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Abstract: With the advent of the COVID-19 pandemic, the global consumption of single-use surgical
masks has risen immensely, and it is expected to grow in the coming years. Simultaneously, the
disposal of surgical masks in the environment has caused plastic pollution, and therefore, it is exigent
to find innovative ways to handle this problem. In this study, surgical masks were processed in
a laboratory using the mechanical grinding method to obtain recycled surgical masks (RSM). The
RSM was added in doses of 0%, 1%, 2%, 3%, and 4% by volume of geopolymer bricks, which were
synthesized with ground granulated blast furnace slag (GGBS), rice husk ash (RHA), sand, and
sodium silicate (Na2SiO3) at ambient conditions for a duration of 28 days. The developed bricks were
tested for compressive strength, flexural strength, density, water absorption, efflorescence, and drying
shrinkage. The results of the study reveal that compressive strength and flexural strength improved
with the inclusion of RSM in the bricks. The highest values of compressive strength and flexural
strength were 5.97 MPa and 1.62 MPa for bricks with 4% RSM, respectively. Further, a reduction in
the self-weight of the bricks was noticed with an increase in RSM. There was no pronounced effect
of RSM on the water absorption and efflorescence properties. However, the RSM played a role in
reducing the drying shrinkage of the bricks. The sustainability analysis divulges the catalytic role of
RSM in improving material performance, thereby proving to be a potential candidate for low-carbon
material in the construction industry.

Keywords: strength; durability; sustainability; geopolymer bricks; recycled surgical masks

1. Introduction

The emergence of the COVID-19 pandemic has led to an escalation in the consump-
tion of single-use surgical masks due to better healthcare expenditure and an increase in
respiratory protection. According to a recent market analysis report, the trade of surgical
masks is expected to expand at a compound annual growth rate of 5.1% from 2022 to
2030 [1], which is an indication of the growing use of surgical masks in the coming years.
The use of surgical masks greatly reduced the spread of COVID-19 disease; however, its
negative environmental impact due to improper handling and disposal is becoming a
widespread concern. Surgical masks are typically made of polypropylene (PP) and other
plastic products, which are manufactured by chain-growth polymerization and processed
thermally to fit the required products [2]. The PP masks are made of three fabric layers,
which are the outer non-woven fabric, a middle melt-blown fabric, and an inner soft fiber
layer similar to the outer layer [3]. According to Prata et al. [4], during the COVID-19
pandemic, approximately 129 billion single-use face masks were disposed of every month
across the globe, and as per Nghiem et al. [5], all these PP masks represent more than half a
million tons of PP waste in the world. Further, in the first two years of the pandemic, at
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least 4 million tons of improperly handled PP waste from personal protective equipment
would have been released into the environment. The PP waste released from surgical masks
will cause a serious ecological hazard [6,7] because PP masks are made of fibers [8], and
these materials disintegrate into secondary microplastics at a higher rate compared to other
plastic products such as bags and boxes [9,10]. Additionally, PP mask microplastics can
persist in the environment for up to 450 years [5], and this can cause serious ill effects on
living organisms [11]. Therefore, it is exigent to explore different ways to handle the waste
from surgical masks and mitigate its ill effects on the environment.

The use of plastic waste such as polystyrene (PS), polypropylene (PP), low-density
polyethylene (LDPE), high-density polyethylene (HDPE), and polyethylene terephthalate
(PET) have shown potential in construction applications [12]. Arulrajah et al. [13] utilized
LDPE and HDPE, along with demolition waste, as road construction material. The results
of their study showed that adding 3 to 5% of plastic waste in the pavement base and sub-
base provides sufficient resilient modulus for pavement application. Grady [14] reviewed
the possibilities of waste plastic in asphalt concrete. Accordingly, LDPE and HDPE can
be utilized in asphalt concrete at an optimum dose to improve the tensile properties and
rutting resistance of asphalt concrete. Salim et al. [15] investigated the use of PET waste in
reinforcing building plaster; the study’s results showed improvement in the mechanical
performance of plaster material in bending, resulting in better flexure strength for the
plaster. Almohana et al. [16] reviewed the sustainable production of concrete with plastic
waste. The authors shared an interesting perspective on using plastic waste to replace
natural aggregates in concrete to enhance its sound and thermal insulation. Additionally,
the lower density of plastic waste, when compared to natural aggregates, reduced the
overall weight of the concrete and encouraged the production of lightweight green concrete
for various non-structural applications in building applications.

