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Abstract: A choline chloride/urea natural deep eutectic solvent (ChCl NADES) was prepared via a
green chemistry method and used to leach Zn and Mn oxides from conventional Zn–C scrap batteries.
FTIR and 1H NMR spectroscopy were used to characterize the NADES. The leaching kinetics of
the Zn and Mn oxides was monitored at isothermal conditions (80, 100, 125, and 150 ◦C) and at
two solid/NADES ratios: 3.3 and 10 g dm−3. It was possible to dissolve Zn and Mn oxides under
all of tested conditions, reaching more than a 95% recovery for both metals at 150 ◦C after 90 min,
whereas, at 25 ◦C, it was possible to leach up to 90% of the Zn and 30% of the Mn after 4320 min
(72 h). Furthermore, the leaching kinetics was controlled by the boundary layer, coincident with a
shrinking core model. According to the Arrhenius plot, the activation energy for Zn ranges from
49.13 to 52.21 kJ mol−1, and that for Mn ranges from 46.97 to 66.77 kJ mol−1.

Keywords: natural deep eutectic solvents; battery recycling; Zn leaching; Mn leaching; shrinking
core model kinetics

1. Introduction

The deep eutectic solvents (DESs) are considered to be a new, alternative family of
solvents applied in green chemistry that, used in conjunction with natural compounds,
form natural deep eutectic solvents (NADESs). DESs can be defined as mixtures of two
or more solid compounds containing hydrogen-bond donors (HBD) and hydrogen-bond
acceptors (HBA) that form liquids with melting points much lower than those of the
individual components due to self-association [1–3]. In such a way, the newly formed
eutectic phase presents a melting point that is generally lower than 100 ◦C, in comparison
to that of each component [4].

Experimental and theoretical studies have shown that the highest fraction of hydrogen
bonds in DES preparation is intramolecular and occurs between the HBD and the halide
anion. The anion-HBD hydrogen bond network is the basis of the fundamental properties
of DES; the structure/conformation and the extent of the HBD interaction, which are
the factors that together originate different hydrogen bonding networks in DES, thus
determining their structure [5]. The ChCl/urea DES shows a well-established hydrogen
bond network between the salt and the HBD, leading to a higher melting point [6].
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M.B. Singh et al. mention that the properties of hydrogen bonds cause DESs to have
efficient dissolution properties in soluble and insoluble compounds, such as metals oxides
in choline chloride: urea DES [7]. Abbott et al. prepared three DESs from ChCl to dissolve
metal oxides, such as CuO and ZnO, finding that the hydrogen bonds formed between
urea and ChCl achieve an open structure that facilitates transfer-proton transfer and the
dissolution of metal, as well as complexation with the metal [3,8,9]. In addition to studying
the interactions that exist within the preparation, it is essential to know other advantages
that make these DESs into technological materials: these solvents must be friendly to
the environment, non-toxic, generally biodegradable and recyclable, non-volatile, non-
flammable, and often synthesizable using economical components [2,10,11].

Therefore, NADESs offer endless opportunities for processes and can be applied in
different research fields, mainly as solvents for the extraction or separation of contaminants,
biocatalysis, leaching metals, science materials, and electrochemistry; in addition, they are
sustainable and safe [12]. They have also been used to modify materials, such as polymers
and silica, which are used in high-purity extraction and separation applications [13,14].
However, it is important to notice that other physical properties, such as polarity and
viscosity, influence the results of the proposed technologies [15,16].

On the other hand, metal recycling is known to be the most developed area of the
recycling field since, for most metals of commercial interest, major crises are expected due
to the depletion of primary resources [17]. In the case of Zn–C batteries, the interest in their
recycling has grown because it is estimated that more than 300,000 tons of Zn batteries are
sold per year [18], and the most preferred route is hydrometallurgical.

