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Abstract: Lead–acid batteries are important to modern society because of their wide usage and
low cost. The primary source for production of new lead–acid batteries is from recycling spent
lead–acid batteries. In spent lead–acid batteries, lead is primarily present as lead pastes. In lead
pastes, the dominant component is lead sulfate (PbSO4, mineral name anglesite) and lead oxide
sulfate (PbO•PbSO4, mineral name lanarkite), which accounts for more than 60% of lead pastes.
In the recycling process for lead–acid batteries, the desulphurization of lead sulfate is the key part
to the overall process. In this work, the thermodynamic constraints for desulphurization via the
hydrometallurgical route for recycling lead pastes are presented. The thermodynamic constraints are
established according to the thermodynamic model that is applicable and important to recycling of
lead pastes via hydrometallurgical routes in high ionic strength solutions that are expected to be in
industrial processes. The thermodynamic database is based on the Pitzer equations for calculations
of activity coefficients of aqueous species. The desulphurization of lead sulfates represented by
PbSO4 can be achieved through the following routes. (1) conversion to lead oxalate in oxalate-
bearing solutions; (2) conversion to lead monoxide in alkaline solutions; and (3) conversion to lead
carbonate in carbonate solutions. Among the above three routes, the conversion to lead oxalate is
environmentally friendly and has a strong thermodynamic driving force. Oxalate-bearing solutions
such as oxalic acid and potassium oxalate solutions will provide high activities of oxalate that
are many orders of magnitude higher than those required for conversion of anglesite or lanarkite
to lead oxalate, in accordance with the thermodynamic model established for the oxalate system.
An additional advantage of the oxalate conversion route is that no additional reductant is needed to
reduce lead dioxide to lead oxide or lead sulfate, as there is a strong thermodynamic force to convert
lead dioxide directly to lead oxalate. As lanarkite is an important sulfate-bearing phase in lead pastes,
this study evaluates the solubility constant for lanarkite regarding the following reaction, based on
the solubility data, PbO•PbSO4 + 2H+ 
 2Pb2+ + SO4

2− + H2O(l).

Keywords: lead–acid batteries; desulphurization; thermodynamic model

1. Introduction

Lead has been used for more than ~2500 years [1] and today lead is still very important
to various modern industries. Among them, lead–acid batteries have been proven to be
essential in various applications in electric vehicles, energy storage, lighting and ignition
batteries, and uninterrupted power supplies, etc. Battery production accounts for more
80% of lead consumption [2]. In production of lead– acid batteries, about 70–80% of the
lead needed for battery manufacture comes from recycling of spent lead–acid batteries, and
the rest of the lead is produced from processing the lead ores from mining. Therefore, the
majority of the lead used for battery production is sourced from spent lead–acid batteries.

In spent lead–acid batteries, the major components include plastic containers, lead
alloy grids, waste acids, and pastes. Among them, lead pastes and lead alloy grids
are recycled for lead. In lead pastes, the mineralogical compositions in an order of
decreasing weight percentage based on semi-quantitative analyses include anglesite
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(PbSO4, 38%), lanarkite (PbO•PbSO4, 36%), plattnerite (PbO2, 9%), lead oxide sulfate
hydrate [(PbO)3(Pb(SO4))(H2O), 6%], leadhillite [Pb4(SO4)(CO3)2(OH), 4%], scrutiny
(PbO2, 3%], litharge (PbO, 2%), and lead (Pb, 2%) [3]. Lanarkite was also observed
by other researchers [4]. The chemical components include lead sulfates (PbSO4 and
PbO•PbSO4) (57.21 to 60.57 wt.%), lead dioxide (PbO2) (5.66 to 26.70 wt.%), lead monox-
ide (PbO) (13.08 to 29.53 wt.%), and metallic lead (Pb) (1.24 to 4.5 wt.%) [5,6]. In spent
lead–acid batteries, lead sulfates are primarily produced via the following reactions,

Pb + SO4
2− 
 PbSO4(cr) + 2e− (1)

PbO2 + 4H+ + SO4
2− + 2e− 
 PbSO4(cr) + 2H2O(l) (2)

PbO2 + Pb + 2H2SO4 
 2PbSO4(cr) + 2H2O(l) (3)

PbO + PbSO4 
 PbO•PbSO4 (4)

During the operation of a lead–acid battery, Reaction (1) in the forward direction
primarily occurs in a discharge period, and metallic lead behaves as an anode. Reaction (2)
in the forward direction takes place during discharge and lead dioxide acts as a cathode. In
a recharging period, Reactions (1) and (2) operate in the reverse direction.