Akinwumi et al. [17] investigated the suitability of shredded plastic waste in com-
pressed earth bricks. The results of this study showed bricks with 1% plastic waste exhibited
the highest compressive strength, with an increase of 244% when compared to control
bricks. Additionally, at an optimum plastic waste of 1%, the durability properties of the
bricks were not adversely affected, and thus, the practice of using plastic waste in bricks
provides an opportunity for affordable housing with reduced environmental nuisance.

Similar to the problem of plastic waste, one of the preferred ways to handle the issues
of surgical masks is to recycle them in construction materials, thus reducing their impact
on the environment. To do so, recent research studies have investigated the use of surgical
mask fibers in construction materials [18–20]. Kilmartin-Lynch et al. [21] investigated
the use of surgical mask fibers in concrete. The concrete specimens with mask fibers of
0.20% by volume improved the compressive strength and indirect split tensile strength by
18% and 12% when compared to control specimens, respectively. The study showed that
the addition of surgical mask fibers in an optimum dose improves the overall quality of
concrete. Koniorczyk et al. [22] reported that the addition of processed masks in concrete
did not affect the durability properties of the concrete, and further, it showed the possibility
of processing and reusing these waste masks with a high recycling capacity, such that,
in 1 m3 of concrete, approximately 1000 masks will be consumed. Castellote et al. [23]
showed that the addition of 5% of shredded mask waste by weight of cement did not
affect the characteristics of the cement mortar. The strength and durability properties
of the cement mortar mixes with waste masks were maintained at reasonable levels for
practical application. Ahmed and Lim [24] utilized disposable medical face mask fibers and
basalt fibers in concrete. The study showed the benefit of recycling disposable face masks
in improving the mechanical performance of concrete, and such concrete can be used in
buildings and structural applications. Saberian et al. [25] proposed the recycling of surgical
face masks with recycled concrete aggregate in pavement applications. The results of the
study showed that the blend of waste mask and recycled aggregates provides sufficient
stiffness and strength for application in the pavement base/subbase. Further, the study
showed the benefits of recycling millions of tons of face masks in the pavement base and
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preventing such waste from being dumped into landfills. Wang et al. [26] used shredded
face mask fibers as an additive in hot mix asphalt to improve its rutting performance. The
results of the study showed improved performance for modified mixes with 1.5% shredded
mask fibers. The modified mixes with mask fibers reduced the rut depth values by as much
as 69% when compared to control mixes without mask fibers.

From the existing literature, it is clear that processed surgical face masks can be used
as a constituent in construction materials. It also shows the benefits of improving the
properties of construction materials without affecting their performance. However, most
of the studies are quite limited and have been explored in the past few years. Moreover,
there have been only a few studies that have explored the potential of waste surgical masks
in bricks. Since bricks are in high demand due to the multitude of housing projects in
developing countries [27], they can play a crucial role in the consumption of waste surgical
masks and further reduce their harmful effects on the environment. Therefore, the primary
goal of this study is to utilize recycled surgical masks (RSM) in geopolymer bricks synthe-
sized with ground granulated blast furnace slag (GGBS), rice husk ash (RHA), and sodium
silicate (Na2SiO3) at ambient curing conditions. It is believed that the proposed method
will help to improve the circularity rate in the construction industry since it substantially
reduces the need for extraction of primary raw materials, as most of the binders used are
waste derived from other industries; furthermore, this will create opportunities for effective
resource management in the construction industry.

