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Abstract: This work shows a proposed room prototype and its thermal behavior evaluation. The
room was built by using polyethylene terephthalate (PET) bottles filled with soil from the site for its
walls and a roof made of multiple layers of reused materials. The construction had a green roof and
skylights that were constructed out of upcycled entire glass bottles. Thermal measurements were
made indoors and outdoors over the course of one year. Temperature and humidity sensors were used
for internal measurements, and, at the same time, a reference sensor recorded data that corresponded
to external environmental conditions. The constructed building differed by an average of 8.5 ◦C
from the reference measurements of the external environment and an average of 24.24% in relative
humidity. Thermograms were taken from the outside walls, which reached 54.2 ◦C, while internal
wall temperatures reached 25.5 ◦C. Additionally, a thermal transfer simulation of the prototype was
accomplished by using COMSOL Multiphysics. Simulation results approximated the experimental
data. The prototype had low daily thermal fluctuations, which was considered a desirable thermal
behavior. These results, along with the self-building practices, low costs, and reuse of waste materials,
makes this kind of building a potentially feasible alternative.

Keywords: sustainable housing; building materials; recycling; interior comfort; upcycling; endemic
plants; green roofs

1. Introduction

Nowadays, the building industry is one of the more active and fast-growing economic sectors;
however, at the same time, it is facing a growing sustainability problem [1]. Conventional construction
is definitely not sustainable adversely affecting the environment. Nevertheless, the demand outstrips
supply in this market, and examples of low quality and unsuitable constructs for inhabitants exist.
Due to this multi-faceted problem, there is not a unique or definitive solution; instead, and there are
many developing alternatives, the key topics of which are design and construction materials [2–4].
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Today, it is common to build mass housing projects or neighborhoods with the use of precast
and economical materials. This strategy allows for industrial construction, lower costs, and high
production quantities, but not enough of any, regardless of the necessities. Building materials are used
interchangeably in different regions without consideration for local needs.

We are far from systematically considering factors such as climate change at the time of building.
It is of vital importance to avoid contributing to its increase. Factors such as design and materials can
directly affect inhabitants with more frequent extreme temperatures inside houses. This, in addition to
increasing bills, also increases the use of fossil fuels, and a vicious circle comes into being.

Analyses of indoor and outdoor conditions have frequently been used to study thermal insulation
that can be attained with building materials [5–8].

Green roofs have been gaining prominence both for their effect of increasing inhabitants’ comfort
and fight the heat island effect in urban environments [9–13]. Storage capacity and evapotranspiration
are considered to be some of the key factors in green roofs [13].

Research on thermal comfort has been taking the relative humidity (RH) into account as a second
factor because it can influence inner thermal behavior. In some areas, high temperatures correspond to
low relative humidities and vice versa. Many studies have been conducted to establish the relationship
between these two factors, construction materials and the internal environment [14–16].

An excellent tool to analyze the behavior of any new material or construction design in advance is
to conduct a thermal simulation. This simulation may allow for the matching of viable construction
materials on the site and construction design with environmental conditions in the zone. These thermal
simulations have allowed for the prediction of internal temperatures in buildings because they allow
for the knowledge of the materials, design and external environmental conditions [17–19].

Polyethylene terephthalate (PET) has been among the most frequently recycled materials, and
it mainly comes from soft drinks bottles [20–23]. The majority of the reported works of PET for
construction have transformed the raw PET bottles into fibers, pieces, chucks or powders, which allow
for the formation of composite materials [24–36].

PET wastes have been combined with other wastes to be used in asphalt concrete [29,30]. Many
such works have focused on the effect of particle size and distribution [26,29]. Frequently, particle sizes
are about 1–5 mm or in the range of 0.1–1 mm. Arulrajah et al. [26] used polyethylene terephthalate
(PET) to stabilize cement blends by using a maximum PET size of 5 mm. Recycled concrete aggregate
(RCA), crushed brick (CB), and PET pieces <5 mm were used as a pavement construction material [26].
Another important parameter in such composites is moisture content. Improvements in resulting
characteristics have been obtained in the range of 2–4.5%wt [29]. When round particles have been
used, better results have been obtained with finer particles. When fibers or long pieces have been used,
better results have been obtained with longer pieces.