In recycling lead pastes, the presence of lead sulfates presents environmental, health
hazard, and economic problems. This is because the decomposition of lead sulfates is
energy-intensive, as it requires high temperatures exceeding 1000 ◦C [7,8], and the decom-
position process using coal or coke as the fuel produces many gaseous and solid pollutants,
such as lead fume as well as dilute SO2 gas streams [7–9]. Therefore, in order to prevent the
above environmental and health problems as well as the energy-intensive problem, lead
sulfates must be desulphurized first [10,11]. In the hydrometallurgical recycling process for
lead–acid batteries, there are three desulphurization processes of lead pastes with oxalate,
carbonate, and alkaline solutions. The desulphurized lead products (i.e., lead oxalate, lead
hydroxide, and lead carbonate) are then smelted to produce lead ingots.

In this work, the thermodynamic constraints for desulphurization of lead paste via
three routes in oxalate, carbonate, and alkaline solutions are presented. The thermodynamic
constraints are constructed primarily based on the thermodynamic models established
previously [12–15], in addition to the thermodynamic parameters from the literature. These
thermodynamic models use the Pitzer equations for calculations of activity coefficients for
aqueous species and are valid to high ionic strengths. Therefore, these thermodynamic
models are suitable and ideal for such applications. Based on the optimum condition
for each desulphurization route and their products according to the thermodynamic con-
straints, more efficient and eco-friendly recycling processes for lead–acid batteries could
be examined.

2. Thermodynamic Models for Lead Species

Xiong et al. [12] established the thermodynamic models for the interactions of lead
with oxalate to high ionic strengths, based on the experimental studies on solubilities of
lead oxalate [PbC2O4(cr)] in various media, including NaCl, K2C2O4, and the mixtures
of KNO3 + K2C2O4. In that work, both Pitzer interaction parameters and the Specific
Ion Interaction Theory (SIT) parameters for lead species with oxalate are determined.
Subsequently, a thermodynamic model for the interactions of lead species in carbonate
solutions was developed [14]. After that, a thermodynamic model for lead species in
alkaline solutions was developed [15]. It should be emphasized that the above-mentioned
models utilize some parameters including Pitzer parameters from the literature, in addition
to those determined in the above-mentioned studies. Those parameters from the literature
are detailed and cited in Table 1.

In the following thermodynamic analyses, the computer code EQ3/6 Version 8.0a [16,17]
with the thermodynamic database DATA0.FM2 [18–20] was employed for the thermody-
namic calculations. The software was originally created by Thomas J. Wolery at Evanston,
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Illinois, USA. The database contains those parameters related to lead species, as tabulated
in Tables 1 and 2.

Table 1. Equilibrium constants at infinite dilution at 25 ◦C and 1 bar for key chemical species relevant
to recycling of lead pastes from lead–acid batteries.

Reactions log Ko
s , and Cumulative Formation Constants, log βo

1 ,
log βo

2 , log βo
3

Reference and Remarks

PbCO3(cr) 
 Pb2+ + CO3
2− −13.76 ± 0.15 (2σ) [14]

Pb2+ + CO3
2− 
 PbCO3(aq) 6.87 ± 0.09 (2σ) [21]

Pb2+ + 2CO3
2− 
 Pb(CO3)2

2− 10.41 ± 0.18 (2σ) [22]
Pb2+ + CO3

2− + Cl− 
 Pb(CO3)Cl− 7.23 ± 0.74 (2σ) [21]
PbO(cr) + 2H+ 
 Pb2+ + H2O(l) 12.59 [23], EQ3/6 database
Pb2+ + H2O(l) 
 PbOH+ + H+ −7.46 [24]
Pb2+ + 2H2O(l) 
 Pb(OH)2(aq) + 2H+ −17.05 ± 0.10 (2σ) [15]
Pb2+ + 3H2O(l) 
 Pb(OH)3

− + 3H+ −27.99 ± 0.15 (2σ) [15]
PbC2O4(cr) 
 Pb2+ + C2O4

2− −11.13 ± 0.15 (2σ) [12] A

Pb2+ + C2O4
2− 
 PbC2O4(aq) 5.85 ± 0.10 (2σ) [12] A

Pb2+ + 2C2O4
2− 
 Pb(C2O4)2

2− 8.05 ± 0.15 (2σ) [12] A

Pb2+ + C6H5O7
3− 
 PbC6H5O7

− 7.28 [19]
Pb2+ + Cl− 
 PbCl+ 1.48 [25]
Pb2+ + 2Cl− 
 PbCl2(aq) 2.03 [25]
Pb2+ + 3Cl− 
 PbCl3

− 1.86 [25]
PbSO4(cr) 
 Pb2+ + SO4

2− −7.78 [26]
PbO•PbSO4(cr) + 2H+ 
 Pb2+ + SO4

2− + H2O(l) 2.66 ± 0.05 This study
Na2C2O4(cr) 
 2Na+ + C2O4

2− −2.61 ± 0.05 This study
K2C2O4(cr) 
 2K+ + C2O4

2− −1.00 ± 0.06 This study
H2C2O4 (aq) 
 2H+ + C2O4

2− −6.07 [13]
HC2O4

− 
 H+ + C2O4
2− −4.36 [13]

PbO2(cr) + 2H+ 
 Pb2+ + H2O(l) + 0.5O2(g) 7.75 [27]

A Notice that in Xiong et al. [12], two sets of equilibrium constants were presented. One set is consistent with the
Pitzer model, whereas the other set is consistent with the Specific Ion Interaction Theory (SIT) model, and the
equilibrium constants from these two sets are different. The equilibrium constants presented in this work are
from the set that is consistent with the Pitzer model.

