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Abstract: Proper waste separation is essential for recycling. However, it can be challenging to identify
waste materials accurately, especially in real-world settings. In this study, a systematic literature
review (SLR) was carried out to identify the physical enablers (sensors and computing devices),
datasets, and machine learning (ML) algorithms used for waste identification in indirect separation
systems. This review analyzed 55 studies, following the Kitchenham guidelines. The SLR identified
three levels of autonomy in waste segregation systems: full, moderate, and low. Edge computing
devices are the most widely used for data processing (9 of 17 studies). Five types of sensors are used
for waste identification: inductive, capacitive, image-based, sound-based, and weight-based sensors.
Visible-image-based sensors are the most common in the literature. Single classification is the most
popular dataset type (65%), followed by bounding box detection (22.5%). Convolutional neural
networks (CNNs) are the most commonly used ML technique for waste identification (24 out of
26 articles). One of the main conclusions is that waste identification faces challenges with real-world
complexity, limited data in datasets, and a lack of detailed waste categorization. Future work in waste
identification should focus on deployment and testing in non-controlled environments, expanding
system functionalities, and exploring sensor fusion.

Keywords: waste; segregation; automatic; municipal; classification

1. Introduction

Waste generation is a by-product of population growth, urbanization, and economic
development. In 2050, experts predict a 70% increase in annual waste generation (from
2016 levels), reaching 3.40 billion tons [1]. Thus, solid waste management (SWM) is a global
issue that affects every individual and government. Poorly managed waste has a direct
impact on public health and the environment. At least 21% of the municipal waste (i.e., the
waste from residential, commercial, or institutional sources) produced annually (2.1 billion
tonnes in 2016) is not managed in an environmentally safe manner (collecting, transporting,
treating, and disposing of waste in a way that minimizes its impact on the environment) [1].

Recycling is one of the main SWM strategies included in most environmental reg-
ulations [2]. Implementing proper source separation at the generation site (i.e., before
transport) increases the recovery rate and material quality [2] while also enhancing the
performance of SWM, thereby reducing environmental impacts and economic expenses [3].
However, waste separation at the source is difficult for citizens with basic knowledge and
experience in garbage classification. It is also affected by multiple factors, such as physical
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and socio-economic barriers, human behaviors, policy constraints, public engagement, and
a lack of specialized garbage collection services, among other reasons [4].

Automatic systems have been proposed to perform solid source waste segregation.
These systems usually apply two sorting techniques [5]: (i) direct sorting, which uses
materials’ properties for separation, like magnetic susceptibility, electrical conductivity, or
material density, and (ii) indirect sorting, which uses sensors to detect and classify objects
by recycling categories.

The segregation process can be performed in two locations: (i) At the point of waste
generation [6], where the user directly disposes of their waste. The sensing process is
usually conducted in a chamber [6], and the collected information is processed to send
signals to motors [7] or actuators [8], directing the waste to the appropriate bin. (ii) In a
centralized place [9], where sequential sensing processes are performed as the waste is
transported on a conveyor belt. Multiple technologies, such as inductive sensors, color
identification sensors [8], or image-based sensors [6], are used to capture information from
the waste. These data are processed to identify and place the waste into the corresponding
bin [10].

Machine learning (ML) is commonly used in waste management for classifying and/or
locating waste. One of the most used techniques is the convolutional neural network
(CNN) for image analysis [11]. Other techniques, such as the support vector machine
(SVM) and classification trees, have been used with sound recordings [12] and infrared
(IR) cameras [13], respectively. Classically, ML models are trained on datasets containing
many observations, labeled with the desired response, so the model recognizes when that
observation occurs. The type of information described on the labels refers to the class of the
object [14] or its material composition [15]. In general, the ML models commonly belong to
one of three categories: classification [16], detection [17], or segmentation [18]. Although
some commercial waste classification systems are available, their autonomy is typically
limited (the user is responsible for feeding and separation). In contrast, current research
on waste identification in autonomous separation is still in the laboratory phase. These
research systems have been tested with controlled variables but have not yet been deployed
in a real-world production environment (Section 3.1).

This review will provide an overview of current developments and technological
limitations in the main areas of waste identification. This information will be helpful to
develop a more comprehensive and autonomous waste classification system. The scope
of this study is limited to the indirect source segregation of municipal solid waste. Source
segregation is related to the separation of waste performed in the generation place before
waste transportation. Indirect sorting is a set of separation techniques in which automated
machines sense and separate the waste. Municipal solid waste is related to household,
institutional, and commerce waste and excludes hazardous waste, sewage, medical waste,
and e-waste.

Literature reviews on the automatic sorting of municipal solid waste (MSW) have been
conducted (delved into in Section 2.1.1) using different technologies, such as computer
vision [19,20], ML algorithms [21–23], SWM general technologies [24–27], and hardware
devices [5,28]. However, according to the authors’ knowledge, no systematic literature
review (SLR) has been conducted on waste identification on indirect separation systems
that simultaneously includes detail on three main subjects: physical enablers, ML models,
and datasets, which are required to develop and deploy automatic waste sorting solutions.

Therefore, this review aims to identify the current implementation state, technology
requirements, and challenges of the physical infrastructure, the current ML models that
perform the waste identification task, and the datasets required to build the ML models.

The main contributions of this paper are as follows:

A. The identification of indirect segregation machines sensors, processing devices, com-
plementary functionalities, and their implementation context (Section 3.1).
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B. A characterization of the datasets used by waste separation systems with sorting
categories, environments for collecting the observations, and geographical locations,
among other elements (Section 3.2).

C. The identification of public datasets for developing ML models for waste identification
(Section 3.2).

D. The identification of ML algorithms used for waste identification, their model archi-
tecture, and feature extractors, including analysis of the performance metrics used by
the models and the objects and materials identified (Section 3.3).

E. The compilation of ML algorithms’ benchmark on public datasets for waste identifica-
tion (Section 3.3).

F. A holistic view of relationships between hardware, ML algorithms, and datasets (Section 3.4).
G. The definition of challenges and limitations of waste identification systems (Section 4).

The article’s structure is as follows: The next section (Section 2) describes the search
methodology and related work. Section 3 reports on the three areas reviewed: physical
enablers, datasets, and machine learning (ML) models. This section also highlights the
interconnections among the three areas. Section 4 summarizes the challenges for each area.
Finally, Section 5 presents the conclusions.

2. Methodology

The presented work follows the Kitchenham guidelines for an SLR [29], which provide
three stages: (i) Planning the review: the identification of the need for a review, definition of
the research questions, and search protocol. (ii) Conducting the review: document retrieval,
data synthesis, and analysis. (iii) Reporting the review.

2.1. Planning the Review
2.1.1. Related Work

Table 1 presents the literature reviews conducted between 2017 and 2023 that are
related to automatic waste segregation.

Table 1. Literature reviews on automatic waste segregation.