PET has been combined with other polymers such as polyacrylonitrile (PAN) in making fibers for
composites to improve the mechanical and durability characteristics of concrete and mortars [27].

Uses other than concrete blends include chemical (glycolysed) [34] or thermo-mechanical recycling
together with incineration. These are downcycling procedures and require energy, transportation,
storage in large areas of land, and the use of chemicals that entail economic, environmental, and
safety issues.

COMSOL Multiphysics has been used in many different simulations [37–41]. In the case of
engineering, specifically in the construction area of research, Guo et al. [38] used it to simulate the
multi-species transport of saturated cement-based materials. Wei et al. [39] used it to simulate concrete
as a three-phase composite made of aggregates, interfacial areas, and mortar. The diffusion of chlorine
ions was investigated by Maliki et al. [40], who used it to model heat, air, and moisture in porous media
and applied it to assess the hydrothermal performance of structural building components. Their results
showed that an insulated wall had only a quarter of the total heat flux of an uninsulated concrete roof.
Sharifi et al. [41] used COMSOL to simulate temperature changes of a concrete specimen containing
phase change materials (PCMs) under typical meteorological year data.
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This work reports the evaluation of a prototype that was built with walls made of entire PET
bottles and mortar, as well as a roof made of multiple layers of reused materials with a top vegetal layer.
This work gives a detailed construction procedure, the waste materials used, the changes proposed
to embed the walls by using filled or empty bottles, and the roof multi-layered strata, all of which
make this paper differ from a previous work that focused on proposing metrics for measuring the
sustainability of houses by using the prototype as an example for calculating the number associated
with its sustainability according to the proposed metrics [42]. The prototype was monitored over the
period of a year; the measurements of its behavior were hydrothermal. A thermal simulation of the
material/design behavior of the prototype was accomplished with the COMSOL Multiphysics software.
Thermal images were taken for comparison with thermal simulation, internal temperatures and heat
conduction through the walls of the building.

2. Materials and Methods

A prototype room was constructed while making necessary adjustments in methodology
for incorporating entire PET bottles into walls and recycled materials into a multi-layered roof.
The prototype was located at Sanfandila, Pedro Escobedo, Queretaro, Mexico [20◦29′26.78”N,
100◦13′19.98”W] with its facade pointing toward the northeast (NE). All the figures in this work
include an arrow indicating orientation.

2.1. Construction of Room Prototype

The procedure for the construction consisted of eight stages: I. Stonemasonry foundations and
reinforced concrete columns; II. PET bottle filling with soil; III. the construction of PET bottle walls; IV.
confinement perpendicular to the walls; V. wrapping with galvanized wire nets; VI. covering walls
with mortar; VII. area for skylights; and VIII. multi-layered roof.

2.1.1. Stone Masonry Foundations and Reinforced Concrete Columns

The stone masonry foundations were constructed in a traditional manner according to the local
soil characteristics.

2.1.2. PET Bottle Filling with Soil

The PET bottles used in the walls of the prototype room were filled with clayey soil from the site.
After filling the bottles, the clay was rammed with a hammer and a wedge for tightening in each bottle.
These were then tightly capped. The number of PET bottles used for the walls was estimated to be
around five thousand.

2.1.3. The Construction of PET Bottle Walls

The PET bottles were positioned horizontally, as shown in Figure 1a. The bottles were placed to
form rows, with each alternating top and bottom. This provided a more stable stack. Additionally,
complete rows with bottles aligned in the same direction facilitated the placement of the electrical
wiring. The lateral stability of the walls was attained with reinforced concrete columns.

2.1.4. Confinement Perpendicular to the Walls

The proposed confinement of the walls provided lateral stability. The confinement consisted of
horizontal rebar that was anchored to the concrete columns and moored with two different gauge
wires, which had a separation distance of around 0.5 m (Figure 1b). Each wall had five rows of rebar
per side. The northeastern side (facade) was an exception due to the window and door. This led to a
second proposed confinement of the walls by using reinforced concrete elements, which in this case
were door/window columns.
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lime (Ca(OH)2) were used as chemical additives in all the mortar mixes. Additionally, mine sand with 
a fineness modulus of 2.44 and a specific gravity of 2.65 was used as a fine aggregate. This met the 
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Figure 1. (a) Initial construction stages of a polyethylene terephthalate (PET) bottles prototype room,
(b) stacking of PET bottles forming the wall base that was reinforced with steel rebars that were spaced
one-half meter apart. (c) Internal view and (d) insulating multiple layers of the roof.