Table 2. Pitzer interaction parameters at 25 ◦C and 1 bar for key chemical species relevant to recycling
of lead pastes from lead–acid batteries via hydrometallurgical routes.

Pitzer Binary Interaction Parameters

Species i Species j β(0) β(1) Cϕ Reference
Na+ Pb(CO3)2

2− 0.4168 1.74 −0.3161 [14]
Na+ Pb(CO3)Cl− 0.2419 0.29 −0.1802 [14]
Na+ Pb(OH)3

− 0.3354 0.29 0 [15]
Na+ PbCl3

− −0.0605 0 0.091 [12]
Pb2+ Cl− 0.26 1.64 0.088 [25]
PbCl+ Cl− 0.15 0 0 [25]
K+ Pb(C2O4)2

2− 0 −1.86 ± 0.20 0.198 ± 0.09 [12]
Na+ Pb(C2O4)2

2− 0 −1.86 ± 0.20 0.198 ± 0.09 [12]
PbNO3

+ NO3
− −0.75 0.34 0 [12]

Na+ C2O4
2− −0.2770 1.74 0.122 [13]

K+ C2O4
2− −0.2770 1.74 0.122 This work, using Na+/C2O4

2− from [13] as
an analog

Na+ PbC6H5O7
− 0.535 0.29 0.0196 [20]

Mg2+ PbC6H5O7
− 1.97 1.74 0.0771 [20]

Na+ C6H5O7
3− 0.0877 5.22 0.047 [28]

Mg2+ C6H5O7
3− 0.9330 4.4 0 [29]

Pitzer Mixing Interaction Parameters and Interaction Parameters Involving Neutral Species

Species i Species j Species k λij or θij ζijk Reference
HCO3

− Pb(CO3)2
2− 0.2956 [14]

CO3
2− Pb(CO3)2

2− 0.2707 [14]
Cl− PbCO3(aq) −0.02 [21]
Na+ PbCO3(aq) Cl− 0 −0.145 [21]
SO4

2− Pb(OH)2(aq) −0.5581 [15]
SO4

2− Pb(OH)3
− −0.4046 [15]

Na+ Pb2+ 0.10 [30]
Cl− PbCl2(aq) −0.14 ± 0.04 [12]
Na+ PbCl2(aq) −0.11 [30]

3. Results

The thermodynamic analyses for desulphurization of lead pastes primarily focus on
three routes: (a) desulphurization in oxalate-bearing media to convert lead sulfates into
lead oxalate; (b) desulphurization in carbonate solutions to convert lead sulfates into lead
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carbonates; and (c) desulphurization in alkaline solutions to convert lead sulfates into
lead oxide. The thermodynamic analytical results for the above three routes are depicted
separately in the following.

3.1. Desulphurization in Oxalate-Bearing Media

Previous studies have demonstrated from the aspect of thermodynamics and field ob-
servations that lead oxalate is a stable phase in the presence of oxalate [12,31,32]. Therefore,
desulphurization of lead pastes using oxalate media is a viable route [33,34]. In the presence
of oxalate, the major components of lead pastes are subject to the following reactions,

PbSO4(cr) + C2O4
2− 
 PbC2O4(cr) + SO4

2− (5)

PbO•PbSO4(cr) + 2H+ + 2C2O4
2− 
 2PbC2O4(cr) + SO4

2− + H2O(l) (6)

PbO(cr) + 2H+ + C2O4
2- 
 PbC2O4(cr) + H2O(l) (7)

PbO2(cr) + 2H+ + C2O4
2- 
 PbC2O4(cr) + H2O(l) + 0.5O2(g) (8)

4PbO2(cr) + PbS + 8H+ + 4SO4
2- 
 5PbSO4(cr) + 4H2O(l) (9)

Reaction (5) represents the conversion of lead sulfate to lead oxalate. The conversion
of lead oxide sulfate (lanarkite) to lead oxalate is outlined by Reaction (6). As lead pastes
also contain lead monoxide and lead dioxide, Reactions (7) and (8) illustrate the possible
reactions for lead monoxide and lead dioxide in the presence of oxalate. Notice that no
additional reductant is needed or used in Reaction (8). As detailed below, Reaction (8) is
thermodynamically strongly favored. Alternatively, Reaction (9) depicts the use of lead
sulfide (PbS) as a reductant to convert lead dioxide to lead sulfate first, which is then
converted to lead oxalate, as demonstrated by Reaction (5). Glucose is also suggested as
a reductant for reduction of lead dioxide [35].