Ref. Year Subject

[30] 2023 A review of state-of-the-art hyperspectral imaging-based plastic waste detection
[19] 2022 Computer vision (CV) for waste classification
[24] 2022 Trends in household waste recycling
[20] 2022 Critical review of CV-enabled MSW sorting
[25] 2021 Critical review of MSW management strategies
[21] 2021 Review on ML for solid organic waste treatment
[22] 2021 ML algorithms used in recycling systems
[28] 2021 Effectiveness, advantages, and disadvantages, of automated waste segregation systems
[26] 2021 Monitoring methods, garbage disposal techniques, and technologies

[27] 2020 SLR on forecasting of waste characteristics, waste bin level detection, process parameters prediction, vehicle
routing, and SWM planning

[23] 2019 Strengths and weaknesses of waste segregation algorithms
[5] 2017 Physical processes, sensors, actuators, control, and autonomy

Zhang et al. reviewed the SWM process from a waste separation perspective. They
studied four main subjects: (i) generation and source separation, (ii) collection and trans-
portation, (iii) pretreatment, and (iv) resource recovery and valorization. Concerning
source separation, they found that further sorting after transportation is still needed to
achieve finer separation. Although source separation is necessary to reduce waste cross-
contamination, its importance in recycling will depend on future technological advances.
They concluded that artificial intelligence (AI), Internet of Things (IoT), and 5G technologies
will be widely adopted in SWM [25].
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Abdallah et al. studied the application of AI in different SWM fields. Although AI-
backed solutions have gained attention, most developments remain in the laboratory phase.
Some of the identified challenges were insufficient data, the field’s rapid evolution, the AI
black box nature, the scarcity of tailored solutions, and the slow adoption of technology [27].
Alcaraz-Londoño et al. in 2022, evidenced a general growing trend in SWM systems,
especially in the topics of automatic solid waste separation with the IoT and psychology-
guided research [24].

Regarding the application of ML on SWM, Ozdemir et al. analyzed the algorithms
used in recycling systems in 2021. Four main techniques were reviewed: the CNN, SVM,
K-nearest neighbor, and artificial neural network (ANN). Their findings revealed that the
large amount of data required for training, the black-box nature of the models, and the high
variability in the garbage appearance are some of the obstacles presented in the field [22].

CV (Computer vision) is also a popular field of reasearch in waste segregation and
analysis. Lu and Chen conducted a critical review on CV-based MSW sorting [20]. They
found that the use of simplified datasets could not represent the complexities of real-world
applications and that public datasets are scarce. Another limitation was that visible-
image-based solutions could not distinguish different materials with a similar appearance.
Likewise, in 2019, Flores et al. studied the application of CV to support waste segregation
in schools. One of the main drawbacks of the existing solutions is that most systems only
classify one piece of waste per image and use only a few classification categories [23].
Tamin et al. reviewed hyperspectral imaging (HSI) and ML in plastic waste detection.
They found that most studies focused on the detection of general waste using visible
imaging due to the cost of HSI devices. Unlike visible image solutions, HSI could overcome
limitations in identifying materials with similar appearances when used as a feature in ML
models. Nevertheless, black plastics are still challenging given that carbon black absorbs the
ultraviolet and infrared spectral light range and may not be detected by the near-infrared
sensors [30].

Sorting machines have also been surveyed. For instance, Gundupalli et al. reviewed
physical processes, sensors, and actuators from a hardware perspective. Three technical
fields of future development were identified: sensor fusion, energy efficiency, and robust-
ness in adverse environments [5]. The usability of automated waste segregation systems
has also been studied by Carpenteros et al. They evaluated 40 studies considering efficiency,
effectiveness, usability, sustainability, and learnability variables. The effectiveness had the
highest rating, while the main disadvantage was found in learnability [28]. Lubongo et al.
analyzed the equipment used for sorting plastics and the challenges of material recovery
facilities. They found that current technology still has problems identifying black plastics,
tanglers, films, and multipolymer objects [31].

Finally, technology-supported waste management has also been explored in other
fields: Mohamed et al. performed a systematic review of the use of the Internet of Things
(IoT) in medical waste management, identifying that current technology covers only some
aspects of waste tracking and there is an absence of standardized platforms [32]. Jagtap
et al. studied the use of CV and the IoT to measure the reasons for waste generation in
real time in food manufacturing. The authors found that using CV achieves a performance
higher than human monitoring [33].

There is a growing interest in applying new technologies in the SWM field, which
still has several challenges to overcome. While several surveys have been presented (see
Table 1), the main areas (physical enablers, ML models, and datasets) have not been re-
viewed in depth altogether to implement automatic segregation systems. The analysis of
hardware–software interactions, restrictions imposed by the different technologies, and
their applications in the different fields investigated in SWM have not been studied. Imple-
menting real-life SWM systems without considering the hardware–software interactions
and constraints imposed by different technologies is unfeasible. The proposed SLR reviews
the sensors, computing devices, ML algorithms, and datasets required to develop automatic
waste segregation systems.
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2.1.2. Search Protocol

The PICOC method (Population, Intervention, Comparison, Outcome, Context) [29]
was used to frame the proposed study. The generation of the PICOC consists of assigning
keywords for each criterion (Table 2).

Table 2. PICOC criteria used to frame the literature review search protocol. Asterisks (*) is a wildcard
search that represents any set of characters.

Criteria ID Terms

Population A Waste Disposal

Intervention B Model Automat *
C System

Comparison D None
Outcome E Detection Classification Separation Sorting
Context F Municipal Household Domestic

Table 3 presents three research questions with the corresponding query strings based
on the goal of this work and the PICOC keywords. The concrete strings queried on the
databases were adapted to each database search operator. Once the query strings were
defined, the retrieval, filtering, and quality assessment were performed as described in the
next section.

Table 3. Search protocol summary. Query strings are presented using the PICOC criteria table ID.
The proximity operator W/5 indicates that the keyword must be within five words of the next term.
Asterisks (*) is a wildcard search that represents any set of characters.

ID Question Query

Q1 Which are the devices (physical enablers) used for
municipal indirect waste separation systems?

A and (C W/5 E) and F

Q2 What are the datasets used for developing waste
separation systems?

A and DATASET * and E
and F

Q3 What machine learning techniques are used in auto-
matic waste separation systems?

A and (B W/5 E) and F

Three scientific databases were used: Scopus, Web of Science (WoS), and Google
Scholar. In addition to the databases, Kaggle and GitHub were consulted to complement
the datasets search. The results (studies and datasets) were limited to those published
after 2015.

2.2. Conducting the Review

Figure 1 shows the data retrieval process. It was performed by an initial search (raw
results) with a series of sequential filters (F1 to F4) and a quality assessment to obtain the
studies to be analyzed in depth. The initial results comprised 1239 studies distributed as
follows: 36% come from Google Scholar, 33% from Scopus, and 20% from WoS. Regarding
public datasets, GitHub contributes 7% and Kaggle 4%.

