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Abstract: In this study, a chemical dissolution treatment was used to recover rubber and carbon
black (CB) from truck tire scrap, with gas oil acting as the solvent and 4-Hydroxy-TEMPO acting
as the catalyst for the chemical reactions. Montmorillonite clay was used to separate the rubber
solution from the CB and the other non-dissolved tire additives. The recovered rubber and CB were
characterized together with the original scrap tire sample by XRD, SEM, BET and thermal analysis,
as well as FTIR and 1H NMR spectral analyses. Characterization of the chemical structure of the
recovered rubber showed that the main functional groups of styrene−butadiene rubber blend with
natural rubber. The thermal behavior and crystalline structure of the recovered rubber, as well as its
morphological images, showed that the properties of the rubber sample were acceptable and similar
to natural rubber. The recovered CB characterizations showed that the sample after pyrolysis was a
highly crystalline nanocomposite structure with a high specific surface area and scattered pores.

Keywords: recycling of scrap tire; recovery of rubber; recovery of carbon black; pyrolysis;
montmorillonite; gas oil solvent

1. Introduction

Treatments for accumulated tire waste have become an urgent necessity. Throughout
the world huge quantities of tires wastes are creating significant environmental pollution
problems, affecting daily life.

Rubbers, in general, were not known as industrial materials until vulcanization pro-
cesses were discovered, which opened up economic prospects for the use of rubber manu-
factured goods [1].

Due to their market demand, tires are considered to be one of the main products
manufactured from rubber. Generally, tires are prepared using several layers of rubber and
many other compounds, especially carbon black, which help to form a composite structure
with suitable thickness [2].

The quality of tires depends mainly on the ratio of the different compounds used
during their production and the vulcanization process details, such as the type of materials
used, the time of the applied process and the temperature used; this improves the tensile
strength, elasticity and other properties of the rubber [3,4].

Rubbers have unique properties and therefore, they have no alternatives. On the other
hand, almost 70% of rubber is used in the manufacturing process of the tires industry [5];
despite this, millions of tons of rubber tire scrap are generated. Tire scrap is completely
resistant to all types of degradation due to the presence of different additives and the
three-dimensional cross-linked chains formed after the vulcanization process [6,7].

Furthermore, it is important to reclaim rubber from tire scrap to reduce environmental
problems and to preserve rubber raw materials. The main problems associated with
reclaimed rubber are the treatment processes of tire scrap. Some processes depend on
combustion or pyrolysis of tires, either for the production of oils as liquid hydrocarbons or
the production of energy [8] and, in both processes, rubber is lost and is not compensated
for during the processes. Scrap tire is sometimes used without treatment, however, the

Recycling 2022, 7, 27. https://doi.org/10.3390/recycling7030027 https://www.mdpi.com/journal/recycling

https://doi.org/10.3390/recycling7030027
https://doi.org/10.3390/recycling7030027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/recycling
https://www.mdpi.com
https://orcid.org/0000-0001-8076-8762
https://doi.org/10.3390/recycling7030027
https://www.mdpi.com/journal/recycling
https://www.mdpi.com/article/10.3390/recycling7030027?type=check_update&version=1


Recycling 2022, 7, 27 2 of 17

granulate materials that release pollutants and require curing are a problem [9]. Other
methods, such as mechanical [10], thermal−mechanical [11] or mechano-chemical [12]
methods concentrate on the scrap tire without any treatment. Furthermore, rubber raw
material is lost when using these methods, and at the same time, some ecological problems
are caused because the rubber releases pollutants into the environment; thus, scrap tire
needs to be treated [13].

Accordingly, in the following work, a chemical dissolution process was used to recover
rubber and carbon black from scrap tire. It is important to highlight that in the applied
treatment process, hydrocarbon was used as the solvent in the rubber’s recovery process,
and gas oil, commonly known as diesel fuel, was selected due to its ability to penetrate
between the vulcanized rubber chains. In addition, 4-hydroxy-TEMPO was used as the cat-
alyst to help the rubber chains dissolve faster in the gas oil and to produce a homogeneous
solution in a short time-period at an ambient temperature.