The solubility constant for PbO•PbSO4(cr) (lanarkite) is not available in the literature.
Therefore, the solubility constant for lanarkite in the following form,

PbO•PbSO4(cr) + 2H+ � Pb2+ + SO4
2− + H2O(l) (10)

is evaluated from the solubility data from [36], using the EQ3/6 Version 8.0a [16,17] with
the database DATA0.FM2 [18–20]. The solubility constant is tabulated in Table 1.

According to Reaction (5), the stability fields of PbC2O4(cr) and PbSO4(cr) in the space
of activities of sulfate in logarithmic units versus activities of oxalate in logarithmic units
(i.e., log aSO2−

4
versus log aC2O2−

4
) are constructed in Figure 1. Figure 1 shows that there is

a strong thermodynamic driving force for the conversion of PbSO4(cr) to PbC2O4(cr). For
instance, even at a high sulfate activity of 10, an oxalate activity of 10−2 or higher will
convert lead sulfate into lead oxalate.

Figure 2 shows the stability fields of lead oxalate and lead oxide sulfate in the space
of pH versus activity of oxalate in logarithmic units (i.e., pH versus log aC2O2−

4
) at various

activities of sulfate. The figure suggests that the conversion of lead oxide sulfate to lead
oxalate at sulfate activity ranging from 0.001 to 1 with water activity of 1 is thermodynami-
cally strongly favored, especially in acidic pH range, requiring activities of oxalate as low
as 10−11.
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As lead monoxide is also present in lead pastes, it will react with oxalate when oxalate-
bearing solutions are used for desulphurization, illustrated by Reaction (7). Figure 3 shows
the stability fields of lead oxalate and lead monoxide in the space of pH versus activity of ox-
alate in logarithmic units (i.e., pH versus log aC2O2−

4
) at water activities of 1.0, 0.75, and 0.45.

Figure 3 suggests that the stability fields at these three water activities do not deviate
significantly. Lead monoxide usually buffers solutions in alkaline pH range [15]. In alkaline
pH range, solutions with activity of oxalate higher than 10−2 will convert lead monoxide
into lead oxalate (Figure 3).
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at water activities of 1.0, 0.75, and 0.45.

Lead dioxide (plattnerite and scrutiny) is present in lead pastes. Usually, reductants
are required to reduce it first to lead monoxide. Figure 4 illustrates the direct conversion
of lead dioxide into lead oxalate without an added reductant in the space of pH versus
activity of oxalate in logarithmic units (i.e., pH versus log aC2O2−

4
) at water activity of

1.0 and various fugacities of oxygen. In Figure 4, two oxygen fugacities are assumed:
f O2 = 0.21 bars and f O2 = 10 bars. In the first scenario, the reduction process is open to the
atmosphere. In the second scenario, the reduction process happens in a closed system, such
as in a pressure vessel. In the second scenario, the partial pressures of oxygen are allowed
to be accumulated up to 10 bars. Figure 4 suggests that lead dioxide can be reduced in
oxalate-bearing solutions, as the required activities of oxalate are very low. For instance, the
required activities of oxalate in acidic pH 1–3 ranges are less than 10−11. As demonstrated
by Figure 5, the activities of oxalate (i.e., aC2O2−

4
) in oxalic acid solutions (~10−4) are many

orders of magnitude higher than the required activities of oxalate.
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Figure 4. The stability fields of lead dioxide [PbO2(cr)] and lead oxalate [PbC2O4(cr)] at 25 ◦C in the
space of pH versus log aC2O2−

4
in an oxalate-dominated solution for desulphurization of lead pastes at

water activity of 1.0 with two oxygen fugacities (f O2 ) at 0.21 bars and 10 bars, respectively.
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Figure 5. Predicted activities of oxalate species and water for oxalic acid (H2C2O4) solutions relevant
to desulphurization of lead sulfate in oxalate-bearing solutions at 25 ◦C and pHm = 1.0 (negative
logarithm of hydrogen ion concentration on molal scale). Activities of oxalate species and water
activities of oxalic acid solutions are calculated according to the thermodynamic parameters from
Thakur et al. (2015), which are listed in Tables 1 and 2.
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Lead sulfide (PbS) has been suggested as a candidate reductant for reduction of lead
dioxide [3]. Figure 6 presents the stability fields of the assemblage of lead dioxide and lead
sulfide with respect to lead sulfate in the space of pH versus activity of sulfate (i.e., pH
versus log aSO2−

4
) at water activities of 1.0, 0.75, and 0.45. As suggested by Figure 5, the

reduction of lead dioxide to lead sulfate in the presence of lead sulfide is thermodynamically
strongly favored, especially in acidic pH range. The reduction process requires low activities
of sulfate, less than 10−25, even at alkaline pH range.
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However, the reduction of lead dioxide to lead sulfate using lead sulfide as a reductant
produces more lead sulfates that require desulphurization. In comparison, the use of oxalic
acid solution to convert lead dioxide directly to lead oxalate is much simpler, and it does
not need to desulphurize additional amounts of lead sulfate, and it is a preferred route.
However, the efficacy of the route with oxalic acid solutions depends on the kinetics. If the
kinetics are not favored at 25 ◦C, the temperature can be increased to enhance the kinetics.