2.1.5. Wrapping with Galvanized Wire Nets

The galvanized wire nets were moored to the horizontal rebar on both sides of each wall (Figure 1b).
This was done to increase the confinement of the PET bottles in a direction that was perpendicular to
the wall.

2.1.6. Covering Walls with Mortar

The PET bottle walls were completely covered with mortar. The mortar was prepared with
Portland cement, lime, and well-graded sand, with the proportion of cement increasing along with
the strength requirements. Composed Portland Cement CPC-30R (minimum compression strength
of 20 N/m2 and 30 N/m2 for 3 and 28 days, respectively [43]) and commercially available hydrated
lime (Ca(OH)2) were used as chemical additives in all the mortar mixes. Additionally, mine sand with
a fineness modulus of 2.44 and a specific gravity of 2.65 was used as a fine aggregate. This met the
grain size specified in the ASTM International C33/C33M-18 standard [44]. The mortar mixtures were
prepared under the ASTM C109/C109M-16a standard [45], and the proportions of materials for the
standard mortar were 1.25 parts cement-hydrated lime to 2.75 parts graded standard sand by weight.
The quantity of water, measured in milliliters, was used to produce a flow of 110 ± 5, as determined by
the test method of ASTM C 109/C109M-16a [45].

A complete filling of the voids, caused by the narrow bottlenecks, was not intended and could be
costly. On the contrary, empty spaces were preferred as a thermal barrier. The galvanized wire net
was helpful in easily achieving a flat surface. The use of paint was not desired due to its influence on
thermal behavior. Thus, a final layer of white cement with white marble powder was used to create a
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white finish. The overall increase of wall thickness was about 5 cm per each side, additional to the
length of the bottles (23.5 cm). This implies that the walls were about 33 cm in thickness.

2.1.7. Area for Skylights

A single row of used glass bottles was placed at the top level of the internal room as a skylight for
natural daylight and for natural ventilation through the empty space between each bottle (Figure 1c).
Since the walls were unusually thick, a configuration with two aligned bottles was used. This allowed
us to place their bottoms as the outer side, which provided a flat and regular surface on the internal
and the external sides of each of the three walls. The natural ventilation was obstructed or opened
according to the type of test that was conducted.

2.1.8. Multi-Layered Roof

The roof implemented in the room prototype consisted of a metallic base for structural support
and various layers of recycled or, more precisely, upcycled materials used as found without
further processing.

The metallic base consisted of six tubular steel profiles of 2” square hollow sections. Three
corrugated galvanized sheets were mounted in an area of 3 × 3 m. The three sheets were placed
matching ridges with valleys and were perpendicular to the steel supports (Figure 1c). Their borders
coincided with the middle of the wall, and they were embedded in a surrounding 25 cm high and 15
cm wide concrete wall. Two PVC pipes were placed to allow for the drainage of excess rainwater.

Figure 1d shows the roof insulating layers, which were composed of used plastic bags, two layers
of uncapped PET bottles of different shapes and sizes, another layer of plastic bags, used cardboard,
soil from the site (expansive clay containing montmorillonite), and an endemic plant top layer.

2.2. Measuring External and Internal Climatic Conditions: Humidity and Temperature

2.2.1. Internal

The measurements of temperature and humidity were carried out with Thermotracker brand
sensors. Two internal sensors were installed in the prototype, one at middle height on the northwestern
wall and the other in the middle of the door and window. The reference temperatures were recorded
from three places: (A) One located in a nearby building under a roof without walls and protected from
direct sunlight and rain, (B) another placed under similar conditions but in a house in the area, and (C)
one located inside that house with a permanently open window. There was a very close correspondence
between these measurements, so the former sensor data were chosen as the reference. This reference
was placed in a neighbor structure covered by a roof but without walls, so it had ventilation and
daylight without being directly exposed. The restrictions for placing both sensors were to avoid direct
exposure to sunlight and rain throughout a year-long period.