2. Materials and Methods
2.1. Materials

Scrap truck tires from a local market were collected and prepared for treatment by
first, cutting them into pieces, cleaning them and then grinding them into particles sized
between 135 and 141 nm. Gas oil was obtained from a gas station, which was supplied by
the Baiji oil refinery. 4-Hydroxy-2,2,6,6-tetramethyl pipridine 1-oxyl (4-Hydroxy-TEMPO)
was obtained from Sigma−Aldrich (Burlington, MA, USA). Aluminum oxide and methanol
were supplied by the BDH Chemical Company (Poole, UK) and were used as received.
Montmorillonite clay was collected from the north of Mosul.

2.2. Chemical Dissolution Process

A dissolution process was used to reclaim the two main composite materials of the
tires (i.e., the rubber and carbon black). First, 100 mL of gas oil acting as the hydrocarbon
solvent was poured into a 250 mL conical flask with a stopper, and then 5.0 g (5.0 wt%) of
scrap tire powder was added. The flask was closed and placed inside a water bath fixed at
50 ◦C. The conical flask was kept for three days and shaken up from time to time inside the
water bath.

2.2.1. Reflux of the Soaked Solution

The soaked solution was poured into a 250 mL round bottom flask, in which 0.5 g of
4-Hydroxy-TEMPO acting as a catalyst was added along with 1.0 g of alumina acting as
the catalyst support. The flask contents were heated to the boiling point of gas oil (in the
range of 250–350 ◦C). After two hours of heating the contents, the process was stopped,
left to cool down, and then filtered to get a clear black solution.

2.2.2. Montmorillonite Clay Separation Method

The suspended carbon black in the gas oil solution did not precipitate; therefore, a
large column was filled with montmorillonite powder and used for purification. The clear
black solution was allowed to pass through the montmorillonite powder slowly and in
a controlled manner. The output was a transparent solution of rubber dissolved in gas
oil solvent. The black montmorillonite clay was washed several times with clean gas oil
solvent, which quickly passed through the column, taking carbon black with it, and the
pure montmorillonite clay could be used again. At the same time, the collected black gas
oil solvent was left to precipitate the carbon black for one day, and was then filtered and
dried for the next treatment.
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2.2.3. Rubber Precipitation

The precipitator methanol and (25–30%) v/v was added to the rubber/gas oil solution,
and then the final solution was transferred into an open pan and exposed to sunlight in
an open space in order to avoid direct heat (vacuum oven at 40 ◦C and 0.01 bar can be
used). A layer of pure rubber precipitated on the pan after some time. A brownish-white
precipitate was collected and prepared for characterization.

2.2.4. Treatment of the Carbon Black

The carbon black montmorillonite clay was washed with pure gas oil, and the collected
black gas oil solvent was left for one day for CB precipitation. The CB was filtered, dried
and pyrolyzed using a tube furnace, which was fixed at 500 ◦C ± 10 ◦C, for the removal of
the remaining rubbers and other additives. The sample was heated inside the furnace for
one hour, and the produced carbon black was left to cool and kept inside a closed sample
tube for analysis.

2.3. Characterization of Pristine and Recovered Rubber and Carbon Black
2.3.1. FTIR Spectroscopy

For the FTIR spectrum of the scrap tire sample before treatment, the rubber and carbon
black were recovered using an FTIR spectrophotometer model JASCO V-630, Portland,
OR 97211, United State, in the spectral range of 400–4000 cm−1.

2.3.2. X-ray Diffraction (XRD)

The X-ray diffraction of the pristine sample and the recovered rubber and carbon black
was measured using a Philips X-ray diffractometer (PW 1730), Amsterdam, the Netherlands,
with a Cu-Ka radiation target and nickel filter, at a current of 30 Kv and under a voltage of
30 mA.

2.3.3. Thermal Analysis

The TGA, DTA and DSC characterizations of the different samples were measured
using a TA Instruments DSC SDT Q600 (University of Buffalo, Buffalo, NY 14260, USA), at
a heating rate of 80 ◦C/min and within a temperature range of 25–1000 ◦C, using an Al2O3
reference sample.

2.3.4. Scanning Electron Microscope (SEM)

The SEM images of different samples were recovered using a TESCAN MIRA FESEM
(Brno, Czech Republic). The measured samples were mounted on studs using double face
adhesive tape and exposed to a gold ion beam sputter under vacuum.

2.3.5. BET Measurements

The specific surface area, Langmuir surface area (i.e., lang), pore area and the mul-
tilayer formation in the micropores of pyrolyzed carbon black were measured using a
BELSORP MINI 11, surface area and porosimetry analyzer (Osaka, Japan).