As depicted in Figures 1–4, activities of oxalate are the key thermodynamic driving
force for the desulphurization process. The oxalate-bearing solutions that are suitable for
desulphurization include oxalic acid, potassium oxalate and sodium oxalate solutions.
In Figure 5, activities of oxalate species and water activities for oxalic acid solutions
up to the saturation point with respect to H2C2O4•2H2O(cr) are predicted based on the
thermodynamic model in [13] for the oxalate system. The up-limits of oxalate activities
that can be provided by oxalic acid solutions are 10−4.4 in the acidic pH range. As shown
in Figures 1–4, activities of oxalate required for conversion of lead sulfate and lead oxide
sulfate in acidic pH range are many orders of magnitude lower than 10−4.4.

Other oxalate-bearing solutions, including Na2C2O4 and K2C2O4 solutions, can also be
used for desulphurization. Based on the experimental work from [37], the saturated concen-
trations of Na2C2O4 and K2C2O4 in water at 25 ◦C are 0.27 mol•kg−1 and 2.06 mol•kg−1,
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respectively. According to their solubility data, the solubility constants for Na2C2O4 and
K2C2O4 are determined according to the following reactions,

Na2C2O4(cr) 
 2Na+ + C2O4
2− (11)

K2C2O4(cr) 
 2K+ + C2O4
2− (12)

The solubility constants for Na2C2O4 and K2C2O4 are tabulated in Table 1. These
solubility constants are evaluated in consistency with the thermodynamic model for the
oxalate system from [13].

The activities of potassium ion, oxalate species, and water for K2C2O4 solutions are
computed using the thermodynamic model of [13] for the oxalate system (Figure 7). The con-
centrations of K2C2O4 solutions are up to the saturation point with K2C2O4(cr) (Figure 7).
The activities of oxalate in K2C2O4 solutions are much higher than those in oxalic acid. No-
tice that activities of oxalate for Na2C2O4 solutions are not separately computed. The first
reason for this is that Na2C2O4(cr) has much lower solubility (i.e., 0.27 mol•kg−1), which is
lower than that of K2C2O4(cr) by about a factor of 8 (2.06 mol•kg−1). Second, the interaction
parameters for K+—C2O4

2− are assumed to be the same as those for Na+—C2O4
2− (see

Table 1). Therefore, the activities of oxalate computed for K2C2O4 solutions can be used for
Na2C2O4 solutions.
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Figure 7. Predicted activities of oxalate species and water for potassium oxalate (K2C2O4) solutions
relevant to desulphurization of lead sulfate in oxalate-bearing solutions at 25 ◦C and pHm = 6.5
(negative logarithm of hydrogen ion concentration on molal scale). Activities of oxalate species
and water activities of potassium oxalate solutions are calculated according to the thermodynamic
parameters from [13]), which are listed in Tables 1 and 2.

3.2. Desulphurization in Alkaline Solutions

Alkaline solutions, such as NaOH, have been suggested to be agents for
desulphurization [6], and exhibit a higher desulphurization rate and efficiency than that
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using carbonate media, such as Na2CO3 [38]. In alkaline solutions, lead sulfate is desul-
phurized, as the hydroxyl ion displaces the sulfate ion,

PbSO4(cr) + 2OH− 
 PbO(cr) + H2O(l) + SO4
2− (13)

Figure 8 shows the stability fields of lead monoxide and lead sulfate in the space of
activity of sulfate in logarithmic units versus activity of the hydroxyl ion in logarithmic
units (i.e., log aSO2−

4
versus log aOH− ). Figure 8 suggests that lead sulfate will be converted

to lead monoxide at various activities of the hydroxyl ion. In low activities of sulfate
(i.e., ≤10−3), an activity of the hydroxyl ion at 10−5 or higher is sufficient to desulphurize
lead sulfate by converting it into lead monoxide.
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Figure 8. The stability fields of lead dioxide [PbO(cr)] and lead sulfate [PbSO4(cr)] at 25 ◦C in the
space of log aSO2−

4
versus log aOH− in alkaline solutions for desulphurization of lead pastes at water

activities of 1.0, 0.75, and 0.45, respectively.