2. Significance of Research

The construction sector should make a great effort to contribute towards the goal of
carbon neutrality set by the nations of the world [28]. At the same time, the shift from a lin-
ear to a circular economy model has provided an opportunity to recycle plastic waste in the
construction industry [29]. One of the approaches for low-carbon emissions is to improve
the performance of construction materials [30], and plastic waste can play a catalytic role
in improving the material’s properties and performance [31]. However, the use of waste
surgical masks in alternative geopolymer bricks has not been extensively studied, and there
are many gaps in terms of the properties of such construction materials, as discussed by
the authors in their recently published article [32]. Therefore, this study is undertaken to
further enhance the understanding of such materials from a sustainability perspective and
contribute towards circular economy approaches in the construction industry.

3. Materials and Methods

To prepare geopolymer bricks, the materials used were GGBS, RHA, sand, and RSM
as the solid fraction, while the liquid fraction consisted of Na2SiO3 sol. and water. GGBS
was procured from JSW Cement Limited, and RHA was obtained from waste landfills close
to Ramanagara City in Karnataka. In the present study, unused surgical face masks were
utilized. Prior to the mix proportion selection, surgical face masks were processed in the
laboratory to obtain RSM. The RSM, GGBS, and RHA were characterized using physical
and chemical tests. The obtained results on the raw materials complied with the recent
study published by the authors [32].

3.1. Mix Proportion for Bricks

The effective use of RHA in the construction industry can achieve sustainable prac-
tice [33]. Recently, several studies have reported its positive influence in developing
alkali-activated binders [34]. According to Mehta and Siddique [35], the inclusion of 5–15%
RHA in GGBS improved the compressive and tensile properties of alkali-activated binders.
Similarly, Venkatesan and Pazhani [36] reported improved strength and durability proper-
ties for 10% RHA replacement with GGBS. Therefore, in this study, the geopolymer binder
was proportioned with 85% GGBS and 15% RHA of the total binder content. Further,
manufactured sand was used to improve the workability and to reduce the shrinkage in
the mix [37]. The total quantity of sand was decided based on initial laboratory trials and it
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was fixed at 30% by the total weight of the solid fraction. To activate the solid precursors,
Na2SiO3 sol. was added, and the total quantity was fixed at 8% based on the previous
study [38]. There was a need for additional water to achieve the desired consistency for
the mix, and this was set at 10% based on initial laboratory trials. The RSM was added
based on the volume fraction of the mix, and it ranged from 0% to 4% in increments
of 1%. The types of bricks evaluated are presented in Table 1. The respective densities
(i.e., GGBS = 1340 kg/m3, RHA = 620 kg/m3, sand = 1955 kg/m3, RSM = 100 kg/m3,
Na2SiO3 = 1593 kg/m3, and water = 1000 kg/m3) were used to determine the final weight
fractions of each constituent, as presented in Table 2. For example, the determined unit
weight of RSM was 100 kg/m3, and to obtain 4% RSM in the bricks, the calculation was
( 4

100 × 100), which resulted in 4 kg/m3 of RSM in the bricks. As seen, most of the con-
stituents remained constant, except for RSM, which varied from 0% for RMGB0 to 4% for
RMGB4; here RMGB denotes recycled surgical mask geopolymer bricks.

Table 1. Types of bricks evaluated.

Brick Type
GGBS RHA Sand RSM Na2SiO3 Water

Wt.%

RMGB0 59.5 10.5 30 0 8 10
RMGB1 59.5 10.5 30 1 8 10
RMGB2 59.5 10.5 30 2 8 10
RMGB3 59.5 10.5 30 3 8 10
RMGB4 59.5 10.5 30 4 8 10

Table 2. Mix proportions of the bricks evaluated.

Brick Type
GGBS RHA Sand RSM Na2SiO3 Water

kg/m3

RMGB0 797 65 587 0 127 100
RMGB1 797 65 587 1 127 100
RMGB2 797 65 587 2 127 100
RMGB3 797 65 587 3 127 100
RMGB4 797 65 587 4 127 100

3.2. Brick Preparation

The bricks of size 230 × 110 × 75 mm were manually prepared in the laboratory, which
complied with the procedure adopted by researchers in the past, as shown in Figure 1.
Each batch consisted of the preparation of ten bricks. First, all the solid fractions were
weighed according to the determined quantities and transferred into metal trays, as shown
in Figure 1a. The solid fractions were mixed for approximately 5 min, and later, Na2SiO3 sol.
and water in the determined quantities were added and further mixed for an additional
10 min. Finally, a homogenous mix was obtained, as shown in Figure 1b. This homogenous
mix was immediately transferred into a manual brick-pressing machine, as shown in
Figure 1c. After pressing, the RMGB was carefully ejected, as shown in Figure 1d, and
stored in ambient conditions, as shown in Figure 1e.