Finally, a quality assessment was performed, and only studies that meet the quality
criteria (Appendix A) were considered for in-depth review. After the quality assessment,
55 articles were selected for in-depth review: 17 were related to Q1, 39 corresponded to
datasets and Q2-related articles, and 37 corresponded to Q3. Each group of articles was
carefully analyzed to answer these research questions.
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Q1 Q2 Q3
567 272 400

Total: 1239 (F1) Join databases, 
remove duplicates, 

articles not written in 
EnglishQ1 Q2 Q3

417 263 248
Total: 621

(F2) Remove thesis, 
books and reports

Q1 Q2 Q3
391 270 243

Total: 552 (F3) Remove subjects 
different to waste 

separation
Q1 Q2 Q3
83 91 70

Total: 207 (F4) Remove subjects 
different to automatic 
separation system/

models/devicesQ1 Q2 Q3
56 85 55

Total: 155 

Figure 1. Study selection process. Filtering of studies collected by research question.

3. Results

This section provides a review of the collected studies and datasets. It begins by
presenting the responses to the three research questions, followed by an overview of
the results.

3.1. Physical Enablers

Automatic waste sorting machines are devices that feed, classify, and separate waste
automatically. They can be classified according to their level of automation:

(i) Full automation:system automatically seeks, classifies, and separates waste. A robot
using IR cameras, proximity sensors, and robotic arms identifies objects on the ground
to this end [34].

(ii) Moderate autonomy: The system classifies and separates the waste. Nevertheless, the
feeding is performed by the user. Two different layouts can be observed:

(a) Continuous feeding: A conveyor belt ensures the waste is always sensed in
the same spot. Sensing is performed using visible-image-based sensors (most
common) [9,35–39], inductive and capacity sensors [8], near-infrared (NIR)
sensors [35], and weight sensors [40]. Subsequently, the waste is classified
and segregated towards the corresponding container using sorting arms [9,35],
pneumatic actuators [36], servomotors [8,38,40], or falling on an inclined plat-
form [39]. This is the most popular system layout, proposed in 8 of 17 articles.

(b) Manual feeding: The user deposits the pieces of waste, one at a time, to
be sensed by the device. Visible-image-based [6,7,41] and sound-based sen-
sors [12], as well as inductive and capacitive sensors [42], are used for sensing.
Afterwards, a gravity-based mechanism is used to perform the separation.

(iii) Low autonomy: The user is responsible for the feeding and separation of the waste.
The system identifies the waste and guides the user to deposit it in the correct container
by opening the corresponding lid to indicate where to deposit it [10,43]. Waste iden-
tification is performed with image classification [10], radio-frequency identification
(RFID) [43], or the sound generated by the trash bags [44].

Figure 2 shows the sensors used. The first eight sensors are used for the waste
classification task, and the other five are used for complementary functionalities. For waste
classification, the sensors found can be categorized into (i) image-based sensors: visible,
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IR, NIR, and color sensors, (ii) sound-based sensors, (iii) inductive sensors, (iv) capacitive
sensors, and (v) weight-based sensors.

Image sensors are the most common type of sensor used in waste sorting devices,
appearing in 13 of 17 devices. They are often used alone, but there has been some research
on combining multiple image sensors. For example, visible-image-based sensors can
be used for general waste classification (e.g., glass or plastic), and, combined with near-
infrared (NIR) sensors, they can be used in applications where more detailed categorization
is required (e.g., PET, PS, PE, and PP) [35]. Regarding the other types of sensors, three
combinations are identified: (i) capacitive sensor with inductive sensor [8,42,43], (ii) weight-
based sensor with ultrasonic sensor [40], and (iii) sound-based sensor with inductive
sensor [44].

Figure 2 shows the distribution of the computing devices used according to each type
of sensor. Both local and cloud computing are used, with local computing being the most
frequently mentioned in the literature analyzed. All types of computing devices are used
to process data from image-based sensors. Inductive and capacitive sensors, however, are
specifically used with edge computing devices.

Table 1

Processing Visible-
image

NIR IR-image Sound Inductive Capacitive Color Weight Gas Proximity Ultrasonic Laser Photoelectric TOTAL

Cloud 1 0 0 0 0 0 0 1 0 1 0 0 3

Computer 3 1 1 1 0 0 0 0 2 0 0 0 8

Laptop 1 0 1 0 0 0 0 0 0 0 0 0 2

Microcontroller 1 0 0 0 1 1 0 0 1 1 0 0 5

Raspberry Pi 3 0 0 0 1 1 0 0 0 1 1 1 8

Arduino 1 2 1 1 1 2 8

TOTAL 9 1 2 2 4 3 1 1 1 3 5 1 1 34

Visible-image
NIR

IR-image
Sound

Inductive
Capacitive

Color
Weight

Gas
Proximity

Ultrasonic
Laser

Photoelectric

No. References
0 1 2 3 4 5 6 7 8 9

Cloud Computer Laptop Microcontroller Raspberry Pi Arduino

Sensors

Computing  
devices

Local computing
Cloud  

computing

Waste 
Identification 

Complementary 
Functionalities  

Figure 2. Physical enablers: computing devices’ distribution by sensors.

Of the 17 articles reviewed, 12 used machine learning (ML) models to identify waste,
typically using image-based or sound-based sensors. The remaining five articles present
systems that did not use ML models but relied on sensor measurements to directly discrim-
inate between materials (e.g., capacitive, inductive, or near-infrared sensors). Only one
study directly used visible-image-based sensor input to classify waste. This input came
from reading the barcode of the products [35].

The most common complementary functionalities are trash-can-level detection [6,10,38],
abnormal gas detection [10], a web platform [6,10,43], or a mobile application [38].

Figure 3 shows the implementation context of the sorting machines described in the
different studies. The context refers to the environment in which the device has been
used. There are three types of contexts reported in the literature. Laboratory refers to a
device tested under a controlled environment, a prototype is a device whose materials and
functionality are the same as the device on production, and on context is a device tested
in a real production environment. It is evident that the vast majority (76%) of the sorting
devices are evaluated in a laboratory environment with controlled variables.

Some limitations of the systems reviewed in relation to their use are that 82% of the
systems can only dispose of one piece of waste at a time and can only be used in controlled
environments (noiseless or simple backgrounds). In addition, waste must meet specific
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conditions (such as having a volume, being an empty package, or existing in the database)
and, in some cases, must be positioned correctly on the sensors.

Implementation state with context

State Municipal Institucional Household

Laboratory 7 1 5

Prototype 1 0 0

On context 3 0 0

Laboratory

Prototype

On context

No. References
2 4 6 8 10 12 14

Municipal Institucional Household

1

Figure 3. Implementation context of the sorting machines reviewed distributed by waste source.

3.2. Datasets

Datasets are critical in waste identification, as most of this process relies on ML models.
These models are trained on large datasets of labeled waste images, or other data, to identify
the underlying patterns that relate the inputs (e.g., images of waste) to the expected outputs
(e.g., labels of the waste type). This review studies 39 datasets, half of which are publicly
available (Table 4). In half of the datasets, the authors recorded the observations, and the
other half were collected from the internet by labeling web images or extending public
datasets. The datasets can be grouped by their label information into three categories:
single-label classification (64% of the datasets), detection with bounding boxes (23%), and
pixel segmentation (13%). Visible-based images were the most used input data (34 datasets).
Other used sensors were sound-based (three datasets), IR-based (two), RGBD-based (Red
Green Blue Depth) (one), and inductive sensors (one). Only two datasets use sensor fusion:
the work presented in [45] that combines visible-based images with sound and the work
presented in [44] that uses the impact of trash bags with inductive sensors.