The desulphurization of lead oxide sulfate in alkaline solutions can be expressed as,

PbO•PbSO4(cr) + 2OH− 
 2PbO(cr) + H2O(l) + SO4
2− (14)

Figure 9 displays the stability fields of lead monoxide and lead oxide sulfate (lanarkite)
in the space of activity of sulfate in logarithmic units versus activity of the hydroxyl ion in
logarithmic units (i.e., log aSO2−

4
versus log aOH− ). In comparison with Figure 6, Figure 9

suggests that the desulphurization of lanarkite requires higher activities of the hydroxyl ion
than that required for the desulphurization of lead sulfate at the same activities of sulfate.
For instance, at aSO2−

4
= 10−3, the minimum activity of the hydroxyl ion should be 10−4.4

for the desulphurization of lanarkite (Figure 9), which is about one order of magnitude
higher than that required for the desulphurization of lead sulfate (Figure 8).
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Figure 9. The stability fields of lead dioxide [PbO(cr)] and lead oxide sulfate [PbO•PbSO4(cr)] at
25 ◦C in the space of log aSO2−
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versus log aOH− in alkaline solutions for desulphurization of lead

pastes at water activities of 1.0, 0.75, and 0.45, respectively.

In the desulphurization process using alkaline solutions such as NaOH and KOH
solutions, the other function of alkaline solutions is to leach lead from lead pastes by disso-
lution of the lead solid phase. In the above thermodynamic calculations as summarized by
Figures 8 and 9 as well as the experimental work in [15], the solubility-controlling phase
for lead in alkaline solutions is lead monoxide (PbO, litharge).

Xiong et al. [15] have developed a high precision thermodynamic model for the
solubility of litharge in alkaline solutions. Figure 10 represents solubilities of litharge in
alkaline solutions in comparison with the experimental solubility data of litharge from
Randall and Spencer [39], and Garrett et al. [40] in NaOH and KOH solutions at 25 ◦C.
Notice that the experimental data presented in Figure 10 were not used in the model
development in [15]. Figure 10 demonstrates that the model of Xiong et al. [15] can
accurately predict the solubility of litharge in alkaline solutions with OH− concentrations
up to 0.25 mol•kg−1. Therefore, the model of Xiong et al. [15] can be used for predictions
of solubility of lead monoxide in the desulphurization process in alkaline solutions up to
OH− = 0.25 mol•kg−1.

One issue with alkaline solutions for desulphurization may be that a reductant must
be used to reduce lead dioxide to lead monoxide. This is because the conversion of lead
dioxide to lead monoxide is not thermodynamically favored without a reductant,

PbO2(cr) 
 PbO(cr) + 0.5O2(g) (15)

The Gibbs free energy change (∆rG0
298.15) for the above reaction is 28.40 kJ•mol−1,

calculated from the thermodynamic properties from [27] for the respective species in
Reaction (11). The positive Gibbs free energy change for Reaction (15) suggests that there is
no thermodynamic driving force for lead dioxide to be decomposed into lead monoxide.
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Figure 10. Solubilities of lead monoxide (PbO, litharge) as a function of hydroxyl concentrations in
dilute and moderate concentration ranges at 25 ◦C, applicable to desulphurization and leaching of
lead pastes with alkaline solutions. The experimental data are from Randall and Spencer [39] and
Garrett et al. [40]. The calculated solubilities are based on the model of Xiong et al. [15].

In addition to the above-mentioned reductants (e.g., PbS), an environmentally friendly
reductant, glucose (C6H12O6), has also recently proposed [41]. In their work, lead pastes
were first reduced with glucose at 175 ◦C. After the reduction process, only PbO•PbSO4
and PbSO4 were present. Then, the lead pastes containing only PbO•PbSO4 and PbSO4
were desulphurized in NaOH solutions [41].

In order to facilitate the applications, the solution chemical parameters including
activities of water, the hydroxyl ion, and the hydrogen ion for NaOH solutions with
concentrations ranging from very dilute (e.g., 0.0001 mol•kg−1) to 0.26 mol•kg−1 are
presented in Figure 11. The activities of the hydroxyl ion in very dilute NaOH solutions are
higher than 10−4.0, which are sufficient for desulphurization of both PbSO4 and PbO•PbSO4
at low sulfate activity of 10−3.0 (see Figures 8 and 9). However, as the industrial process
may use alkaline solutions with higher hydroxyl concentrations, the extension of the lead
solubility model of Xiong et al. (2018) to higher hydroxyl concentrations is in progress.

Notice that in the model of Xiong et al. (2018) for alkaline solutions, the speciation
schema for lead hydroxyl species includes Pb2+, PbOH+, Pb(OH)2(aq), and Pb(OH)3

−. The
tetra-hydroxyl lead species, Pb(OH)4

2−, determined by Perera et al. (2001), is expected to
be important in hyperalkaline solutions. When the model of Xiong et al. (2018) is extended
to hyperalkaline solutions, the tetra-hydroxyl lead species will be included.
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Figure 11. Predicted activities of the hydroxyl ion and water for sodium hydroxide (NaOH) solutions
relevant to desulphurization of lead sulfate in alkaline solutions at 25 ◦C. Activities of the hydroxyl ion
and water of sodium hydroxide solutions are calculated according to the thermodynamic parameters
from Xiong et al. [15].