3.3. Test Methods

To assess the quality and performance of the developed RMGB, various tests were
conducted according to different standards. For each test, a set of 5 brick specimens were
tested after curing the bricks at ambient temperature for 28 days. The sustainability analysis
of the developed bricks was conducted using the life cycle assessment method. The details
of the methodology are elaborated in the following sections.
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3.3.1. Strength and Density of Bricks

The compressive strength of RMGB was determined in accordance with IS 3495: Part 1,
using a digital compression testing machine. The load was applied on the brick surface
without shock at a rate of 14 N/mm2 per minute until failure. The maximum load at
failure was noted and, accordingly, the compressive strength was determined. The flexural
strength of RMGB was obtained by placing the stretcher side of the brick parallel to the
surface of the compression testing machine, and the load was applied at a rate of 30 kg/min
as per the guidelines given in IS 4860:1968. The load at failure was noted and used to
determine the flexural strength. The bulk density of RMGB was determined in accordance
with ASTM C134-95. The brick specimens were dried in the oven at 110 ◦C for 24 h and then
weighed. The length, width, and depth of the brick were measured using aVernier caliper,
and the bulk density was determined according to the expression given in ASTM C134-95.

3.3.2. Durability of Bricks

The water absorption of RMGB was determined in accordance with IS 3495: Part 2.
The brick specimens were dried in a standard ventilated oven at 110 °C for 24 h and cooled
to a normal temperature to obtain the dry weight. The specimens were then immersed
in water for 24 h at room temperature, and the saturated weight was noted. The water
absorption was determined as per the expression given in IS 3495: Part 2. The efflorescence
in the RMGB was determined according to IS 3495: Part 3. The process involved partly
immersing the bricks in water up to a depth of 25 mm until the water was absorbed by the
specimen, and then, further extra water was added. After the evaporation of the water, the
bricks were examined for any perceptible salt on their surface. The qualitative assessment
of efflorescence was done based on visual inspection as per IS 3495: Part 3. Where the
degree of efflorescence is categorized as nil (i.e., no perceptible deposit of efflorescence),
slight (i.e., 10% of the brick surface is covered with a thin deposit of salt), moderate (i.e.,
up to 50% of the brick surface is covered with a deposit of salt), heavy (i.e., more than 50%
of the brick surface is covered with a deposit of salt), and serious (i.e., a heavy deposit of
salt shown by powdering and flaking of exposed surface). The linear drying shrinkage of



Recycling 2023, 8, 93 6 of 14

RMGB was determined according to ASTM C326. The different dimensions of bricks were
measured using a Vernier caliper, and the drying shrinkage in percent was calculated using
the expression in ASTM C326.

3.3.3. Sustainability Assessment

The production of conventional bricks is a significant source of greenhouse gas emis-
sions on a global scale [39]. Therefore, enhancing the performance of construction materials
through the use of alternative materials is considered one of the strategies to mitigate
greenhouse gas emissions and obtain low-carbon materials [30]. To assess the potential
advantages of the new alternative materials, the life cycle assessment (LCA) methodology
in accordance with ISO 14067 (2018) was used to evaluate the sustainability aspects. The
cradle-to-gate evaluation of carbon emissions was considered in this study. This included
the emissions from raw material extraction, processing, transportation, and manufacturing.
Figure 2 illustrates the production process in the form of LCA system boundaries. The
production process is divided into three phases, namely, the material phase, the transporta-
tion phase, and the production phase. Further, to quantify the sustainability of developed
RMGB, the embodied carbon dioxide parameter (Cf) was used in the analysis process [40].
The C f factor is described in Equation (1), and to improve the sustainability of RMGB,
lower Cf values are desirable:

Cf =
embodied CO2 (kgCO2/ton)

fc
(1)

where
Cf = embodied carbon dioxide parameter in (kg CO2/ton MPa),
fc = strength of RMGB.
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4. Results and Discussions
4.1. Strength and Density of Bricks

The results of the compressive strength are shown in Figure 3. The addition of
RSM enhanced the dry and wet compressive strength of the geopolymer bricks. For
instance, the increase in mean dry compressive strength after 28 days of curing was 9.17%,
10.3%, 12.9%, and 16.6% for RMGB1, RMGB2, RMGB3, and RMGB4 when compared to
RMGB0, respectively. The wet compressive strength of the geopolymer bricks was tested
by subjecting the samples to axial compression after soaking them in water for 24 h. The
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wet compressive strength improved with the addition of RSM, such that the increase in
the mean wet compressive strength after 28 days of curing was 16.5%, 21.6%, 20%, and
25% for RMGB1, RMGB2, RMGB3, and RMGB4 when compared to RMGB0, respectively.
Additionally, the percent reduction in wet compressive strength when compared to dry
decreased with the addition of RSM. The results of the flexural strength are presented
in Figure 4. As seen, the addition of RSM improved the dry and wet flexural strength
of the geopolymer bricks. The increase in mean dry flexural strength after 28 days of
curing was 39.13%, 31.3%, 37.4%, and 40.86% for RMGB1, RMGB2, RMGB3, and RMGB4
when compared to RMGB0, respectively. The wet flexural strength improved with the
addition of RSM, and the increase in mean wet flexural strength after 28 days of curing
was 56.89%, 50%, 79.3%, and 68.9% for RMGB1, RMGB2, RMGB3, and RMGB4 when
compared to RMGB0, respectively. Further, the percent reduction in wet flexural strength
of bricks when compared to dry decreased with the addition of RSM. It was observed that
the brick specimens with a 4% addition of RSM showed the best performance with respect
to strength when compared to other specimens. Such findings clearly depict the influence
of RSM fibers in resisting the forces in the bricks. According to a previous study [20],
the addition of polypropylene fibers restricts crack growth and improves load-carrying
capacity. Besides, PP fibers have shown a positive influence on the mechanical properties of
geopolymer composites [41]. Figure 5 represents the variation in the density of the different
brick samples. It was observed that the addition of RSM was instrumental in reducing the
self-weight of bricks by 3.92%, 4.11%, 4.84%, and 4.97% for RMGB1, RMGB2, RMGB3, and
RMGB4 in comparison to RMGB0, respectively. The reduction in density is attributed to
the lower specific weight of RSM. The reduction in the density of geopolymer composites
with the inclusion of PP fibers has also been reported in the past [42]. Such a reduction in
density, without a compromise in the strength of the bricks, makes it useful in structural
and non-structural elements in bringing down their dead weight. Moreover, this will
benefit tall buildings by improving the structure’s performance and service life. All things
considered, it is clear that RSM fibers will positively influence the strength of geopolymer
bricks, and this enhancement is significant. Therefore, from the results obtained, RSM
should be considered a sustainable additive in construction materials; this is because it aids
in augmenting the material efficiency due to improved properties of the RMGB, and further,
this will contribute towards lower carbon emission in the long span of the building’s service
life [43].
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4.2. Durability of Bricks