The position of the sensors allowed for the recording of air temperatures—except for surface
temperature, which was complementarily measured with thermograph images—for extended periods
of time.

Data were taken for an annual cycle, and the information was accessed through the Thermotracker
Pro software. Data points were typically recorded 72 times a day for both temperature and relative
humidity (RH).

2.2.2. External

(a) Thermograph images were taken with a thermal camera, PCE Instruments® model PCE-TC 3.
The images showed contrasts according to surface emissivity and temperature, which in part depended
on the absorption and thermal conductivity of materials. The thermograms showed the maximum
temperatures reached on the outside walls. These were taken at the peaks of heat concentration, which
were around 12:00 p.m. and 3:00 p.m.
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(b) Humidity on the surface. The humidity study was carried out with the aid of a humidity meter
for building materials, PCE Instruments® model WP-21. The measurement result was the average
humidity value calculated at 50 mm above the surface. Measurements were taken on external sides of
prototype walls, with a distance of 50 cm between each measurement.

2.3. Simulation of Thermal Transference at the Prototype Building

The simulation was accomplished with the COMSOL Multiphysics 3.5 software by using the heat
transfer module. The steps used were as listed:

1. Geometrical details of room prototype. This could be drawn within the software or imported
from other specialized design software.

2. Specification of conditions of each subdomain from the prototype to be evaluated, in this case:
walls, windows, doors, roof, and foundations. Table 1A shows each condition used.

3. Specification of boundary and initial conditions for the structure. The room was sectioned into
parts as necessary to establish different conditions. The specifications are shown in Table 1B.
These boundary conditions were chosen in part based on characteristics of the prototype and, in
part, based on thermal images and other measured properties or dimensions.

4. Setting temperature and average radiation of the areas.
5. Solving the simulated system.

Table 1. Parameters used in the simulation of thermal transference. A) Special conditions for sub-domain
and boundary conditions. B) Structure boundary conditions.

A) Thermal
Parameters of
Subdomains

Internal Air
Environment Foundations Walls Door Green Roof Windows Glass Skylights

and Ventilation

Thermal
conductivity,
k (W/m K)

0.0232 0.22 0.37 1.38 0.87 1.38 1.09

Density, ρ (kg/m3) 1.29 2700 3500 2203 2100 2203 2203
Heat Capacity,

cp (J/Kg K) 1000 385 320 703 920 703 703

Temperature,
T (◦C) 25 25 20 47 57 47 57

B) Thermal Boundary Conditions

Emissivity, ε 0.60 0.90 0.83 0.97 0.78 0.97 0.97
Temperature,

T (◦C) 25 20 52 45 62 45 52

Part of the simulation was conducted by supplying additional information that COMSOL’s library
did not contain, such as the thermal conductivity of the PET walls. The outside temperature was set at
27 ◦C, and the average solar radiation was considered to be 5.2 W/m2.

3. Results and Discussion

3.1. Temperature and Relative Humidity

Measurements of temperature and RH were taken along an annual cycle (December 2010–December
2011) within the PET bottle prototype. Data were registered by the sensors every 20 min. Figure 2 shows
only the higher and lower values per day to plot all data in a comprehensible way. Figure 2a shows the
temperature data, where a light gray background area only indicates the maximum and minimum
temperatures per day of the reference sensor, with the complete range representing the fluctuation per
day over one year. The dark area indicates the inner recording by the sensor. Figure 2b shows the RH
data with, again, the light gray background area indicating the reference sensor information and the
dark area indicating the inner recording by the sensor.
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The average temperature gradient, during a one-year period, between the external environment
and within the prototype was 8.08 ◦C, according to Figure 2a,b. The lower temperatures corresponded
to winter, primarily in December, and the higher temperatures to spring/summer, primarily in May/June.
The graph of annual temperatures was nearly a Gaussian graph in the region where the PET prototype
was built. The equation used was:

y = y0 +
A

w
√
π
2

e−2
√

x−xc
w (1)