3.3. Desulphurization in Carbonate Media

Cerussite (PbCO3) is the dominant lead phase in carbonate-bearing solutions [14,42,43].
Therefore, lead pastes can be desulphurized in carbonate-bearing solutions by taking
advantage of the stability of cerussite in such solutions [44]. The replacement of lead sulfate
by cerussite can be cast as the following reaction

PbSO4(cr) + CO3
2− 
 PbCO3(cr) + SO4

2− (16)

Figure 9 displays the stability fields of cerussite and lead sulfate in the space of activity
of sulfate in logarithmic units versus activity of carbonate in logarithmic units (i.e., log aSO2−

4
versus log aCO2−

3
). Even in an environment with high activities of sulfate (e.g., aSO2−

4
= 10),

the required activities of carbonate are low (e.g., 10−5) (Figure 12).
The conversion of lanarkite to cerussite can be expressed as,

PbO•PbSO4(cr) + 2H+ + 2CO3
2− 
 2PbCO3(cr) + SO4

2− + H2O(l) (17)

Figure 13 illustrates the stability fields of lanarkite and cerussite in the space of activ-
ity of sulfate in logarithmic units versus activity of carbonate in logarithmic units (i.e.,
log aSO2−

4
versus log aCO2−

3
). The stability relations are calculated at an alkaline pH 10 and

water activity of 1.0. Figure 13 shows that the desulphurization of lanarkite into cerussite
requires higher activities of carbonate at the same activities of sulfate, in comparison with
the desulphurization of anglesite (c.f. Figures 12 and 13). For instance, at aSO2−

4
= 10−3, the

desulphurization of lanarkite into cerussite requires a carbonate activity of ≥10−6.6, in com-
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parison with a carbonate activity of ≥10−9 for desulphurization of anglesite into cerussite.

Recycling 2022, 7, x FOR PEER REVIEW 15 of 20 
 

 
Figure 12. The stability fields of lead carbonate [PbCO3(cr)] and lead sulfate [PbSO4(cr)] at 25 °C in 
the space of 2

4
log

SO
a −  versus 2

3
log

CO
a −  in carbonate solutions for desulphurization of lead 

pastes. 

The conversion of lanarkite to cerussite can be expressed as, 

PbO•PbSO4(cr) + 2H+ + 2CO32− ⇌ 2PbCO3(cr) + SO42− + H2O(l) (17)

Figure 13 illustrates the stability fields of lanarkite and cerussite in the space of activ-
ity of sulfate in logarithmic units versus activity of carbonate in logarithmic units (i.e.,

2
4

log
SO
a −  versus 2

3
log

CO
a − ). The stability relations are calculated at an alkaline pH 10 

and water activity of 1.0. Figure 13 shows that the desulphurization of lanarkite into ce-
russite requires higher activities of carbonate at the same activities of sulfate, in compari-
son with the desulphurization of anglesite (c.f. Figures 12 and 13). For instance, at 

2
4

310
SO
a −

−= , the desulphurization of lanarkite into cerussite requires a carbonate activity 

of ≥10−6.6, in comparison with a carbonate activity of ≥10−9 for desulphurization of anglesite 
into cerussite. 

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0 -2.0 -1.0 0.0 1.0
log a SO4

2-

lo
g 
a C

O
32
-

PbCO3(cr)

PbSO4(cr)

Figure 12. The stability fields of lead carbonate [PbCO3(cr)] and lead sulfate [PbSO4(cr)] at 25 ◦C in
the space of log aSO2−

4
versus log aCO2−

3
in carbonate solutions for desulphurization of lead pastes.

Recycling 2022, 7, x FOR PEER REVIEW 16 of 20 
 

 
Figure 13. The stability fields of lead carbonate [PbCO3(cr)] and lanarkite [PbO•PbSO4(cr)] at 25 °C 
in the space of 2

4
log

SO
a −  versus 2

3
log

CO
a −  at pH = 10 and water activity of 1.0 in carbonate so-

lutions for desulphurization of lead pastes. 

In carbonate-bearing solutions, lead monoxide present in lead pastes may, or may 
not, be converted into cerussite. Figure 14 presents the stability fields of cerussite and lead 
monoxide (PbO, litharge) in the space of activity of the hydroxyl ion in logarithmic units 
versus activity of carbonate in logarithmic units (i.e., log

OH
a −  versus 2

3
log

CO
a − ). The 

occurrence or absence of conversion of litharge does not affect the overall desulphuriza-
tion process. However, from the point of conservation of carbonate solutions, it is advan-
tageous to perform the desulphurization process under the conditions where litharge is 
stable. 

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0 -2.0 -1.0 0.0 1.0
log a SO4

2-

lo
g 
a C

O
32
-

PbCO3(cr)

PbO•PbSO4(cr)

Figure 13. The stability fields of lead carbonate [PbCO3(cr)] and lanarkite [PbO•PbSO4(cr)] at 25 ◦C
in the space of log aSO2−

4
versus log aCO2−

3
at pH = 10 and water activity of 1.0 in carbonate solutions

for desulphurization of lead pastes.