2.3.6. 1H NMR Measurement

The 1H NMR of the scrap tire before treatment and the recovered rubber was done
using a spectrometer (Bruker BioSpin GmbH, Ettlingen, Germany) at 400 MHz frequency,
with deuterated DMSO used as the solvent.

3. Results and Discussion

The recovery of rubber from the scrap tire and the recycling of carbon black are
important and urgent concerns due to environmental pollution issues and the need to
preserve rubber raw materials.
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In this study, a chemical dissolution process was used for the recovery of rubber
using gas oil as the solvent; this was performed in the presence of a catalyst, which is an
important issue to discuss. At the same time, the obtained results show that the applied
processes are simple, economic and safe, and the recovered materials retain their qualities
and properties.

3.1. Characterization of Scrap Tire Powder

Scrap tire in its powder form was analyzed in order to determine the characteristics of
the recovered materials.

3.1.1. FTIR Study

The FTIR absorption frequencies of the featured functional groups of pristine samples
were studied.

The FTIR spectrum (Figure 1) shows that the characteristic functional groups of the
original scrap tire sample mainly consist of hydrocarbon groups that appear at 3082 cm−1

and 1450 cm−1, and these represent
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3.1.2. 1H NMR Spectra Study 
The 1H NMR spectrum of the scrap tire sample before treatment (Figure 2) shows 

resonance at 0.87–2.01 ppm, which represents the paraffinic protons of butadiene and nat-
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(S-S)str, which represent sulfide and disulfide groups in the vulcanized
rubber, respectively [15]. The aforementioned absorption frequencies indicate that the scrap
tire mainly consists of styrene−butadiene rubber, natural rubber and carbon black.

3.1.2. 1H NMR Spectra Study

The 1H NMR spectrum of the scrap tire sample before treatment (Figure 2) shows res-
onance at 0.87–2.01 ppm, which represents the paraffinic protons of butadiene and natural
rubber. The resonance at 7.17 ppm represents the aromatic protons of styrene [8]. The NMR
peaks show the scrap tire sample, which mainly consists of natural and SBR rubber.
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Figure 2. 1 H NMR spectra of original scrap tire rubber before treatment.

3.1.3. XRD Analysis

An X-ray diffraction analysis of the pristine tire sample was performed. The area
under the intensity curve can be used to determine the crystallinity percentage (%Xc), and
this was calculated according to the following equation [16]:

% Xc =
Ac

Aa + Ac
∗ 100 (1)

where Ac represents the crystalline phase and Aa represents the amorphous phase.
The XRD pattern (Figure 3) and the XRD data (Table 1) show many XRD peaks: most

are intensive peaks, and one broad band is back to styrene rubber, which has a sharp peak
that appears at 19.8467◦ along the 2theta axis, with a crystallinity percentage of 92.89%.
The carbon black appears with intensive peaks at 22.8◦, 26.5◦, 29.3◦ and 44.5◦ along the
2theta axis, with crystallinity percentages of 79.7%, 100%, 82.7% and 24.0%, respectively.

3.1.4. Thermal Analysis

The TGA, DTA and DSC thermograms of the original scrap tire sample were studied;
these are shown in Figure 4 and Table 2. The weight loss percentage in the TGA thermogram
(Figure 4a) of the initial and final decomposition temperature is 3.0% at 145 ◦C and 54.5%
at 520 ◦C, indicating that the pristine tire is thermally stable, whereas the maximum
decomposition temperature Tmax shows a 37.5% weight loss at 382 ◦C, as shown in Table 2
and Figure 4a.
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Figure 3. XRD pattern of original rubber scrap tire before treatment.

Table 1. XRD intensity scan data of original scrap tire before treatment.

Peak Position at 2θ◦ Crystallinity Percentage
% Xc

19.8467 92.89
22.7596 79.72
26.5107 100.00
29.2505 82.67
31.5896 16.90
35.2853 44.76
36.0450 31.52
39.2250 10.14
37.5078 20.74
42.9765 38.69
44.4866 23.99
47.7969 7.82
56.7928 10.43
62.5036 13.08
67.7690 7.68

Table 2. TGA, DTA and DSC thermal analyses of pristine tire rubber and pyrolyzed carbon black
recovered from scrap tire.