where y0 is the offset, A is the area (≥0), w is the width, and xc is the position of the center of the peak.
The parameters of Gaussian fittings for each graph in Figure 2a are shown in Table 2. The areas of
prototype maximum temperature (P-Tmax (1)) and minimum temperature (P-Tmin (2)) were 7743.8
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and 7028.1, respectively. Meanwhile, the areas of reference maximum temperature (R-Tmax (3)) and
minimum temperature (R-Tmin (4)) were 9367.1 and 5799.4, respectively. The comparison was carried
out by subtracting these areas as (Area 1 − Area 2) = 715.7 and (Area 3 − Area 4) = 3567.7. Then, the
ratio (1 − 2)/(3 − 4) = 0.2. This implies that the attenuation of fluctuations throughout one year of the
PET complete bottle prototype and its surroundings was approximately one fifth. This value was not
relative to another conventional room but to the environment, considering the external but covered
position of the reference sensor.

Table 2. Parameters of Gaussian fittings for each temperature graph in Figure 1a. Prototype maximum
temperature (P-Tmax (1)) and minimum temperature (P-Tmin (2)). Reference maximum temperature
(R-Tmax (3)) and minimum temperature (R-Tmin (4)).

1 2 3 4

P-Tmax P-Tmin R-Tmin R-Tmin

y0 7.03 5.43 17.17 −25.02
xc 186.74 186.69 179.59 183.22
w 246.14 241.34 220.64 515.07
A 6076.7 5862.9 3528.1 28714.3

Area 7743.8 7028.1 9367.1 5799.4
Center (day) 182.8 183.0 180.3 181.6
Height (◦C) 26.7 24.8 29.9 19.4

The range changed under different conditions of relative humidity, presenting a difference of 9.27%
HR (humidity ratio) at high humidity conditions and a difference of 14.97% HR in an environment of low
humidity. Therefore, the average relative humidity insulation was 24.24% HR, according to Figure 2b.

There was a relatively stable low humidity season at around days 90 and 190. The abrupt change
was associated with a season of rain that commenced on day 192 and lasted until day 355. The complete
PET bottle prototype had passive natural ventilation through lines of empty glass bottles, which
protruded 5 cm from the external side. This was intended in part to conduct daylight into the room.
This was also a result of accommodating a series of two complete glass bottles whose bottoms were
directed to the outside to constitute skylight lines. The round complete glass bottles left empty spaces
between them, which were used as passive ventilation (Figure 1c). These tunnels could be closed at
will. Usually, this task could be done with a fabric or a curtain. Nonetheless, in this case, it was done
with used polyethylene bags in order to ensure a tight blockage to airflow.

The ventilation was kept open during the autumn-winter period and closed for spring and
summer. This was done to allow for knowledge of the results of extremes in the internal environment
because a normal procedure would usually be the opposite in order to regulate indoor conditions.
The indoor relative humidity was usually closely related to the external relative humidity during the
autumn-winter period when ventilation was kept open. The dark area of RH in Figure 2b is only
thicker for the low humidity season, at around days 90 and 190.

3.2. Thermograph Images and Humidity on Surfaces

Thermograph images were taken of the outer and inner parts of the prototype room. The images
showed stable external behavior in the different areas of the prototype. Figure 3a shows an image of the
facade and southeastern wall. Complementarily, from the same point, Figure 3b shows a thermogram
(taken on 24/08/2011 16:05, with 26 ◦C, RH 32%). The colder parts are represented as dark areas, and
the hotter parts are represented in white. The dark glass used as the window and door maintained
an outer temperature of around 47 ◦C. Figure 3c shows the rear with the northwestern wall under
sunlight and an overshadowed southwestern wall. Figure 3d shows a corresponding thermogram
(taken on 27/05/2011 11:45, with 30 ◦C, RH 26%). There was an average temperature of around 45 ◦C.
Nevertheless, the temperature distributions were not uniform. The change in the wall temperature
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was associated with the heterogeneous distribution of humidity that was kept on the wall because of
dissimilar finishing at different areas.
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Figure 3. Photographs and thermograms of the PET prototype in different views: (a) photography
and (b) thermogram, northeastern (facade) and southeastern side view; (c) photography and (d)
thermogram, northwestern and southwestern side view. The thermal images show their scale at the
right, the temperature profiles in horizontal and vertical lines, and a histogram of the temperature
distribution of the image at the bottom.