In recent years, research has shifted towards the use of more environmentally friendly
lixiviants in the leaching of valuable metals [19]. Therefore, this work focuses on the
leaching of metals such as zinc (Zn) and manganese (Mn) by using a NADES made from
choline chloride and urea, proposing a new route for recycling spent batteries that could be
more ecofriendly.

Multiple reports have demonstrated the ability of NADESs to digest common metal
oxides [20–24], with certain compositions even rivaling the performance of acids [9]. An-
other advantage of using NADESs is that there is no need for an additional step involving a
reducing agent and/or expensive solvent extractants, which are commonly added to many
conventional hydrometallurgical procedures [25]. This process has recently been studied
in the extraction separation of Ag (I) and Zn (II) from a synthetic nitrate leaching solution
of spent silver oxide batteries via solvent extraction and stripping [26]. Furthermore, re-
cently, green a choline chloride solvent was used for the recovery of copper from converter
slag [27]. Others have proposed the use of these sustainable solvents as vehicles to enable
the recycling of spent LIBs (rechargeable lithium-ion batteries) [28] with a DES of choline
chloride or ethylene glycol (ChCl/EG).

The aim of this work is to propose an environmentally friendly Zn–C battery powder
recycling process using a biodegradable NADES, for which a ChCl/urea dissolvent is used
for the first time for the dissolution of Mn and Zn from these residues, studying the kinetics
of the process as a function of temperature and solid/NADES ratio. For the preparation of
the ChCl/urea, the proposed chemical reaction is based on a eutectic mixture commonly
used as a deep eutectic solvent, mainly because the reagents used are relatively cheap,
biodegradable, and do not require a high temperature for their preparation. Furthermore,
choline chloride acts in the mixture as a compound with a hydrogen-accepting character
(HBA), while urea donates hydrogen bonds, acting as an HBD, forming a compound
commonly called reline [29,30]. Finally, the use of a NADES to perform the leaching
step on the metal recovery of electronic scrap has attracted the attention of scientists
as a new strategy to avoid the application of hazardous solvents and to achieve more
sustainable processes since they are considered green solvents and are not environmentally
toxic [24,31]. Moreover, they are easily prepared, which makes them cheaper than other
alternative solvents, such as ionic liquids (ILs) [32].
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2. Results and Discussion
2.1. Leaching Experiments

The dissolution of Zn and Mn oxides from spent zinc-carbon powder batteries using a
NADES leaching agent can be explained in terms of the components of a NADES of ChCl,
which have a significant influence on its physicochemical properties, such as polarity and
dissolving capacity, which directly affect the extraction efficiency of metal compounds [33].

Overall, in all these procedures, extraction efficiency is dependent on many factors,
such as the partition coefficient, type, and volume of the extracting and dispersive solvents;
the sample volume; the analyte properties; the agitation; the ionic strength; the extraction
time and temperature, etc. [34]. Figure 1 shows the leaching process at 25 ◦C as the function
of time using a solid/NADES ratio of 3.3 g dm−3. As observed, after 4320 min (72 h), Zn
oxides can be leached to almost ~90%, whereas Mn oxides reach ~30%. The high dissolution
of Zn oxides, compared with the low dissolution of Mn oxides, can be explained by the
difference in solubility, because, in general, zinc oxides are highly soluble, compared to
those of manganese. Furthermore, it is well known that, of the Mn oxides, the Mn3+ and
Mn4+ forms, which are present in zinc-carbon powder, are poorly soluble, and in fact, in
acid solutions, they must first be reduced to Mn2+ [9,31,35]. On the other hand, neither Ni
nor Mg was detected, while traces of Fe were observed. However, it is probable that the
first two substances were found in small quantities, considering the initial composition of
the powder (Table 1).
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Figure 1. Metal leaching of spent zinc-carbon batteries.

Table 1. Chemical composition of the zinc–carbon battery powder.