Sample

TGA
Weight (%) DTA Decomposition Rate

(◦C. min/mg)

DSC (W/g)

IDT FDT Tmax Tcr Tg ◦C ∆Hf
(J/g)

Pristine
Tire

Rubber

3.0 54.5 37.5 52.0 0.26 0.12 0.98
<0

−1775 +550.6 −2075
145 ◦C 520 ◦C 382 ◦C 480 ◦C 68 ◦C 131 ◦C 353 ◦C 76.7 ◦C 395 ◦C 693.5 ◦C

Pyrolyzed
Carbon
Black

0.1 38.8 18.5 22.3 0.143 0.08 0.30
/

−255 −2173
/40 ◦C 1000 ◦C 710 ◦C 755 ◦C 80.9 ◦C 144 ◦C 255 ◦C 80.3 ◦C 687.0 ◦C
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The crystalline decomposition temperature (Tcr) shows a 52.0% weight loss at 480 ◦C,
which means that the rubber in the pristine tire has lost half of its weight at Tmax (382 ◦C),
and that the crystalline structure of the tire composite collapses at Tcr = (480 ◦C); this
indicates that the pristine tire is thermally stable.

The DTA thermogram (Figure 4b and Table 2) shows three maxima at 68 ◦C, 131 ◦C
and 353 ◦C, with rubber decomposition rates of 0.26, 0.12 and 0.98 ◦C.min/mg, respectively,
which means that the rate of rubber decomposition increases with an increase in tempera-
ture. However, the rate of rubber decomposition is still low at a high temperature. The first
two maxima represent free and bond water, whereas the third maximum represents rubber
decomposition.

The DSC thermogram (Figure 4c and Table 2) shows that the glass transition tempera-
ture Tg is below zero [17]. The pristine tire shows three enthalpy of fusion (heat of fusion)
(∆Hf) magnitudes at 76.7 ◦C, 395 ◦C and 693 ◦C. The first two magnitudes (i.e., −177.5 J/g
and +550.6 J/g) are exothermic and endothermic, respectively, and they represent free and
bond water in rubber of tires, while the third (i.e., −2075 J/g) is highly exothermic and
represents the crystalline composite of the carbon black in pristine tire.

3.1.5. SEM and BET Studies

The SEM images of the original scrap tire with different magnifications (Figure 5) show
that the sample is a rubbery composite, which consists of homogeneous components with
non-uniform surfaces filled with holes and folds. The surface morphologies of the sample
(Figure 5a,b) show white portions with luminous edges, representing crystalline particles
mixed homogeneously with rubber due to the carbon black and other inorganic additives
present in the sample, which give the sample molar cohesion and elastic properties [18].
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Figure 5. SEM images with different magnifications (a) 35k, (b) 8k, (c) 75k of original scrap tire sample.

The SEM image (Figure 5c) shows that the sample is in an elastic form with small par-
ticles distributed in and between the folds in clusters and is a carbon black nano composite.

The Brunauer−Emmett−Teller (BET) measurements of the original scrap tire (Table 3)
show the specific surface area of the particles. The Langmuir plot describes the total amount
of nitrogen gas bond to the particles’ surfaces at a specific temperature and at a pressure of
1.7959 m2/g. The t plot provides information on the multilayer formation of the micropores;
the micropore surface area (0.2705 m2/g) was calculated from the difference between the
BET area and the external surface area.

Finally, the BJH plot (Table 3) yields the pore area of 3.09 nm and the specific surface
area of 1.2749 cm2/g.
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From the BET plot (Table 3), the specific BET area is 1.0249 cm2/g, the total volume
is 0.0072 cm3/g and the mean pore diameter is 28.228 nm. The previous BET data show
that the tire rubber is present in a large area of folded surface that includes nanopores
interspersed with nano-sized carbon black particles.

Table 3. BET shows the specific surface area of original scrap tire particles.

BET Plot

Vm 0.2355 [cm3 (STP) g−1]
as,BET 1.0249 [m2 g−1]

Total pore volume (p/p0 = 0.990) 0.0072325 [cm3 g−1]
Mean pore diameter 28.228 [nm]

Langmuir Plot

Vm 0.4126 [cm3 (STP) g−1]
as,Lang 1.7959 [m2 g−1]

t Plot

Plot Data Adsorption Branch

a1
0.2705

[m2 g−1]

V1
0

[cm3 g−1]

BJH Plot

Plot Data Adsorption Branch

Vp
0.0072414
[cm3 g−1]

rp,peak (Area) 3.09
[nm]

ap
1.2749

[m2 g−1]

3.2. Recovery of Rubber

Rubber and carbon black are the main components of tires and in this study, they
were recovered from scrap tire through a chemical dissolution process, using gas oil as the
hydrocarbon solvent, in the presence of 4-Hydroxy-TEMPO as a catalyst.