The durability of the RMGB was assessed by testing its water absorption, efflorescence,
and drying linear shrinkage. The results of the water absorption test are presented in
Figure 6. The addition of RSM increased the mean water absorptivity by 10.9%, 14.5%,
12.4%, and 14.4% for RMGB1, RMGB2, RMGB3, and RMGB4, when compared to RMGB0,
respectively. In spite of the increase in the water absorptivity, the values were still observed
to be within the limits specified by the IS 1077-1992. The increase in water absorption can be
accredited to the random distribution of the shredded RSM fractions within the brick, which
results in void spaces that allow water permeation. The results of the efflorescence test are
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shown in Figure 7. Efflorescence is due to the presence of free alkalis in the geopolymer
brick. In this study, the efflorescence was observed to be constant for all the brick types,
and it was not influenced by the RSM. The level of efflorescence was between slight and
moderate, as per IS 3495 specifications. There are several factors that influence efflorescence
in geopolymer mixes. For example, in silica-rich geopolymer systems, the leaching of free
alkalis is more serious due to the low content of alumina [40]. Furthermore, alumina in the
binder enhances the crosslinking in the geopolymer matrix and inhibits the movement of
the alkalis, which results in lower efflorescence [44]. Besides, in ambient cured geopolymer
bricks, the degree of reaction is enhanced with time, and this assists in the consumption
of the alkalis till the expanse of reaction, which causes a reduction in efflorescence. Since
efflorescence was determined after 28 days of curing, it can be expected that there will
be some reduction in efflorescence with the aging of RMGB. The results of linear drying
shrinkage are shown in Figure 8. The reduction in shrinkage was due to the addition of
RSM fibers, and this can be attributed to the internal shear resistance offered by the fibers.
Similar findings have also been reported when polypropylene fibers have been introduced
in cement matrices [45]. On the whole, the addition of RSM into geopolymer bricks did
not influence the durability properties. In contrast, the RSM fibers reduced the shrinkage
in RMGB, and this will positively influence the performance of bricks in service since
excessive drying shrinkage in the bricks can result in unwanted cracks, thus reducing the
service life of the masonry structures.
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4.3. Sustainability Assessment

The CO2 emissions in the raw material phase significantly impact the product’s overall
carbon footprint. Among the raw materials used to produce the bricks, the RSM is a novel
perspective, and CO2 emissions associated with its processing need to be dealt with (refer
to Table 3). The fresh surgical masks were ground to obtain the RSM. However, in the
actual production process, the waste surgical mask would require sterilization to ensure
public safety; the method of sterilization can be found in existing literature [46]. As a result,
the emissions from sterilization in an 800 W microwave oven at 70 ◦C were taken into
account for CO2 evaluation. A duration of 60 s each for sterilization and grinding was
considered, and the sterilization process consumed 0.52 kWh, and grinding consumed
0.332 kWh of power to obtain 1 kg of RSM. The emission factor for electricity consumption
was considered to be 1.043 kg CO2/kWh, which was obtained from the Agribalyse database
(Version 3.0.1) using IPCC 2013 GWP100a methods in OpenLCA (version 1.11.0) [47]. The
CO2 equivalent values (refer to Table 4) for GGBS and sand were derived from published
studies [48,49], and the emission value of Na2SiO3 from [48,50]. In the present evaluation,
RHA was considered to have no CO2 emission in the extraction phase since it was obtained
from waste landfills. The material transportation emission factor of 0.0877 kgCO2/ton·km
was considered because materials were transported by freight vehicles with a capacity of
≤3.5 tons [51]. The production phase involves several manual processes, such as mixing
of materials, molding of the bricks using the Mardini press, and dry curing at ambient
temperature. The embodied emission of equipment used to manufacture bricks is not
accounted for since the emphasis was on the raw material processes. Moreover, the brick
pressing process was manual, so the emissions can be considered to be nil. The carbon
footprint of the produced RMGB was evaluated by considering the inventory data adjusted
to one ton of bricks, as shown in Table 4. The emissions were derived as per the inventories
of 1 ton of bricks, as shown in Table 5, and the final emission values in kgCO2/ton were
obtained as 100.20, 100.76, 101.32, 101.88, and 102.44 for RMGB0, RMGB1, RMGB2, RMGB3,
and RMGB4, respectively. The emission values of the brick increased from 0.56% to
2.23% with an increment in the RSM from 1% to 4%, respectively, when compared to the
brick with 0% RSM. From the analysis, it is evident that there was a marginal increment
in emissions with the addition of RSM in the bricks, and furthermore, the increase in
emissions of RMGB was deliberated with the mechanical performance of the bricks, as
shown in Figure 9. The reduction in Cf values indicated the better sustainability of RMGB.
For example, the inclusion of RSM in bricks reduced the carbon emission per MPa in the
range of 7.90% to 18.26% for compressive strength and 22.9% to 43.3% for flexural strength
when compared to bricks without RSM, respectively. This reveals the benefits of RSM in
improving material performance and, therefore, it can significantly contribute towards
lowering the greenhouse gas emissions in the building sector. All in all, waste surgical
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masks have significant potential in the construction industry and can be considered as a
sustainable additive in improving material performance, leading to better circularity rate
in the construction industry. Thus, disposed surgical masks should be considered as a
valuable resource for the construction industry.