The thermograms show a bar scale on their right. They show temperature profiles that correspond
to a horizontal and a vertical line, located at their right and under them. These temperature profiles
indicate the highest temperature observed. Additionally, a histogram of the temperature distribution
of the image is located at the bottom, which shows lower and higher temperatures in the covered range.
This kind of representation intends to show, with more detail, temperature fluctuations in these images.

The humidity varied between 0.5% and 1.3% in the external parts of the walls at noontime. Other
measurements were taken in buildings nearby the PET prototype room, and the data differed between
4% and 13.5%.

The green roof had the highest temperature, reaching up to 71 ◦C. It is important to highlight
that the high temperature was only on the roof soil surface because, at the level of the two layers of
complete and uncapped PET bottles, the temperature remained very stable, night and day, throughout
the year. This is shown in Figure 4a–c, which show temperature recordings during a short period of
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one summer month. Figure 4a shows the air temperature that was measured with a sensor that was
located inside the prototype room at the roof level on the southwestern wall. Figure 4b shows the
temperature data from a sensor inside the multi-layered roof, located in the double layer of the empty,
opened PET bottles. Figure 4c indicates the air temperature from a reference sensor that was located as
described previously.
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Figure 4. (a) Air temperature that was measured inside the prototype. (b) Temperature data from a
sensor inside the multi-layered roof that was located in the double layer of empty opened PET bottles.
(c) Air temperature from a reference sensor.

The roof images and their thermograms are shown in Figure 5a,b and Figure 5c,d, respectively.
The thermograms were taken in May–June, with warm weather in the area (Figure 5b was taken on
27/05/2011 11:46, by 30 ◦C RH 26%, and Figure 5d was taken on 03/06/2011 11:41, with 25 ◦C, RH 31%).
During this month, the prototype presented a maximum internal temperature of 30 ◦C. Again, the
thermograms show a bar scale on their right. They show temperature profiles that correspond to a
horizontal and a vertical line, located at their right and under them. A histogram of the temperature
distribution of the image is located at the bottom and depicts its temperature range.

The average temperature of the outside walls was about 45 ◦C, and the maximum temperature of
the inside walls was about 26 ◦C (Figure 3b,d). Complementarily, the thermal difference between the
internal and external environment was about 8 ◦C.
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The window and door were the prototype’s colder and hotter parts due to the aluminum foil
that was externally placed to prevent direct heating by reflecting solar radiation (Figure 3b). The
different parts of the prototype demonstrated similar temperatures, except the northwestern and the
northeastern zones. The structure temperature was predominantly uniform everywhere.

Figure 3d shows some white areas and spots that had higher wall temperatures. This was
persistently observed and probably originated in the construction stage due to the different top
coating in that area. Due to such differences, there were some areas that accumulated humidity at the
southeastern wall during the rainy season. This was evident in some thermograms, showing up as
colder areas. The same occurred at the outer sides of walls at the roof level, where temperatures were
consistently lower during the rainy season due to humidity accumulated on the roof.

The roof surface showed high temperatures that were similar to ground temperatures because
the soil and vegetation were used to cover the structure as a green roof (Figure 3b). In part, this is an
objective of a green roof, which mimics the surroundings from a top view. The inside of the green
roof was stable, however, due to isolation by multiple layers that were made with recycled materials
that were placed above a galvanized sheet. The soil and vegetation on top gave additional thermal
coverage, but direct exposure of the dark soil increased the sunlight absorption.

The humidity differences between the PET prototype and some nearby constructions arose from
the building’s size, design, weather conditions and sunlight illumination on each side, among other
factors. The PET prototype was isolated from other constructions. Additionally, it was made of a single
floor and without a shed structure, which increased its exposure to sunlight and reduced its humidity
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retention. On the other hand, its design with a green roof maintained humidity, which was evident
with lower temperatures at the outer sides of the walls at the roof level. Consequently, these results
corroborate that the surface humidity of the walls was significant in modifying their temperatures and
that the roof humidity influenced the room’s thermal behavior. Thus, there was a direct dependence
between the surfaces’ humidity and their external temperatures.

