.087 0.072 0.054 0.122 0.155 0.146
BLK [20] 0.431 0.334 0.160 - 0.117 0.097 0.154 0.206 0.175
CAGI [21] 0.438 0.299 0.144 0.111 - 0.095 0.134 0.187 0.180
DCT [22] 0.432 0.329 0.132 0.096 0.100 - 0.147 0.198 0.184
Comprint [11] 0.496 0.257 0.138 0.089 0.075 0.083 - 0.095 0.139
Compr + Noisepr [11] 0.581 0.227 0.087 0.057 0.044 0.050 0.011 - 0.062
Noiseprint [17] 0.556 0.248 0.090 0.050 0.062 0.060 0.079 0.086 -

Table A2. IMD2020 dataset: forgery localization performance & Complimentary F1 Delta. We
highlight the three largest values for each column in bold, underline and italics.

Dataset: IMD2020 [29]

Algorithm F1
Complementary F1 Delta

CAT-Net ADQ1 BLK CAGI DCT Compr Compr Noisepr+ Noisepr

CAT-Net [27] 0.850 - 0.001 0.003 0.003 0.002 0.006 0.008 0.006
ADQ1 [23] 0.292 0.560 - 0.064 0.087 0.074 0.138 0.173 0.150
BLK [20] 0.263 0.590 0.093 - 0.096 0.085 0.169 0.201 0.162
CAGI [21] 0.297 0.556 0.083 0.062 - 0.098 0.151 0.181 0.146
DCT [22] 0.313 0.538 0.052 0.035 0.081 - 0.135 0.163 0.134
Comprint [11] 0.297 0.466 0.040 0.041 0.058 0.058 - 0.071 0.087
Compr + Noisepr [11] 0.437 0.421 0.029 0.027 0.041 0.040 0.025 - 0.034
Noiseprint [17] 0.396 0.461 0.046 0.029 0.048 0.052 0.082 0.075 -

Table A3. DSO-1 dataset: forgery localization performance & Complimentary F1 Delta. We highlight
the three largest values for each column in bold, underline and italics.

Dataset: DSO-1 [33]

Algorithm F1
Complementary F1 Delta

CAT-Net ADQ1 BLK CAGI DCT Compr Compr Noisepr+ Noisepr

CAT-Net [27] 0.675 - 0.029 0.072 0.072 0.019 0.176 0.202 0.201
ADQ1 [23] 0.420 0.301 - 0.082 0.149 0.024 0.365 0.405 0.396
BLK [20] 0.456 0.291 0.043 - 0.131 0.014 0.349 0.386 0.378
CAGI [21] 0.512 0.235 0.053 0.076 - 0.013 0.291 0.331 0.322
DCT [22] 0.347 0.347 0.082 0.123 0.179 - 0.420 0.470 0.466
Comprint [11] 0.763 0.088 0.016 0.043 0.040 0.004 - 0.055 0.081
Compr + Noisepr [11] 0.813 0.063 0.008 0.029 0.030 0.003 0.004 - 0.038
Noiseprint [17] 0.810 0.067 0.007 0.025 0.025 0.003 0.034 0.042 -
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Table A4. OpenForensics dataset: forgery localization performance & Complimentary F1 Delta. We
highlight the three largest values for each column in bold, underline and italics.

Dataset: OpenForensics [30]

Algorithm F1
Complementary F1 Delta

CAT-Net ADQ1 BLK CAGI DCT Compr Compr Noisepr+ Noisepr

CAT-Net [27] 0.948 - 0.001 0.001 0.002 0.001 0.012 0.012 0.009
ADQ1 [23] 0.483 0.466 - 0.020 0.046 0.027 0.252 0.277 0.225
BLK [20] 0.263 0.686 0.240 - 0.086 0.178 0.386 0.453 0.411
CAGI [21] 0.294 0.657 0.235 0.056 - 0.182 0.365 0.429 0.389
DCT [22] 0.423 0.526 0.087 0.019 0.053 - 0.299 0.329 0.274
Comprint [11] 0.630 0.331 0.105 0.019 0.028 0.092 - 0.108 0.151
Compr + Noisepr [11] 0.711 0.249 0.049 0.006 0.012 0.041 0.028 - 0.058
Noiseprint [17] 0.671 0.286 0.037 0.003 0.012 0.025 0.110 0.098 -

Table A5. FaceSwap dataset: forgery localization performance & Complimentary F1 Delta. We
highlight the three largest values for each column in bold, underline and italics.