Table 3. Inventory for 1 kg of RSM.

Inputs/Outputs Inventory Unit Emission
Factor Unit Embodied

Carbon Unit

Sterilization 0.52
kWh

1.04348 kgCO2eq/kWh 0.543
kgCO2eq/kgGrinding 0.332 1.04348 0.346

Total 0.889

Table 4. Inventory for 1 ton of brick mixes and emission factors.

Inventory Emission Factor

Inputs/
Outputs RMGB0 RMGB1 RMGB2 RMGB3 RMGB4 Units Units

GGBS 0.505 0.5048 0.5045 0.5043 0.5041

ton

26.50

kg CO2/ton
RHA 0.042 0.0417 0.0415 0.0413 0.0411 0.00
Sand 0.372 0.371 0.371 0.371 0.371 26

Na2SiO3 0.081 0.081 0.081 0.081 0.081 930
RSM 0.00 0.00064 0.00128 0.00192 0.00256 889.04
Truck 20.732 20.735 20.738 20.741 20.744 ton·km 0.088 kgCO2/ton·km

Note: Transportation distances for the materials: GGBS—23 km, RHA—26 km, sand—17 km, Na2SiO3—21 km,
RSM—27 km.

Table 5. Embodied carbon for 1 ton of brick mixes.

Inputs/
Outputs RMGB0 RMGB1 RMGB2 RMGB3 RMGB4 Unit

GGBS 13.38 13.38 13.37 13.37 13.36

kgCO2/ton
RHA 0.00 0.00 0.00 0.00 0.00
Sand 9.67 9.67 9.66 9.66 9.65

Na2SiO3 75.33 75.33 75.33 75.33 75.33
RSM 0.00 0.57 1.14 1.71 2.28
Truck 1.82 1.82 1.82 1.82 1.82 kgCO2/ton·km
Total 100.20 100.76 101.32 101.88 102.44 kgCO2/ton
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5. Conclusions

The present study investigates the strength, durability, and sustainability of geopoly-
mer bricks synthesized with GGBS, RHA, sand, Na2SiO3, and RSM. The bricks were
ambient-cured for 28 days before testing. Based on the experimental results and analysis,
the following are the findings and conclusions:

1- The incorporation of RSM enhanced the strength of geopolymer bricks. The maximum
enhancement of 16.6% in compressive strength and 40.86% in flexural strength was
observed for bricks with 4% RSM when compared to bricks with 0% RSM.

2- The addition of RSM has caused a maximum reduction of 4.97% in the self-weight
of the bricks. The reduction in the self-weight with enhancement in the strength will
improve the service life of buildings.

3- The addition of RSM increased the water absorption of bricks. The maximum increase
in water absorption was 14.4% for bricks with 4% RSM when compared to bricks with
0% RSM.

4- The RSM did not significantly influence the degree of efflorescence in the bricks since
all the specimens exhibited similar levels of leaching of alkalis.

5- The RSM played a role in reducing the shrinkage in the bricks, which is attributed to
the internal shear resistance offered by the RSM fibers.

6- The sustainability aspect of the brick was quantified by determining the embodied
carbon dioxide parameter, i.e., kgCO2/ton·MPa (Cf). The results demonstrate that the
addition of RSM has brought about a significant reduction of 12% to 40% in the Cf
values when compared to bricks without RSM. Such findings are indicative of the fact
that RSM can be considered a sustainable additive since it can improve the material’s
performance with minimal carbon emissions.

7- On the whole, RSM should be considered a valuable resource for the construction
industry since it plays a catalytic role in augmenting the material performance. Such
behavior can contribute to the development of low-carbon materials in the construction
industry. Further, this will be useful in reducing the harmful effects of disposed
surgical masks on the environment and can be helpful in the mitigation of plastic
pollution.
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