Figure 4 shows the distribution of dataset labels. The first ring of the figure presents
the material categories. Almost 80% of the dataset labels belong to seven categories (plastic,
metal, paper, glass, organics, compounds, and cardboard). The remaining 20% correspond
to less common object classes and materials (e.g., ceramics, e-waste, or recyclable). The
second and third rings of the figure consist of object classes (e.g., bottle, battery, or can),
material subcategories (e.g., Aluminum, PET, or PE), product brands [6], material colors [46],
material properties (e.g., high-density polyethylene) [15], and object classes of a specific
material (e.g., metal–aluminum–can).

Almost a third (28.9%) of the dataset’s labels are of plastic materials. The most popular
plastic categories are plastic bottles (eight) and plastic bags (seven), and the most common
plastic subcategories are PET and PE [13,15,41]. Plastics are also classified by color: bottles
are classified as blue, green, white, or transparent [6], PET is classified as blue, dark, green,
multicolor, teal, or transparent [46]; and tableware is classified as green, red, or white) [6]. In
the metals category, aluminum is the only material subclass. Aluminum has multiple object
categories, such as blisters, foil, and cans, among which cans are the most common objects
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(15 labels). In addition, aluminum cans present an additional classification of product
brands [6].

Cardboard

Compounds

Tetrapack

E-waste

G
la

ss

B
ot

tle

Metal
Aluminium

Can
Org

anic

Foo
dSea anim

als P
a
p
e
r

Plasti
c

Bag

B
o
tt
le

PE

H
D

P
E
T

Tableware

Cigarrete

Battery

Recyclable

Fabric

M
edical

N
on recyclable

Figure 4. Dataset (public and private) labels. The relative size of the category indicates the number
of labels.

Figure 5 presents the dataset sizes (number of observations) versus the number of
separation categories. In the figure, blue represents datasets for classification, red is used
for detection, and green is for segmentation. The median of the dataset sizes is 4.288 obser-
vations. The median of the sorting categories is five. The datasets, regardless of label types
(classification, detection, and segmentation), present a similar median number of categories
(5 ± 1). However, regarding the number of observations in segmentation, the median is
almost double (7.212) compared to detection and classification datasets. Moreover, the
number of observations decreases when the number of categories increases. In addition,
most datasets (65%) present an unbalanced distribution of observations by categories.

The waste observation datasets come from municipal sources and are collected from
four different environments: (i) general (15 datasets): objects in their context before being
discarded or the acquisition setup is not for a specific machine or experiment. (ii) On-
device (12): tailored to a specific sorting machine or experiment. (iii) Indoors (10): taken
inside institutions or households. (iv) On-wild (3): waste is thrown away on streets or
in nature. Although observations come from different environments, 62% of the datasets
were taken with simple backgrounds (without noises, no cluttered surroundings, or other
elements). For the rest (15 datasets), the observations include their context, and only one
used augmented backgrounds [9] (see Figure 6).

The geographic location of 31 out of 39 datasets is unknown (not specified by the
authors), and 7 of them are composed of data from multiple locations. Of the datasets
with known locations (eight datasets), four of them are public: Poland [15], Milan/Italy [6],
Novosibirsk/Rusia [46], and Crete/Greece [9]. The rest of the known location datasets are
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privately built for ML model studies and are from Shanghai/China [7], Kocaeli/Turkey [12],
Taiwan [11], and Rajshahi/Bangladesh [41].Categories vs Dataset size

Type No. Categories Classification Detection Segmentation Todos

Classification 6 17.073 17.073

Classification 3 30.000 30.000

Classification 2 1.000 1.000

Classification 13 1.040 1.040

Classification 14 4.256 4.256

Classification 4 1.616 1.616

Classification 4 5.828 5.828

Classification 8 2.800 2.800

Classification 4 47.332 47.332

Classification 5 18.911 18.911

Classification 3 5.904 5.904

Classification 3 1.500 1.500

Classification 11 600 600

Classification 12 4.320 4.320

Classification 39 3.126 3.126

Classification 6 2.527 2.527

Classification 3 10.391 10.391

Classification 6 2.437 2.437

Classification 3 2.751 2.751

Classification 3 25.000 25.000

Classification 30 4.000 4.000

Classification 2 25.077 25.077

Classification 3 27.982 27.982

Classification 25 17.785 17.785

Classification 12 15.150 15.150

Classification 18 4.960 4.960

Detection 4 4.000 4.000
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Figure 5. Datasets: number of observations (y-axis) vs. the number of categories (x-axis).

Table 2

On-context Simple

General 11 4

On-device 1 11

Indoors 1 9

On-wild 3 0
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Figure 6. Dataset source environment distribution by background type (with context or simple, with
plain background).

The most popular public dataset is Trashnet [16], which is a six-category classification
dataset with a simple background. Additionally, Trashnet has been modified by adding de-
tection [11,47,48] and segmentation labels [49]. In second place is Taco [18], a segmentation
dataset with COCO format labels [50] that currently contains 28 categories and 60 subcate-
gories. Taco is continuously growing through a website (http://tacodataset.org, accessed
on 1 June 2022). Table 5 summarizes state-of-the-art results on these public datasets.

http://tacodataset.org
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Table 4. Public datasets for waste separation. Dataset annotation types: classification (Classf),
segmentation (Segm), and detection (Detec). The label’s distributions (Dist.) for categories of the
datasets are balanced (Baln) or unbalanced (Unbl). In the categories column, the first number is the
main categories and the second is the number of subcategories.

Year Categories Context Studies Size Annotation Location Dist. Ref

2021 5–39 On-device [6] 3126 Classf Italy Baln [6]
2017 6 General [11,17,38,47–49,51–54] 2527 Classf - Unbl [16]
2021 3 On-device [55] 10,391 Classf - Baln [55]
2019 6 Indoors [56] 2437 Classf - Unbl [57]
2019 3 General [58] 2751 Classf Mixed Unbl [58]
2020 3 Municipal [59] 25,000 Classf - Unbl [60]
2018 8–30 General [15,61] 4000 Classf Poland Unbl [15]
2019 2 General [17] 25,077 Classf - Unbl [62]
2020 3 General - 27,982 Classf - Unbl [60]
2022 7–25 - - 17,785 Classf - Unbl [14]
2021 12 General - 15,150 Classf - Unbl [63]
2021 3–18 Indoors - 4960 Classf - Baln [64]
2021 4 General [9] 16,000 Segm Greece Baln [9]
2020 28–60 On-wild [18,37,65,66] 1500 Segm - Unbl [18]
2020 22–16 Underwater [67] 7212 Segm - Unbl [67]
2020 1 Indoors [68] 2475 Segm - - [68]
2019 4–6 On-device [46] 3,000 Detec Rusia Unbl [46]
2021 1 Aerial [69] 772 Detec - - [69]
2021 4 General [17] 57,000 Detec - Unbl [17]
2020 4 Indoors - 9640 Detec - Unbl [70]

Table 5. Machine learning studies that used public datasets sorted by main performance metrics
(α: dataset modified with different classes, annotation, or extended with more data). The metrics used
are average accuracy (Acc.) for classification models, mean average precision (mAP) for detection
models, and interception over union (IOU) for segmentation models.