Recycling 2022, 7, 45 15 of 18

In carbonate-bearing solutions, lead monoxide present in lead pastes may, or may
not, be converted into cerussite. Figure 14 presents the stability fields of cerussite and
lead monoxide (PbO, litharge) in the space of activity of the hydroxyl ion in logarithmic
units versus activity of carbonate in logarithmic units (i.e., log aOH− versus log aCO2−

3
). The

occurrence or absence of conversion of litharge does not affect the overall desulphurization
process. However, from the point of conservation of carbonate solutions, it is advantageous
to perform the desulphurization process under the conditions where litharge is stable.
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Figure 14. The stability fields of lead carbonate [PbCO3(cr)] and lead monoxide [PbO(cr)] at 25 ◦C in
the space of log aOH− versus log aCO2−

3
in carbonate solutions for desulphurization of lead pastes.

The carbonate-bearing solutions that can be used for desulphurization of lead sulfates
include NaHCO3 alone, mixtures of NaHCO3 and Na2CO3, Na2CO3 alone, and (NH4)2CO3
solutions. The NaHCO3 solutions and mixtures of NaHCO3 and Na2CO3 have been used as
supporting solutions for solubility measurements of cerussite before [14], and (NH4)2CO3
solutions have been recently tested for desulphurization [45].

4. Discussion

In the desulphurization processes of lead pastes, the transformation or reduction of
lead dioxide (plattnerite and scrutiny) is a problem. In the current practice, reductants
are needed in reduction of lead dioxide. The reductants that have been used in hydromet-
allurgical routes include lead sulfide [3] and glucose [35]. Iron powder is also used as
a reductant in mechanochemical reduction of lead dioxide [11]. In the mechanochemical
reduction process, lead dioxide was reduced under ambient conditions via mechanical
ball milling using iron powder as a reductant. On one hand, the use of reductants may
increase the cost for the overall desulphurization process. On the other hand, the reduction
process via a reductant usually reduces lead dioxide into lead sulfates, which increases the
amounts of lead sulfates that need to be desulphurized. In the desulphurization process
using oxalate-bearing solutions, there is a strong thermodynamic driving force for the direct
conversion of lead dioxide into lead oxalate without an additional reductant, especially in
the acidic pH range (see Figure 4). This is related to the stability of lead oxalate. It has been
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demonstrated and observed that lead oxalate is a stable phase in the presence of oxalate
over a wide range of environments [12,46]. Therefore, oxalic acid solutions are ideal for
this direct conversion.

Citrate solutions are also proposed for their use in recycling lead pastes [47–50].
However, the primary function of citrate solutions for recycling lead pastes is that the
citrate ion (C6H5O7

3−) forms a strong aqueous complex with lead

Pb2+ + C6H5O7
3− � PbC6H5O7

− (18)

The log β0
1 for PbC6H5O7

− is 7.28 (see Table 1). The thermodynamic properties for
lead citrate solid phases are not well known. Therefore, citrate solutions are currently used
for a leaching agent for dissolution of lead solid phases in lead pastes [8]. The interaction
parameters of citrate species PbC6H5O7

−, including with major ions such as Na+ and Mg2+,
are listed in Table 2, which can be used for calculations of solubilities of lead solid phases
in citrate solutions.

5. Conclusions

The desulphurization of lead pastes is the key process in recycling of lead–acid bat-
teries. In this study, the thermodynamic constraints for three hydrometallurgical routes of
desulphurization of lead pastes are presented. The three hydrometallurgical routes of desul-
phurization include: (1) the conversion of lead sulfates (PbSO4 and PbO•PbSO4) into lead
oxalate in oxalate bearing solutions; (2) the conversion of lead sulfates into lead monoxide in
alkaline solutions; and (3) the conversion of lead sulfates into lead carbonate in carbonate
solutions. Among the above three routes, the desulphurization process via the oxalate route
can be performed over the entire pH range, as lead oxalate is stable over the entire pH range
from acidic to alkaline regions. As both lead monoxide and lead carbonate are unstable in
acidic pH, the desulphurization processes via the alkaline and carbonate routes are preferably
performed at activities of the hydroxyl ion higher than 10−4.2 (i.e., pH ≥ 9.8) at 25 ◦C.

In the oxalate solution route, a minimum oxalate activity of ~10−6 is required for the
desulphurization. In the alkaline solution route, a minimum hydroxyl activity of ~10−4.2 is
required for the conversion of lead sulfates into lead monoxide. In the carbonate solution
route, a minimum carbonate activity of ~10−6.6 is required for the conversion of lead
sulfates into lead carbonate.

In light of this study, further investigations would develop effective recycling processes
or strategies for lead–acid batteries. For instance, the oxalate route does not require
an additional reductant for converting lead dioxide into lead oxalate. Therefore, kinetic
studies on the conversion process will provide the important parameters to optimize the
conversion of lead dioxide to lead oxalate.
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