3.3. Heat Transfer Simulation by COMSOL Multiphysics

Figure 6a shows the simulated possible outer wall behavior of the prototype room. The scale of the
three axes is in meters. The temperature ranged from a minimum of 8.5 ◦C (on the floor) to a maximum
of 62 ◦C at the top of the room. The temperature of the glass areas on the door and window reached 45
◦C. Complementarily, the rest of the door and window reached about 40 ◦C. The foundations were
in the range of 10 to 20 ◦C. In Figure 6a, we can observe the dispersion of heat between the different
materials of the prototype. Figure 6b presents an internal view of the thermal behavior of the simulated
prototype room. The internal environment was in the range of 22 to 23 ◦C.Recycling 2020, 5, x FOR PEER REVIEW 13 of 17 
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3.4. Heat Transfer Simulation by COMSOL Multiphysics

The general objective of conducting a simulation arose from the usefulness of having a model that
well-represents physical construction and, in that way, approximates thermal behavior under extreme
weather conditions. The aim of this work was limited to obtaining a model that matched the observed
experimental thermal behavior by using experimentally measured variable values. The simulation
performed well despite some parts of the room sketch that were not differentiated. For example, the
roof was registered as only one domain; for this reason, the roof presented a uniform behavior. The
same occurred in other parts of the prototype. However, the simulation was considered a first step in
visualizing temperature distributions when further changes may be introduced, e.g., the painting or
waterproofing of walls, using plants with dense foliage on top, trees growing alongside the building,
changes in the door or window, or long-term changes in weather caused by global warming.

The outside of the walls in the simulation had similar behavior to real the thermal images presented
in Figure 3b,d. The simulation varied at around 4 ◦C compared to the measurements that were recorded
in the thermograms. The inside of the walls in the simulation had a variation of about 2 ◦C compared
to thermograms.

The simulation started with values for some parameters that were taken from experimental
observations. The experimentally observed thermal transference, including heating by sunlight
radiation and internal air temperature, was represented in the simulation. Some material properties
were directly taken from the software library and applied to all zones that had such materials. The
fluctuation of real building material properties was a difficult variable to control since construction
was conducted following a traditional methodology as much as possible. A direct comparison between
the outside wall surfaces and those of the simulation patterns showed differences in real temperature
patterns and gradual fluctuations, respectively.

Finally, there were correspondences between the observed and final simulation values.
Nonetheless, they were roughly similar considering all those conditions that were not possible
to include in those conducted simulations.

4. Conclusions

Thermal behavior was evaluated for a prototype room that was constructed with walls based
on complete PET bottles and a green roof with multiple layers of recycled materials. The prototype
demonstrated regulated temperatures and good thermal insulation when comparing internal and
external environments. Indoor variations were within the range of 0.5 to 3.4 ◦C per day, while outside
variations were approximately 16.5 ◦C.

The external behavior of the PET prototype room was uniform, keeping maximum temperatures
of around 45 ◦C at the walls. The construction materials demonstrated good insulation. Specifically,
the roof design and materials allowed for thermal isolation and mimicked the surroundings.

The temperature was raised to 30 ◦C indoors (26 ◦C at walls) as a maximum and was purposely
decreased to 10 ◦C by blocking the ventilation. The green roof with black soil showed a maximum
temperature of 71 ◦C. This was only on the surface, which is noteworthy. The roof maintained very
stable temperatures day and night, the whole year, at the level of the two layers of the complete and
uncapped PET bottles.

The PET prototype design with a green roof maintained humidity, which was evident with lower
temperatures at the outer sides of walls at the roof level. Consequently, these results corroborate
that the surface humidity of the walls was significant in modifying their temperatures and that roof
humidity influenced the room’s thermal behavior.

The uneven temperature distribution at the side walls was attributed to non-visible fluctuations
during construction, consistently causing hot spots or areas that maintaining prolonged humidity
following rain. The measurement of humidity at the walls did not show differences between hot spots
and other areas.
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The thermal transference simulation carried out for a sketch of the prototype dimensions achieved
pleasant internal temperatures of around 22 ◦C. This simulation was restricted to very wide domains,
which resulted in uniform behaviors in different areas. The simulation showed that the roof exhibited
high temperatures that were caused by the absorption of higher solar radiation. There was a close
relationship with the real prototype at the roof, with those high temperatures being superficial since
mild and stable temperatures were registered in the green roof, with an average of 22.54 ◦C and
variations of ± 2.7 ◦C.
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