Dataset Study Type Architecture Backbone Extension Acc.
(%)

mAP
(%)

IOU
(%)

Trashnet

[51] Classf Resnext50 Resnext TL 98 - -
[38] Classf Resnet34 Resnet TL 95.3 - -

[53] Classf Custom
(CNN) Resnext TL 94 - -

[52] Classf Custom
(CNN)

Googlenet,
Resnet50,
Mobilenet2

- 93.5 - -

[54] Classf Custom
(SVM) Mobilenet2 - 83.5 - -

[47] α Detec SSD MobileNet2 TL - 97.6 -
[48] α Detec Yolo4 DarkNet53 - - 89.6 -
[11] α Detec Yolo3 DarkNet53 - - 81.6 -
[49] α Segm Segnet VGG16 - - - 82.9

Taco
[66] α Detec RetinaNet Resnet - - 81.5 -
[65] α Detec Yolo5 CSPdarknet53 - 95.5 97.6 -
[37] α Detec Yolo4 CSPdarknet53 TL 92.4 - 63.5

3.3. Machine Learning

Convolutional neural networks (CNNs) were the most common machine learning
(ML) models used for waste identification in the reviewed studies, accounting for 87% of
the models. Support vector machines (SVMs) were used in three studies, hidden Markov
models (HMMs) in one study, and classification trees in one study. More than half (24 of
37) of the studies were published from 2021 onwards.
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In this review, an ML architecture refers to the overall configuration of the ML tech-
nique that defines its components, parameters, etc. (e.g., number of layers, size, and neuron
type for an ANN). An ML model is an instance of an architecture whose parameters are
learned for a specific dataset. The feature extractor, or backbone, is a process performed
in the ML models to transform the raw inputs into a lower-dimension representation
(features), preserving relevant information [71]. Finally, fine-tuning refers to the reuse of
an existing model parameter value (usually a feature extractor) that has been pretrained
on a more extensive and general dataset to improve its performance or overcome scarce
training data in another dataset [72].

The datasets used to develop the ML models are of two types: image-based (visible
and IR) and sound-based. Image-based models have been trained to accomplish three
types of ML tasks: (i) Single-label classification (20 of 37 models): the models predict the
class of the waste present in an image; this task only accepts one piece of waste per image.
(ii) Bounding box detection (used on 13): the models predict the enclosing box and class of
all the wastes present on the image. (iii) Pixel segmentation (4 models): each pixel of the
input image is classified as either background or a type of waste. However, sound models
have only been used for single-label classification tasks.

The visible-image-based sensor was the most commonly used (31 out of 37 studies),
followed by the IR-image-based sensor (3 studies). The remaining studies use a single
sound-based sensor (one), a sound-based sensor with visible-image-based sensors (one), or
an inductive sensor (one) (see distribution in Figure 7).

Sensor - Prediction type

Classification Detection Segmentation

RGB Camera 16 12 3

Microphone 1

RGB Camera & 
Microphone

1

RGB-IR camera 1 1 1

Microphone & 
Inductive sensor

1

Total 20 13 4 37

RGB Camera

Microphone

RGB Camera & 

Microphone

RGB-IR camera

Microphone & 
Inductive sensor

No. Articles
0 5 10 15 20 25 30 35

Classification Detection Segmentation

1

Figure 7. Sensors used by ML models distributed by prediction task (classification, detection, or seg-
mentation).

Only two studies propose using a data fusion of sounds generated by falling objects
with images (visible-image-based and sound-based sensors and sound-based and inductive
sensors). The study presented in [45] aims to address problems in image-based models
when different materials have similar appearances and in the sound-based model of mixed
wastes, which generates indistinguishable sounds. The authors proposed a method that
extracts visual features with a pretrained VGG16 model [73] and acoustic features with a
1D (dimensional) CNN, which are later fused into a fully connected (FC) layer for waste
classification. The study presented in [44] uses the impact sounds of trash bags with
an inductive sensor input to detect the presence of glass and metals. The model used
three variations of a basic CNN architecture (convolutional layers followed by FC layers).
The models’ input data comprised Mel spectrograms, Mel frequency cepstral coefficients
(MFCCs), and the metal detector frequencies.
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The most popular public datasets are Trashnet [16] and Taco [18]. The mean of the
average accuracy (Acc.) of the classification models on the Trashnet dataset was 92.9%.
The study with the top Acc. (98%) on Trashnet for waste classification used a ResNext
architecture [74] with transfer learning (TL) with a backbone pretrained on ImageNet [75]
that was trained with data augmentation (e.g., rotations, shifts, zoom, or sheer) [51].

Other studies used a modified version of Trashnet; thus, their results can be numeri-
cally compared (see the studies of Table 5 with an α mark). In [47], a single shot detector
(SSD) [76] that uses MobileNetV2 [77] as a feature extractor has been fine-tuned on Trashnet
and annotated with bounding boxes, excluding the “trash” category. Likewise, [11] studied
the use of YoloV3 [78] to detect waste. The authors found that training a detection model
on a single object dataset (as Trashnet) was unsuitable for this type of ML task and that
the used datasets need to be location-tailored. Similarly, [48] used a modified version of
Trashnet for training a YoloV4 [79] detection model. The authors found that their models
had an optimal performance when trained using mosaic data augmentation (combining
four images in one). Additionally, [49] proposed a method for binary image segmentation
(waste, no waste) based on a SegNet architecture [80] using Trashnet images. However, the
proposed method has problems with low contrast between the waste and the background.
Only one study [54] used SVM on the Trashnet dataset. The model used MobileNetV2 as
a feature extractor and fed an SVM classifier, which allows it to be embedded in mobile
applications due to it having fewer parameters and operations.

Regarding studies that use the Taco dataset, [65] used an extended version of Taco
to train a model based on YoloV5 with Darknet53 as the backbone [81]. The study found
that YoloV5 performs better than its older versions and is suitable for embedded devices
due to its size. Similarly, [37] proposed using YoloV4 with a tailored dataset that combines
Taco with images from a recycling facility sorting machine. Their proposed model could
accurately detect real-world live video feeds of wastes in a conveyor belt. The main
disadvantages were the hardware costs and energy consumption. The study [66] proposed
a RetinaNet [82] model with ResNet50 [83] as a backbone for detection of floating waste
in the oceans as well as general waste. The used dataset consisted of a subset of 369 Taco
images relabeled.

We found 13 architecture types using 14 feature extractors or backbones in the surveyed
studies. Figure 8 shows the relationship between the feature extractors (on the right) and
the architecture types (on the left). The most common approach was to propose a custom
architecture. A total of 33% of the CNN models used a custom architecture prevalent in
the classification models (8 of 20 studies). Of the custom architectures, only two are not
image-based and use sensor fusion [44,45].