Dataset: FaceSwap [31]

Algorithm F1
Complementary F1 Delta

CAT-Net ADQ1 BLK CAGI DCT Compr Compr Noisepr+ Noisepr

CAT-Net [27] 0.449 - 0.068 0.016 0.044 0.032 0.099 0.130 0.105
ADQ1 [23] 0.282 0.235 - 0.023 0.048 0.024 0.127 0.173 0.153

BLK [20] 0.106 0.359 0.199 - 0.109 0.104 0.265 0.318 0.249
CAGI [21] 0.184 0.310 0.146 0.031 - 0.084 0.210 0.259 0.203
DCT [22] 0.191 0.290 0.115 0.019 0.077 - 0.192 0.244 0.192
Comprint [11] 0.351 0.199 0.057 0.020 0.043 0.032 - 0.074 0.125
Compr + Noisepr [11] 0.412 0.168 0.041 0.011 0.031 0.022 0.013 - 0.060
Noiseprint [17] 0.347 0.208 0.086 0.008 0.040 0.035 0.128 0.125 -

Table A6. Coverage dataset: forgery localization performance & Complimentary F1 Delta. We
highlight the three largest values for each column in bold, underline and italics.

Dataset: Coverage [34]

Algorithm F1
Complementary F1 Delta

CAT-Net ADQ1 BLK CAGI DCT Compr Compr Noisepr+ Noisepr

CAT-Net [27] 0.573 - 0.003 0.005 0.032 0.004 0.037 0.043 0.027
ADQ1 [23] 0.211 0.365 - 0.040 0.094 0.023 0.146 0.165 0.128
BLK [20] 0.242 0.335 0.008 - 0.073 0.010 0.123 0.141 0.107
CAGI [21] 0.298 0.307 0.006 0.017 - 0.009 0.104 0.118 0.086
DCT [22] 0.222 0.355 0.012 0.030 0.085 - 0.139 0.157 0.120
Comprint [11] 0.349 0.261 0.009 0.017 0.053 0.013 - 0.063 0.046
Compr + Noisepr [11] 0.368 0.248 0.008 0.015 0.049 0.011 0.044 - 0.030
Noiseprint [17] 0.332 0.268 0.007 0.017 0.053 0.010 0.063 0.066 -
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Table A7. NC2016 dataset: forgery localization performance & Complimentary F1 Delta. We highlight
the three largest values for each column in bold, underline and italics.

Dataset: NC2016 [35]

Algorithm F1
Complementary F1 Delta

CAT-Net ADQ1 BLK CAGI DCT Compr Compr Noisepr+ Noisepr

CAT-Net [27] 0.487 - 0.017 0.034 0.055 0.010 0.094 0.107 0.097
ADQ1 [23] 0.206 0.298 - 0.077 0.129 0.032 0.220 0.251 0.227
BLK [20] 0.233 0.287 0.050 - 0.092 0.028 0.186 0.218 0.192
CAGI [21] 0.293 0.250 0.039 0.030 - 0.026 0.139 0.169 0.146
DCT [22] 0.183 0.313 0.055 0.079 0.137 - 0.239 0.266 0.239
Comprint [11] 0.398 0.183 0.027 0.021 0.037 0.024 - 0.060 0.073
Compr + Noisepr [11] 0.439 0.154 0.018 0.012 0.026 0.009 0.019 - 0.022
Noiseprint [17] 0.413 0.171 0.021 0.013 0.030 0.010 0.059 0.048 -
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