The rubber was recovered from the scrap tire after being soaked for 72 h in gas oil
solvent. The sample was kept under shaking conditions in bath water at 50 ◦C.

A weight percentage of 5 wt% of scrap tire powder in gas oil was found to be a suitable
dilution of the tire sample in gas oil, helping the solvent molecules more easily penetrate
between the rubber chains [19]. The 4-Hydroxy-TEMPO catalyst was found to be more
active in the recovery of the rubber and CB from the tires when compared with the non-
catalytic process. This was demonstrated by the fact that the percentage yield of recovered
rubber from a non-catalytic process is 0.86 g (represents 34.4% of its real percentage in
the tire), compared to 0.955g (represents 38.2% of its real percentage in the tire) from the
catalytic process. The recovered rubber was characterized using the following analysis.

3.2.1. FTIR Study

The characteristic functional groups of the recovered rubber (Figure 6) show absorp-
tion frequencies at 3065 cm−1 (756 and 902 cm−1) and 1454 cm−1, which represent the
υ(C-H)str and υ(C=C)str aromatic rings of styrene, respectively in SBR rubber. The band
that appears at 1709cm−1 belongs to υ(C=C)str of the unsaturated olefin of natural and
butadiene rubber [20]. The aliphatic bands at 1373 cm−1, (2920 and 2855) cm−1, 1183 cm−1

and 1018 cm−1 represent υ(CH3)str, υ(C-H)str, δ(C-H) aliphatic and δ(C-H) in the plane,
respectively, and they all belong to styrene−butadiene and natural rubber. Finally, the
absorption bands at 598 cm−1 and (444 and 501) cm−1, belong to
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which represent the sulfide and disulfide groups in the rubber sample, respectively; this
means that a trace of carbon black still remains in the recovered rubber.
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3.2.2. 1H NMR Study

The 1H NMR spectrum of the recovered rubber (Figure 7) shows resonance (3H, m) at
3.31 and 4.94 ppm, which represents the unsaturated ethylene groups of butadiene and
isoprene rubber; whereas, the resonance (9H, m) observed at 0.78–2.11 ppm represents
the methyl, methylene and methine protons of isoprene, styrene and butadiene rubber. In
addition, the resonance (3 H, m) observed at 2.25–2.44 ppm belongs to the methyl group of
isoprene. Finally, the resonance observed at 7.25 ppm (Figure 7) represents the aromatic
protons of the styrene ring.

3.2.3. XRD Study

The X-ray diffraction pattern of the recovered rubber (Figure 8) shows many intense
peaks, which is different from those observed in the original tire sample in Figure 3, where
their position is along the 2θ axis.

The XRD intense data, listed in Table 4, show that the recovered rubber has a lower
number of crystalline peaks, which means that its purity is increased, and the crystalline
peaks of styrene have become clearer.

The crystallinity percentage of the intense peaks of the recovered rubber (Figure 8
and Table 4), which were calculated according to Equation (1), increased; the XRD peaks
showed high altitude with greater full-width at half-maximum (FWHM), and even the
d-spacing (the interatomic spacing) increased after recovering the rubber. The broad band
of styrene with an intense peak is positioned at 18.6◦ with 100% crystallinity. This band is
highly focused, whereas the peaks at 38.5◦ show high crystalline percentages and represent
the crystalline structure of the rubbers after purification. Nevertheless, some peaks of
carbon black were still present in the recovered rubber.



Recycling 2022, 7, 27 11 of 17
Recycling 2022, 7, x FOR PEER REVIEW 11 of 18 
 

 

Figure 7. 1H NMR spectrum of recovered rubber. 

3.2.3. XRD Study 

The X-ray diffraction pattern of the recovered rubber (Figure 8) shows many intense 

peaks, which is different from those observed in the original tire sample in Figure 3, where 

their position is along the 2θ axis. 

The XRD intense data, listed in Table 4, show that the recovered rubber has a lower 

number of crystalline peaks, which means that its purity is increased, and the crystalline 

peaks of styrene have become clearer. 