Element Content/wt %

Mn 48.83
Zn 13.02
Fe 1.12
Si 0.48
Ni 0.25
Mg 0.21
C 5.53
S 0.11

Figure 2 shows the Zn and Mn oxide leaching for both solid/NADES ratios of 3.3 and
10 g dm−3 for the four experimental temperatures: 80, 100, 125, and 150 ◦C. As observed,
under the experimental conditions, it was possible to dissolve both Zn and Mn oxides in
the NADES solution at a level greater than ~90% for both metals. Therefore, to explain the



Recycling 2022, 7, 86 4 of 14

observed behavior of the leaching experiments, modeling of the kinetics experiments has
been carried out.
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Kinetic Modeling

For the kinetic modeling of the metal oxide leaching, spent zinc-carbon powder
batteries were dissolved using a NADES as a leaching agent. Since the carbon would not
react with the NADES, the Zn and Mn oxide dissolution proceeded in a topochemical
manner, in which the inner core of the unreacted particle decreased with time [36].

Therefore, the leaching kinetics could be controlled by the diffusional mass transfer of
either the NADES or the metal ions through a liquid boundary layer or a metal deposit [37].
If liquid film dissolution controls the reaction kinetics, the pseudo-first-order kinetic model
(Equation (1)) or the second-order kinetic could be used (Equation (2)):

kappt = − ln(1 − x) (1)

kt = ln x−1 (2)

where x is the fraction of the metal solubilized, t (min) is the reaction time, kapp (min−1)
is the pseudo-first-order kinetic constant, and k (min−1) is the second-order constant. If
product layer diffusion controls the kinetics, then the applied model should be a quadratic
one, (Equation (3)), where kd is the parabolic reaction constant (min−1) [38]:

kdt = x2 (3)
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On the other hand, if the reaction kinetics is controlled by boundary layer, then the
process can be evaluated in accordance with a shrinking sphere model (Equation (4)) [39]
or the shrinking core model proposed by Ginstling–Brounstein (Equation (5)) [40]:

ksst = 1 − (1 − x)
1
3 (4)

kplt = 1 − 2
3

x − (1 − x)
2
3 (5)

where kss is the apparent rate constant of the shrinking sphere model (min−1), whereas
kpl (min−1) is the apparent rate constant of the shrinking core model with an insoluble
product layer. For all cases, all of the k values were obtained for the four experimental
temperatures, 80, 100, 125, and 150 ◦C (Figure 2) by applying least-squares regression
analysis to both the solid/NADES ratios of 3.3 and 10 g dm−3 for Zn oxide leaching (see
Table 2), and for Mn oxide leaching (see Table 3).

Table 2. Kinetic Parameters and fitting for Zn oxide leaching as a function of temperature.
solid/NADES = 3.3 and 10 g dm−3.

Kinetic Model

Solid/NADES = 3.3 g dm−3 Solid/NADES = 10 g dm−3

Temperature/◦C

80 100 125 150 80 100 125 150

Pseudo-
first-order

kapp/min−1 1.75 × 10−3 2.88 × 10−3 5.18 × 10−3 2.05 × 10−2 3.23 × 10−4 3.60 × 10−4 1.42 × 10−3 3.33 × 10−3

R2 0.93 0.98 0.97 0.99 0.95 0.92 0.94 0.94

Second-
order

k/min−1 2.51 × 10−3 4.66 × 10−3 1.07 × 10−2 1.47 × 10−1 4.04 × 10−4 4.69 × 10−4 1.97 × 10−3 5.02 × 10−3

R2 0.95 0.97 0.97 0.93 0.95 0.92 0.94 0.93

Layer
diffusion

kd/min−1 7.35 × 10−4 1.34 × 10−3 2.55 × 10−3 5.61 × 10−3 1.03 × 10−3 1.28 × 10−4 5.68 × 10−4 1.46 × 10−3

R2 0.95 0.97 0.97 0.96 0.96 0.92 0.95 0.94

Shrinking
sphere
model

kss/min−1 5.17 × 10−4 8.19 × 10−4 1.36 × 10−3 4.14 × 10−3 1.00 × 10−4 1.10 × 10−4 7.64 × 10−4 9.70 × 10−4

R2 0.93 0.97 0.97 0.97 0.95 0.91 0.93 0.94

Shrinking
core model

kpl/min−1 1.04 × 10−4 2.05 × 10−4 4.49 × 10−4 1.78 × 10−3 1.33 × 10−5 1.69 × 10−5 7.81 × 10−5 2.13 × 10−4

R2 0.96 0.98 0.99 0.99 0.97 0.95 0.96 0.96

Table 3. Kinetic Parameters and fitting for Mn oxide leaching as a function of temperature,
solid/NADES = 3.3 and 10 g dm−3.