Most of the studies used standard feature extractors as part of their models. The most
common (in 10 of 37 studies) feature extractor was ResNet [83]. ResNet was mainly used in
the detection models (7 of 14) together with other architectures used less commonly than
Yolo, like Faster RCNN [46,84], Efficientdet [85], custom architectures [17,86], Retinanet [66],
and Centernet [87]. Additionally, Darknet variations (Darknet and CSPdarknet) were
the second most used feature extractors because they are the default backbone of Yolo
architectures. Regarding classification models, there was more variation in the feature
extractors with the two most popular (used four times each) being VGG [7,45,88] and
Mobilenet [54,55,58].
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Figure 8. Surveyed architecture types with corresponding feature extractors.

The most common patterns found in the reviewed articles with custom architec-
tures were the following:

(i) A standard feature extractor with a tailored head. The study [7] uses a semantic
retrieval model [89] placed on top of a VGG16 model to perform a four-category
mapping of the 13 subcategories returned by the CNN model. Their results revealed
that the proposed method achieved a significantly higher performance in waste classi-
fication (94.7% Acc.) compared to the one-stage algorithm with direct four-category
predictions (69.7% Acc.). The study [52] proposes the ensemble of three classifica-
tion models (InceptionV1 [90], ResNet50, MobileNetV2) trained separately. Their
predictions are integrated using weights with an unequal precision measurement
(UPM) strategy. The model was evaluated on Trashnet (93.5% Acc.) and Fourtrash
(92.9% Acc.). Ref. [53] proposed DNN-TC, which adds two FC layers to a pretrained
ResNext model. DNN-TC was evaluated on Trashnet (94% Acc.) and their dataset
VN-trash (98% Acc.). Ref. [56] proposed IDRL-RWODC, a model composed of a mask
region-based convolutional neural network (RCNN) [91] model with DenseNet [92]
as a feature extractor that performs the waste image segmentation and passes to a
deep reinforcement Q-learning algorithm for region classification. IDRL-RWODC was
evaluated (99.3% Acc.) on a six-category dataset [57]. Ref. [17] developed a multi-task
learning architecture (MTLA), a detection architecture with a ResNet50 backbone
on which each convolutional block is applied to an attention mechanism (channel
and spatial). The feature maps are passed to a feature pyramid network (FPN) with
different combination strategies. The architecture was tested on the WasteRL dataset
with nearly 57K images and four categories (97.2% Acc.).

(ii) The improvement of an existing architecture. Ref. [39] presented GCNet, an improve-
ment of ShuffleNetV2, by using the FReLU activation function [93], a parallel mixed
attention mechanism module (PMAM), and ImageNet transfer learning. Ref. [94]
presented DSCR-Net, an architecture based on Inception-V4 and ResNet that is more
accurate (94.4 Acc.) than the Inception-Resnet versions [95] in a four-waste custom
classification dataset.
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(iii) New architectures. Ref. [61] proposes using a basic CNN architecture on RGB images
for plastic material classification (PS, PP, HDPE, and PET). They used the WadaBa
dataset [15], a single piece of waste per image on a simple black background. Their
model had a lower performance (74% Acc.) than MobileNetV2 but half the number of
parameters, making it appropriate for portable devices (e.g., Raspberry Pi).

The second most used architecture type was Yolo’s version. Yolo is a general-use
architecture proposed for waste image detection that was used in 5 of the 14 models
reviewed related to the detection task. YoloV3 was used to detect six waste classes of a
Taiwan-sourced dataset (mAP. 92%) and was also evaluated on the TrashNet dataset for
detection (mAP. 81.4%) [11]. YoloV4 detected four waste categories in the TrashNet-based
dataset (glass, metal, paper, and plastic) [48]. Similarly, Ref. [96] uses YoloV4 but added
“fabric” to the classes to detect (mAP 92.2%). Their model had better detection accuracy
than the single shot multibox detector (SSD) and the Faster R-CNN models. Another study
with YoloV4 [37] uses an RGB-IR camera and an extended version of the Taco dataset.
Further, Ref. [65] used YoloV5 to detect the 60 classes of the Taco dataset, reaching 95.49%
Acc. and an mAP of 97.62%. Other standard architectures used for detection were Faster
RCNN [46,84], RetinaNet [66], CenterNet [87], and SSD [47].

Regarding pixel segmentation, three of the four studies use a CNN. The most common
(used in two studies) architecture was Mask R-CNN [9,56]. Ref. [49] uses SegNet architec-
ture with VGG16 as a feature extractor for segmenting an image into waste and no waste.
In addition, Ref. [13] used classification trees for plastic materials segmentation.

CNNs have achieved high success in image recognition tasks, surpassing other ML
methods on several benchmarks. This is due to their ability to learn spatial features and
patterns in images using a hierarchical architecture of layers that perform convolution
operations and extract features at different levels of abstraction [97]. CNNs dominated the
reviewed studies; only four presented different ML model types, and, among them, the
most common was the SVM, which was used in three studies. The study [34] proposed
the use of IR images to extract SURF features [98] that are mapped into a bag-of-words
vector that is used in an SVM for the classification of waste into three categories (aluminum
can, plastic bottle, and tetra), reaching 94.3% Acc. Ref. [54] fed an SVM with the features
extracted by a fine-tuned Mobilenet model with RGB images. The approach was evaluated
on Trashnet (83.46% Acc.). Finally, Ref. [12] investigated the use of sound for the volumetric
packaging classification of four materials (glass, plastic, metal, and cardboard), each with
three different sizes, except metal packages with only two sizes. They developed two classi-
fication models based on an SVM and HMM [99] with MFCC features. Both models reached
100% Acc. on material classification and 88.6% Acc. on material and size classification.
Additionally, Ref. [13] uses near-infrared hyperspectral imaging to classify six recyclable
plastic polymers used for packaging. Their approach is based on a hierarchical classification
tree composed of PLS-DA (partial least squares discriminant analysis) models. Their model
was evaluated on a custom setup dataset with an overall result of 98.4% mean recalls.

Over half (21 articles) of the reviewed studies used TL, where the feature extractor
was pretrained on a large-scale dataset (usually ImageNet). During training on the target
dataset (containing the waste identification task), the feature extractor (or part of it) is
“frozen”, and its parameters are not modified. Other less frequently explored aspects of
ML techniques were also considered, such as hyper-parameter optimization [56], k-fold
cross validation [84], and ablation experiments [39]. Additionally, style transfer [87] and
synthetic data [9] were used for increasing training data.

The models’ performance regarding the number of categories is shown in Figure 9.
The most commonly used performance metrics were average accuracy (Acc.) for classi-
fication models, mean average precision (mAP) for detection models, and average recall
for segmentation (Av. Rec.). Although the most commonly used metrics were selected, it
is worth noting that in certain studies the model was not assessed using these particular
metrics. Consequently, not all of the reviewed studies could be included in this analy-
sis. The overall median performance of the models reviewed is 92.3%. For classification
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(21 studies), the median average accuracy is 94.7%, and the median number of classification
categories is 4.5. For detection models, 14 studies were considered; the median mAP was
82.8%, and the median number of categories was five. Only three studies were considered
for segmentation, with a mean Av. Rec. of 98% for six median categories. It is worth
highlighting that one study [12] reached an Acc. of 100% using sounds for a four-material
classification task. The median number of categories of all the reviewed models was 5, and
the maximum was 204 classes. The study with this number of classes used the 2020 Haihua
AI Challenge dataset. The authors developed a method for waste detection based on a
cascade RCNN with a cascade adversarial spatial dropout detection network (ASDDN)
and an FPN. This method was developed to enhance the model’s performance, particularly
in handling small objects and dealing with occlusions. Their proposal reached an mAP of
62%, revealing that the number of observations of the dataset was not enough, and had
trouble with unbalanced categories [86].Table 1

Prediction type No. Categories Classification Detection Segmentation
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Classification 4 93.5
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Figure 9. Reviewed ML models performance versu’s the number of sorting categories. The metric
for classification models was average accuracy (Acc.). Mean average precision (mAP) was used for
detection models. Average recall (Av. Rec.) was used for segmentation models.