The crystallinity percentage of the intense peaks of the recovered rubber (Figure 8 

and Table 4), which were calculated according to Equation (1), increased; the XRD peaks 

showed high altitude with greater full-width at half-maximum (FWHM), and even the d-

spacing (the interatomic spacing) increased after recovering the rubber. The broad band 

of styrene with an intense peak is positioned at 18.6° with 100% crystallinity. This band is 

highly focused, whereas the peaks at 38.5° show high crystalline percentages and repre-

sent the crystalline structure of the rubbers after purification. Nevertheless, some peaks 

of carbon black were still present in the recovered rubber. 

Table 4. XRD intensity scan data of recovered rubber. 

Figure 7. 1H NMR spectrum of recovered rubber.

Table 4. XRD intensity scan data of recovered rubber.

Peak Position at 2θ◦ Crystallinity Percentage
% Xc
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26.6185 72.88
29.4586 81.23
35.7961 18.72
38.5113 97.39
44.7209 48.72
47.9434 11.61
65.1406 24.18
78.1903 26.17
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Figure 8. XRD pattern of recovered rubber.

3.2.4. SEM Study

The SEM images of the recovered rubber sample (Figure 9) show that the sample has
lost most of its crystalline particles derived from additives. The SEM image (Figure 9a)
shows the surface morphology of the sample, which appears as a rubbery aggregation with
disconnected pieces; this is due to the loss of its vulcanization and most of its filling and
additive materials after being dissolved in gas oil. The images (Figure 9b,c) show very pure
particles, which have corrugated surfaces with protrusions.
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3.3. Recovery of Carbon Black

The carbon black (CB) was collected mainly after filtration of the recovered rubber
solution using montmorillonite clay. It was then thermally treated using the pyrolysis
method at 500 ◦C inside a tube furnace for one hour. The 5.0 g of tire waste yielded
0.3 g of pure CB (representing approximately 17.0% of its real percentage in the tire).
Characterizations of pyrolyzed CB were performed to determine the crystalline structure,
thermal behavior and surface morphology of particles with specific surface areas.
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3.3.1. XRD Study

The X-ray diffraction pattern of pyrolytic CB (Figure 10, Table 5) shows many crys-
talline peaks with high intensity, located at 25.36◦, 26.44◦, 29.34◦, 35.27◦ and 43.02◦ along
the 2θ axis, representing the main crystalline peaks of CB after pyrolysis [21]. The main
observations include dwarfism of the crystalline rubber peak at 38.5◦ and its crystalline
percentage of only 4.5%.
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Figure 10. XRD pattern of pyrolytic carbon black recovered from scrap tire.

Table 5. XRD intensity scan data of pyrolytic carbon black recovered from tire waste.

Peak Position at 2θ◦ Crystallinity Percentage
% Xc

25.3675 85.82
26.4415 77.54
29.3373 100.00
31.5279 25.54
32.9148 4.70
35.2753 64.12
36.1235 50.07
38.4956 4.54
39.3355 20.67
40.9126 10.52
43.0155 40.03
47.4737 27.22
48.5396 17.97
52.3163 23.07
56.6060 29.06
62.4803 20.52
65.2697 3.96
67.8833 8.90
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The pyrolysis of CB at a high temperature removed all the remaining hydrocarbon
materials and other inorganic additives in the sample. Figure 10 and the data recorded in
Table 5 show a high number of crystalline peaks for CB after pyrolysis due to the different
d-spacing (lattice spacing) in its crystals, which represents the distance between the planes
of carbon atoms that form many diffraction peaks [22].

3.3.2. Thermal Study

The TGA, DTA and DSC thermograms of pyrolytic CB (Figure 11) were studied. The
TGA thermogram (Figure 11a and Table 2) at IDT shows a very low weight loss % of
0.1% starting at 40 ◦C; however, at FDT, although the temperature reaches 1000 ◦C, the
weight loss percentage is still low and does not reach more than 38.75%, which means
the CB sample is thermally stable. The Tmax of the CB sample, calculated from the TGA
thermogram (Figure 11a), and records in Table 2 show a low weight loss percentage of
18.5% at 710 ◦C. In addition, the Tcr represents the temperature at which the crystalline
structure of CB collapses. The sample loss is 22.3% of its weight at 755 ◦C, which also
means that the recovered and pyrolytic CB has a stable thermal structure.