Kinetic Model

Solid/NADES = 3.3 g dm−3 Solid/NADES = 10 g dm−3

Temperature/◦C

80 100 125 150 80 100 125 150

Pseudo-
first-order

kapp/min−1 1.69 × 10−3 1.66 × 10−3 8.00 × 10−3 3.59 × 10−2 9.10 × 10−4 1.12 × 10−3 3.55 × 10−3 5.97 × 10−3

R2 0.94 0.99 0.97 0.93 0.96 0.97 0.93 0.95

Second-
order

k/min−1 2.15 × 10−3 2.51 × 10−3 2.09 × 10−2 6.06 × 10−1 1.10 × 10−3 1.39 × 10−3 5.10 × 10−3 8.94 × 10−3

R2 0.95 0.98 0.97 0.70 0.97 0.97 0.95 0.97

Layer
diffusion

kd/min−1 5.65 × 10−4 7.41 × 10−4 3.75 × 10−3 7.29 × 10−3 2.55 × 10−4 3.50 × 10−4 1.47 × 10−3 2.51 × 10−3

R2 0.96 0.98 0.97 0.88 0.98 0.98 0.96 0.96

Shrinking
sphere
model

kss/min−1 5.20 × 10−4 4.83 × 10−4 1.95 × 10−3 5.60 × 10−3 2.85 × 10−4 3.47 × 10−4 1.05 × 10−3 1.75 × 10−3

R2 0.93 0.98 0.97 0.95 0.96 0.97 0.93 0.95

Shrinking
core model

kpl/min−1 7.38 × 10−5 1.08 × 10−4 7.53 × 10−4 2.57 × 10−3 3.20 × 10−5 4.49 × 10−5 2.08 × 10−4 3.67 × 10−4

R2 0.97 0.99 0.98 0.97 0.99 0.99 0.98 0.97
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In general, experimental data obtained from the correlation presented a better fit with
the shrinking core model, and the probable small deviation, especially for the Zn, could be
related to the non-uniform size. Therefore, it can be stated that the resistance to diffusion
through a product layer over the non-reacted particle surface controls the rate of reaction
of the Zn–C batteries with NADES. This result is in good agreement with those observed
in the literature for the leaching of spent batteries with H2SO4 [41], H2SO4 and ascorbic
acid [42], and SO2 [43].

From Figure 1, it is possible to establish the kpl for Zn and Mn, also using Equation (5),
at 25 ◦C. Thus, kpl it equal to 3.56 × 10−5 (R2 = 0.97) and 2.75 × 10−6 min−1 (R2 = 0.99) for
Zn and Mn, respectively.

2.2. Effect of Temperature and Solid/NADES Ratio

In order to clarify the leaching trend, Figure 3 shows the calculated kpl as a function
of the temperature and the solid/NADES ratio for both metals, and as expected, as the
temperature rises, the leaching rate does as well. On the other hand, because the rate of a
reaction is directly proportional to the value of kpl, it is possible to observe the trend more
clearly for Zn and Mn. As observed, until 100 ◦C is reached for all systems, the reaction rate
is almost constant; however, as the temperature reaches 125 ◦C, the reaction rate rapidly
increases, and therefore, it is a strongly temperature-activated process.
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In addition, it can be observed that the reaction rate for the Mn oxides is higher than
that observed for the Zn oxides. Furthermore, when the solid/NADES ratio increases,
the reaction leaching rate decreases. Furthermore, this effect is strongly evident for both
metals since the reaction rate at 150 ◦C increases 8 times for Zn (from kpl = 2.13 × 10−4