Data augmentation has also been reported for training waste identification models
to overcome the shortage of data. Ref. [100] proposes using deep convolution generative
adversarial networks (DCGANs) to generate synthetic samples with real ones to train a
YoloV4 detector model. As a result, using data augmentation improves the mAP by 4.54%
compared to using only real samples. Similarly, [101] uses a generative adversarial network
(GAN) to generate new images from TrashNet and GP-GAN [102] to generate collages
from overlapping and no overlapping thrash objects. The authors evaluate waste classifiers
using transfer learning from pretrained ImageNet models. The new images generated by
the GAN could not be used due to a lack of details, and the inclusion of collages yielded no
improvement to the classification models.

Finally, according to the confusion matrix and the evaluation per class presented in
the reviewed studies, the complex categories for the models are identified based on the two
lower-scored categories on either of the two metrics. The two most challenging categories,
metal and trash, were each referenced in seven articles.

3.4. Overview of Results

The three reviewed areas, physical enablers, datasets, and ML algorithms, are closely
related. ML models are trained and evaluated on datasets, and the type of data that both use
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depends on the sensors used to capture waste in the identification systems on segregation
devices. The three areas and their underlying technology present interrelated connections,
as seen in Figure 10. From left to right, the first three branches indicate the number of
studies of each research question. The middle of the figure presents the models/techniques
(in purple), processing devices (in green), and contexts in which the datasets have been
used (in blue). Finally, the sensors used are presented.

The distribution of studies on these three areas is as follows: 47% corresponds to ML
models, 31% to systems or machines, and the rest (22%) to datasets.

55

Physical enablers17

Models26

Cloud

Computer6

Laptop2

Microcontroler3

Raspberry Pi6

Arduino6

CNN24

SVM 3

Visible-image sensors 44

IR-image sensor 3

Sound-based sensor 4

Inductive sensors 4

Capacitive sensors 3

Weight sensors

Xception

Inception 2

Custom 11

Mask RCNN

ResNext

Yolo 5

CenterNet

VGG

SSD

Faster RCNN 2

Visible-image-depth sensor

EfficientDet

Datasets12

Classification7

Detection2

Segmentation3

DenseNet

SegNet

RetinaNet

NIR sensor

HMM

Classification Tree

MobileNet 2

ResNet Color sensor

Figure 10. Topics covered by this review. The thickness of the connections indicates the number
of references. The first two columns from left to right indicate the number of articles. The remaining
columns indicate the number of technologies and datasets used in each article.

The CNN was the most common ML technique (24 out of 26 articles concerning ML
models). However, the proposition of custom model architecture prevails (11 studies) over
standard state-of-the-art ones. Also, for the feature extractors, the popular choice was to
use standard ones, among which the most popular was ResNet [83], which was used in
10 studies.

The most common prediction task of the ML models was image classification (20 stud-
ies), followed by object detection (13 studies) and, finally, image segmentation (4 studies).
On image classification, the models were used to predict if a material is present on the
image [10,51,61,103], or an object type [7,39], or if there was an object that belongs to
the recycling category [53,58,94]. Detection models were used to predict the rectangu-
lar area (bounding box) where an object was located on the image and their material
type [13,56,84,87,96] or the object type [65]. Lastly, segmentation models classify each
image pixel as a specific material type [9,56] or as waste or background [49].

Most of the proposed models use visible-image-based sensor data (45), except for a
few studies that used sound-based (4) and infrared-based sensor data (3). Thus, vision
models were by far the preferred choice. Other technologies, like inductive, capacitive, and
weight technologies, are also used as direct input for sorting the waste [8,40,43].

Datasets are closely related to ML models because they are required for training and
evaluating their performance. However, only 12 of 39 are for general usage instead of built
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for a model or system study. The “general-purpose” datasets are image-based, and the
most common type of labeled dataset was for image classification.

Moreover, when considering all the studies, the main categories are (see Figure 11)
plastic (12.83%), glass (10.62%), metal (10.62%), and paper (9.29%)). Additionally, there
are more than 50 categories. Some studies classify waste by more specific types of objects
(e.g., plastic bottles) [36] or brands (e.g., Heineken Beer Bottle) [6]. Other studies categorize
objects by their type of processing after disposal (e.g., recyclable, organic, or hazardous) [7].

Material Count

Material Percentage Count

Plastic 12.83 % 29

Metal 10.62 % 24

Glass 10.62 % 24

Paper 9.29 % 21

Cardboard 3.54 % 8

Fabric 3.54 % 8

Aluminum 3.54 % 8

Other 3.10 % 7

PET 3.10 % 7

Other-labels 39.82 % 90

Other-labels
39.82 %

PET
3.10 %

Other
3.10 %

Aluminum
3.54 %

Fabric
3.54 %

Cardboard
3.54 %

Paper
9.29 %

Glass
10.62 %

Metal
10.62 %

Plastic
12.83 %

Figure 11. Top ten general material categories present in the reviewed studies without grouping.
Other-labels group has less representative categories.

The reviewed studies proposing indirect sorting machines (17) fall into two categories.
In the first one, waste is directly separated in the consumer place. Nearly half of the studies
(10) belong to this category. In the second one, the waste is separated in a centralized
location. The three more common processing devices found were computers, Raspberry
Pi, and Arduino (Figure 10). The systems present more variability regarding the sensing
devices for sorting (eight types identified) than ML model studies, although, like in ML
models and datasets, visible-image-based sensors are the most used.

4. Challenges and Limitations

This section presents the challenges and current limitations of the reviewed studies. In
general, the three major issues found in the waste identification of automatic segregation
systems are as follows:

1. The laboratory testing: in many instances, the real-world applicability and complexity
were not evaluated.

2. Material identification is not enough for recycling: other inputs, such as product type
and contamination, are required to define their recycling category.

3. Visible-light-based approaches often result in errors due to the high similarity between
materials. The majority of the proposed systems are location-specific, relying on the
visual appearance of waste, which can vary significantly from one place to another.

The challenges related to each research question were clustered and are presented in
the following sections.

4.1. Physical Enablers

The challenges presented in the studies related to physical enablers can be grouped
into the following categories:

Real-life complexity: Most devices were developed for controlled environments. There-
fore, many challenges arise regarding the complexities of real-life scenarios, such as han-
dling multiple wastes simultaneously, complex backgrounds, uncontrolled dirt, pack-



Recycling 2023, 8, 86 19 of 25

ages with food, trash uniformity, garbage appearance variability, and more classification
categories. Additionally, objects with the same brand and different materials could be
misclassified by vision models.