The DTA thermogram (Figure 11b and Table 2) gives three maxima at 80.9 ◦C, 144 ◦C
and 255 ◦C, with very low decomposition rates of 0.143, 0.08 and 0.30 ◦C.min/mg, re-
spectively; this shows that the sample is stable and lost its free and bound water in the
beginning, and then it starts, at a low rate, with its composite structure. The heat of fusion
∆Hf in the DSC thermogram (Figure 11c and Table 2) is 255 J/g at 80.3 ◦C, which shows that
the free and bound water are a part of the sample composite. The second ∆Hf of −2173 J/g
of high value refers to the collapse of the CB crystalline structure at 687 ◦C.
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Figure 11. (a) TGA, (b) DTA and (c) DSC thermal analysis thermograms of pyrolytic carbon black
recovered from scrap tire.

3.3.3. SEM and BET Study

The SEM images of the pyrolytic carbon black (Figure 12) show the morphological
surfaces of the CB particles. In Figure 12a, the image shows that the CB particles in the
nanoscale composite gather in clusters and have spherical shapes, smooth surfaces and
pure particles with no rubber or other additives. Even the image with greater magnification
(Figure 12b), shows that the CB particles are present as a nanocomposite with sharp edges
and a crystalline structure. The SEM images show that the pyrolytic CB particles are
spherical in shape and nano-sized, and the whitening surface of the particles indicates the
presence of crystallite parts on their morphological surfaces.
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Figure 12. SEM images of pyrolytic carbon black with different magnifications (a) 75k, (b) 150k.

The BET measurement (Table 6) of pyrolytic CB shows the Langmuir surface area is
46.671 m2/g, which is high when compared with the surface area of pristine tire particles.
Even the t plot (Table 6) shows a high surface area (i.e., 36.414 m2/g), which means that
the CB particles can achieve high physical adsorption. In addition, the pore area from BJH
(Table 6) is observed as very narrow (1.85 nm) with a small volume (0.267 cm3/g). Finally,
Table 6 shows the specific BET area of 44.853 m2/g, the total pore volume of 0.268 cm3/g
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and the mean pore diameter of 23.9 nm. A pore diameter less than 50 nm, according to the
IUPAC nomenclature [23], are a nanoporous material. The CB with 23.9 nm is a mesoporous
material, and it has porosity within the mesopore range, which increases its specific surface
area. All the aforementioned parameters show that pyrolytic CB particles have high specific
surface areas with pores that improve gas or liquid adsorption capacity, which represents
the standard specifications for industrial carbon black.

Table 6. BET data shows the specific area of pyrolytic carbon black.

BET Plot

Vm 10.305 [cm3 (STP) g−1]
as,BET 44.853 [m2 g−1]

Total pore volume (p/p0 = 0.990) 0.2681 [cm3 g−1]
Mean pore diameter 23.914 [nm]

Langmuir Plot

Vm 10.723 [cm3 (STP) g−1]
as,Lang 46.671 [m2 g−1]

t Plot

Plot Data Adsorption Branch

a1 36.414 [m2 g−1]
V1 0 [cm3 g−1]

BJH Plot

Plot Data Adsorption Branch

Vp 0.2686 [cm3 g−1]
rp,peak (Area) 1.85 [nm]

ap 51.556 [m2 g−1]

4. Conclusions

The recovery of rubber and CB from scrap tire was performed through a high dissolu-
tion process, with gas oil solvent used in the presence of a 4-Hydroxy-TEMPO solution.
The gas oil solvent showed high activity in the dissolving of the rubber chains, but left the
CB particles and other inorganic additives insoluble. The activity of the gas oil solvent was
elevated in the presence of the 4-Hydroxy-TEMPO catalyst, where the latter increased the
homogeneity of the rubber in the gas oil solvent, and played a positive role as a rubber
polymerization inhibitor at a high temperature [24,25]. Montmorillonite clay showed high
efficiency in the separation process of the rubber−gas oil solution, where the filler material
from the CB and other additives was used in tire manufacturing. 5.0 g of the scrap tire
sample in 100 mL of gas oil reclaimed 0.955 g of pure rubber and 0.3 g of pure CB, which
represents 38.2%w/w of the real percentage of rubber in the tire’s waste and 17.0%w/w of
the real percentage of CB in the tire’s waste, respectively. The specifications of the recovered
rubber and CB by chemical dissolution process have shown same to that of the native
rubber and CB used in the manufacturing of tires according to the chemical, physical and
morphological analyses, which have been conducted extensively. The gas oil solvent and
montmorillonite clay were recycled and reused after purifications.
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