to 1.78 × 10−3) and 7 times (from kpl = 3.67 × 10−4 to 2.57 × 10−3) for Mn when the
solid/NADES ratio decreases from 10 to 3.3 g dm−3. On the other hand, the decrease in the
recovery for Zn and Mn that occurs as the solid/NADES ratio increases can be explained
due to the solubility of metal oxides in NADES since it has been shown that the solubility
increases due to the higher proton activity in DES compounds, and the dissolution is likely
due to the formation of complexes with the urea or decomposition products of the urea,
e.g., ammonia. Therefore, as the content of solid to be leached increases, there is a lower
concentration of the decomposition products, and therefore, a lower dissolution [44].

2.3. Activation Energy

For reactions where the rate is high, it is possible to calculate the apparent activation
energy through the Arrhenius equation:
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ln kpl = − Ea

RT
+ ln A (6)

where kpl is the rate constant shrinking core model, R is the ideal gas constant, T is the
absolute temperature of the reaction, Ea is the apparent activation energy, and A is the
pre-exponential factor. Therefore, the graph of the T−1 vs. ln kpl allows the calculation of
the activation energy (see Figure 4a,b) for Zn and Mn, respectively, for both solid/NADES
ratio. The apparent activation energy value in the present investigation ranged from
49.13 to 52.21 kJ mol−1 (11.74–12.47 kcal mol−1) for Zn and from 46.97 to 66.77 kJ mol−1

(11.25–15.96 kcal mol−1) for Mn. It is important to mention that both values were higher
than those reported for Mn and Zn dissolution from spent Zn–C batteries using inorganic
acids: for Zn, it has been reported as 22.78 kJ mol−1 [18], 23.03 [45], and 94.53 kJ mol−1 [41],
whereas for Mn, it has been reported as 7.04 [42], 31.80 [45], and 1.14 kJ mol−1 [41].
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2.4. Final Solid Residue

Figure 5 presents the XRD diffraction pattern of the final solid residue after 90 min
of leaching at 150 ◦C and a solid/NADES ratio of 3 g dm−3. As can be observed, the
solid waste was composed mostly of graphite C (Graphite, ICSD 98-005-2230), and small
remnants of ZnO (Zincite, ICSD 98-002-6170) and ZnMn2O4 (Hetaerolite, ICSD 98-001-
5305). However, since the main goal of the leaching process is to achieve the maximum
metallic dissolution of the waste, it is important to calculate the required time for maximum
recovery. In the present study, using Equation (5), to leach the 99% of Zn at 80 ◦C, the
required time should have been 2820 min, whereas for Mn, the calculated time should have
been 3980 min. Since it is clear that the process is highly dependent on the temperature,
the calculated times could be reduced to 165 and 125 min, for Zn and Mn, respectively, at
150 ◦C. However, it is preferable to keep the process temperature low due to environmental
considerations, because, as the temperature increases, the formation of CO2 and SO2 due
to the thermal effect is possible, which obviously must be avoided. However, it is evident
that the main solid product to be obtained through the proposed process is made up of
graphite, which can be reused in other processes.

Finally, regarding the solution leached with NADES, which contains Zn and Mn, it
could be separated by electrodeposition processes. For example, it has been reported that it
is possible to electrodeposit Zn contained in a NADES of choline chloride:ethylene glycol
(ChCl:EG) on a steel substrate [46] or by using choline chloride (ChCl)/urea on copper [47].
Moreover, in the same medium, it has also been possible to electrodeposit Mn [45,48].
Therefore, it is a research topic to find the ideal separation conditions (additives, current,
substrate, etc.) in order to obtain the optimal recovery. Furthermore, directly depositing
both metals from the DES for the corrosion protection of Cu has also been proposed [49].
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3. Materials and Methods
3.1. ChCl/Urea NADES Preparation

For the preparation of the selected ChCl/urea NADES, choline chloride (ChCl, Sigma
Aldrich ≥ 99%) (Saint Louis, MO, USA) and urea (Sigma Aldrich ≥ 97%) (Saint Louis,
MO, USA) were used. The preparation of NADES was carried out with a molar ratio of
ChCl-urea, 1:2, which is the most common composition, at a temperature of 85 ◦C and a
stirring rate of 350 rpm in a glycerin water bath for approximately 2 h until a transparent
product was obtained.