Performance: Performance relates to two main topics. The first is the systems’ exe-
cution speed and efficiency, which includes communication delays, response times, and
real-time object detection capabilities. The second is reductions in hardware costs and
energy consumption while improving sensors’ quality for accurate measurements.

Extended functionality: The extended functionality of systems can increase the number
of objects and classification categories and also improve the material identification by using
sensor fusion (e.g., combinations of sound and image sensors). In addition, complementary
functionalities are implemented, such as gas detection, grasp planning algorithms to handle
various sizes, and IOT support, among others. Finally, strategies are developed for seasonal
waste behavior and the continuous learning of waste categories.

4.2. Datasets

This section gathers the datasets’ challenges and future works presented in sorting
machines and ML models articles. The challenges are grouped into the following categories:

Realism: Most studies were developed under controlled conditions. Therefore, in
several articles, the idea of using more realistic datasets for future work is mentioned.
It means it is necessary to construct datasets from real consumers that include more
variability (e.g., deformations, dirt, rotations, and occlusions) and packaging with different
characteristics. The surrounding conditions must also be close to real life regarding complex
backgrounds and lighting.

Extension: Although some studies present detailed sorting categories (Figure 4),
the median number of categories in the reviewed datasets is five. Thus, the reviewed
articles propose to build datasets that include more detailed classification categories for
future work.

Size of datasets: ML models require large data. Dataset building is a tedious and
time-consuming task. A total of 11 out of 38 studies reviewed for ML models complain
about the small dataset used for training (Figure 5). Thus, effective data collection is needed
to build more extensive, balanced datasets.

Location targeted: The geographical location source of the waste is known in only
eight of the reviewed datasets (40). Datasets must be targeted to specific geographical
places because objects’ appearance, brands, and waste distribution vary from place to
place; however, approaches such as transfer learning can be used to reuse datasets from
other contexts.

4.3. Machine Learning

The reviewed studies related to waste identification through ML techniques propose
the following challenges:

Algorithm improvements: Algorithm improvements can be related to model perfor-
mance (accuracy and computational speed) and hyper-parameter optimization. Also, they
can be related to the addition of new features, like waste size, material, and object types,
as well as new ML tasks (e.g., detection or segmentation) and new ML and deep learning
architectures.

Deployment: As the next step, many authors expressed an interest in testing the
models’ deployment on real devices, such as robots, mobile devices, or smart trash cans.
However, it is necessary to consider the hardware cost, energy consumption, and execution
performance.

Data fusion: Only two of the reviewed studies used sensor fusion to combine the
strengths of the sensor technologies and mitigate their weakness. Some authors propose
the study of the use of sensor fusion to extend the inference power of image-based models.
For instance, objects with the same brand and different materials or the same material and
different appearances are challenging for visual-based models. It could be solved by com-
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plementing the RGB image observation with information from other sensors (microphones,
inductive, or other spectrums of electromagnetic radiation).

Data scarcity: The most common issue highlighted in the reviewed studies was the
lack of enough training data and the unbalanced category distribution in the datasets
(Figure 5). ML techniques need to be improved to be trained with small and unbalanced
datasets in such a way that they are powerful enough to generalize with few observations.

Waste complexity: Along with the data scarcity, waste comes with significant visual
appearance variations and contexts with non-ideal conditions (e.g., insufficient light, object
occlusion, and complex backgrounds). In addition, in real-life applications, discarded
objects are subject to deformations, dirt, and mixed materials. Thus, datasets need to
sample most of these situations, and ML models need to learn waste features invariant to
most of these transformations.

5. Conclusions

An SLR was conducted to identify the physical enablers, datasets, and ML algorithms
used for waste identification in indirect separation systems. The increasing waste pro-
duction and stricter waste management policies have made technology-supported waste
separation research increasingly relevant. The most common strategy for waste identi-
fication in the reviewed articles is to locally process images from visible light cameras
using a CNN model. This model uses a state-of-the-art feature extractor pretrained on the
ImageNet image classification dataset and fine-tuned with a target dataset. In most cases,
the target dataset is a generic public dataset that is not tailored to a specific geographical
location. The few articles that use another type of sensor typically use it for complementary
functionalities. The main challenges of this configuration are the confusion of materials
caused by the similarity between them and the scarcity of data. This is also related to the
fact that most of the surveyed research was tested in laboratory conditions. Additionally,
most systems impose constraints on how people dispose of the waste or the type of waste
accepted by the system. This means that other challenges are related to handling real-life
scenarios, such as complex backgrounds, handling multiple wastes, or waste with more
variability. Future research could benefit from exploring topics such as low-cost sensor
fusion and infrared (IR) waste detection; domain generalization enabling the utilization
of generic datasets under customized conditions; the identification of product types and
the assessment of cleanliness (as recycling criteria may depend on these variables); and the
seamless integration of smart trash cans within the product life cycle.
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Abbreviations

SWM Solid Waste Management
ML Machine Learning
CNN Convolutional Neural Network
SVM Support Vector Machine
IR Infrared
MSW Municipal Solid Waste
SLR Systematic Literature Review
CV Computer Vision
ANN Artificial Neural Network
HSI Hyperspectral Imaging
IoT Internet of Things
NIR Near Infrared
RFID Radio-Frequency Identification
PET Polyethylene Terephthalate
PS Polystyrene
PE Polyethylene
PP Polypropylene
RGBD Red Green Blue Depth
PVC Polyvinyl Chloride
HMM Hidden Markov Model
FC Fully Connected
MFCCs Mel Frequency Cepstral Coefficients
Acc. Average Accuracy
TL Transfer Learning
SSD Single Shot Detector
mAP Mean Average Precision
IoU Interception Over Union
UPM Unequal Precision Measurement
RCNN Region Convolutional Neural Network
FPN Feature Pyramid Network
PMAM Parallel Mixed Attention Mechanism
PLS-DA Partial Least Squares Discriminant Analysis
Av. Rec Average Recall
ASDDN Adversarial Spatial Dropout Detection Network
DCGAN Deep Convolution Generative Adversarial Network
GAN Generative Adversarial Network

Appendix A. Inclusion Criteria

Only studies that meet the following quality criteria were considered for in-depth
review. Six inclusion items are evaluated regarding questions Q1 and Q3:

(i) The study’s objectives are well defined and are related to automatic waste classification.
(ii) The algorithms, models, and methods used are described in detail.
(iii) The classification labels belong to municipal waste recycling categories.
(iv) The evaluation metrics are well described.
(v) The datasets and experiments are well described (description, shape, images, or

distribution of the classes).
(vi) A discussion about the quality and context of the results is presented.

Likewise, for Q2, the inclusion items are the following:

(i) The dataset information is available (date, dimensions, etc.).
(ii) The distribution of the classes is available.
(iii) The labels of the dataset belong to recycling categories.
(iv) The type of waste belongs to municipal, institutional, or household.
(v) Examples of the observations are presented or available.
(vi) A description of the dataset is available.
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