3.1.1. FTIR Studies

Figure 6 shows the FTIR spectra of urea, choline chloride, and NADES ChCl/urea
(1:2 molar ratio). For pure urea, the 3432 and 3224 cm−1 peaks correspond to N-H stretch-
ing vibrations, anti-symmetric and symmetric, respectively [50]. The peak at 1677 cm−1

corresponds to the C=O, whereas the one at 1634 cm−1 can be assigned to the deformation
of N-H, and finally, the signal at 1457 cm−1 corresponds to the stretching of the C-N group.
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For ChCl, characteristic bands can be observed at 3600–3200 cm−1, corresponding to
O-H stretching. The vibrational bands at 2992–2851 cm−1 and 1485 cm−1 are correlated to
an alkyl group; the 1485 cm−1 signal is particularly attributed to CH2 bending, while the
signal for the H-O bending can be observed at 1637 cm−1. Finally, the band 869 cm−1 is
assigned to C-C stretching [51].

The natural deep eutectic solvent (NADES) ChCl/urea shows, at 3396–3220 cm−1,
stretching bands of the OH and N-H groups; the later appears as a large band deformed by
hydrogen bond interactions of urea with choline. It is known that the NADES; urea/ChCl
complex shows hydrogen bonds between the NH group of the urea and the Cl of the
ChCl [52].

Moreover, the N-H and C=O stretching vibrations of the urea in NADES showed a
slight blue shift, indicating the formation of hydrogen bonds between the amino group in
the urea and the Cl of ChCl.

3.1.2. 1H NMR Spectra

The chemical shifts were referenced to the quintuplet signal of residual methanol
(CHD2OD, δ 3.33). The chemical structure of each component was analyzed by 1H
NMR spectroscopy, which allows the identification of the different protons present in
the molecules. In the 1H NMR spectra shown in Figure 7, the characteristic signals of the
NADES can be observed (Figure 7a ChCl + urea), urea (Figure 7b), and choline chloride
(ChCl, Figure 7c).
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In the NADES spectrum, the single signal at δ 3.24 belongs to the three-CH3 groups.
The multiplet signals at δ 3.52 can be attributed to the methylene protons attached to the N
atom (N-CH2), followed by the multiplet signals at δ 4.01 of the second methylene group
(CH2O). The broad signal at δ 5.73 belongs to the -NH2 group of the urea.

The 1H NMR spectrum of the urea only shows its typical broad signal at δ 5.73 of the
NH2 group. Finally, the 1H NMR spectrum of choline chloride shows the singlet signals of
the methyl groups (δ 3.23, 3 × CH3), as well as those of the two methylene groups (δ 3.52,
N-CH2; δ 4.01, O-CH2). It is worth mentioning that the signal of the OH group is not visible
in the ChCl and ChCl + urea spectra due to the fact that this proton is exchangeable with
the solvent (methanol-d4). In the spectrum for choline chloride (ChCl, Figure 7c), the single
signal at δ 4.89 corresponds to H2O + OHD of impure deuterated methanol.

3.2. Zinc–Carbon Battery Powder

A mix of spent zinc-carbon batteries (types AA, D, and lantern) were collected from
residual waste. The batteries were dismantled by first using a laboratory hammer crusher.
Later, the steel cases, plastics, and papers were removed to obtain the typical black battery
powder, which was later dried for 24 h at 100 ◦C. The dried battery powder was milled in a
laboratory ball mill for 60 min. Subsequently, the obtained powder was sieved at −88 µm
(170 Tyler mesh). Figure 8a shows the scanning electron microscopy (SEM) image of the
milled battery powder at a magnification of 250×; as observed, powders mainly present in
an irregular form. The particle size distribution (see Figure 8b) was obtained by measuring
150 particles from several micrographs. The particle size ranged from 0.42 to 87.5 µm,
(mean = 22.15 µm, median = 10 µm), and it was observed that the fine particles adhered to
the larger ones.
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Figure 8c presents the XRD pattern of the battery powder. It can be observed that the
compounds were not completely crystalline; however, it was possible to identify that the
powder was mainly composed of ZnO (Zincite, ICSD 98-002-6170), ZnMn2O4 (Hetaerolite,
ICSD 98-001-5305), C (Graphite, ICSD 98-005-2230), Mn3O4 (Hausmannite, ICSD 98-003-
0005), and MnO2 (Manganasite, ICSD 98-002-0227). The present phases were similar to
those reported by Majharul Haque Khan [53].

The chemical composition (Table 1) of the powder was determined by means of energy
dispersive X-ray fluorescence (EDXRF) and was in good agreement with that found in the
literature for Zn–C waste [54].

3.3. Leaching Experiments

Before the leaching experiments, the battery powder was carefully mixed to ensure
homogeneity The first leaching test was carried out at 25 ◦C, at 200 rpm for 4320 min
(72 h) and with a solid/NADES ratio of 3.3 g dm−3. All the later leaching tests were
carried out at isothermal conditions (80, 100, 125, and 150 ◦C) and stirred at 200 rpm.
The choice of leaching temperatures was made with the criterion that they would present
the widest range possible. The lower temperature (80 ◦C) was chosen because it was
observed that the recovery of Zn and Mn is slow at 25 ◦C (Figure 1), in addition to the low
recovery of Mn. On the other hand, the upper temperature (150 ◦C) was chosen because
it is below the temperature at which NADES of ChCl/urea has been reported to start to
thermally decompose (≈170 ◦C) [55]. Additionally, two solid/NADES ratios were analyzed:
3.3 and 10 g dm−3. In this case, the choice was made based on preliminary experiments, in
which it was observed that, at ratios greater than 10 g dm−3, the system did not present
homogeneous agitation, in addition to the fact that, according to the results (see Figure 2),
if the ratio increases, the recovery decreases. All of the leaching experiments were carried
out in 90 min for comparative purposes since, at low temperatures, equilibrium is achieved
in that time period (Figure 2).

3.4. Characterization

The initial composition of the Zn–C powder was determined by energy dispersive
X-ray fluorescence (EDXRF) Rigaku NEX CG model. All zinc and manganese concentra-
tions of the leaching solutions were determined by an atomic absorption spectrometer
(AAS), Perkin Elmer Analyst 200 model. The NADES was studied by Fourier transform
infrared and confocal micro-Raman spectroscopy (FTIR). NMR measurements were per-
formed on a Varian (now Agilent) NMR System 500 spectrometer (Agilent Technologies,
Inc., Santa Clara, CA, USA) operating at 500 MHz for 1H NMR spectra. SEM observations
were carried out in a JEOL 630, operating at 20 kV.

4. Conclusions

A natural deep eutectic liquid NADES was prepared from choline chloride and urea
as a proposed medium for leaching and metal recovery processes with an environmentally
friendly solvent. The system was tested to recycle Zn–C battery powders, with the aim of
recovering Mn and Zn. The results showed that it is possible to leach 90% of Zn and 30% of
Mn at room temperature in 72 h. The leaching time can be drastically decreased with an
increase in temperature, achieving recovery of more than 90% for both metals at 150 ◦C.
Regarding the kinetics, it was shown that the process can be modeled using the shrinking
core model, so the resistance to diffusion through a product layer over the non-reacted
particle surface controls the rate of reaction of the Zn–C batteries with the NADES.
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