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Abstract: This work contributes to the recycling of technical black plastic particles, for example
from the automotive or electronics industries. These plastics cannot yet be sorted with sufficient
purity (up to 99.9%), which often makes economical recycling impossible. As a solution to this
problem, imaging fluorescence spectroscopy with additional illumination in the near infrared
spectral range in combination with classification by machine learning or deep learning classification
algorithms is here investigated. The algorithms used are linear discriminant analysis (LDA), k-nearest
neighbour classification (kNN), support vector machines (SVM), ensemble models with decision
trees (ENSEMBLE), and convolutional neural networks (CNNs). The CNNs in particular attempt
to increase overall classification accuracy by taking into account the shape of the plastic particles.
In addition, the automatic optimization of the hyperparameters of the classification algorithms
by the random search algorithm was investigated. The aim was to increase the accuracy of the
classification models. About 400 particles each of 14 plastics from 12 plastic classes were examined.
An attempt was made to train an overall model for the classification of all 12 plastics. The CNNs
achieved the highest overall classification accuracy with 93.5%. Another attempt was made to classify
41 mixtures of industrially relevant plastics with a maximum of three plastic classes per mixture.
The same average classification accuracy of 99.0% was achieved for the ENSEMBLE, SVM, and
CNN algorithms. The target overall classification accuracy of 99.9% was achieved for 18 of the 41
compounds. The results show that the method presented is a promising approach for sorting black
technical plastic waste.

Keywords: hyperspectral imaging; machine learning; black plastic; classification; sorting; recycling;
fluorescence imaging; deep learning

1. Introduction

The material recycling of raw materials is of growing importance in view of finite resources,
rising demand, and environmentally damaging extraction and production conditions. This applies in
particular to plastics, which are currently manufactured largely from crude oil. The rate of material
recycling of plastics worldwide is currently only around 9%. A further 11% is used for thermal recycling,
while the remainder is landfilled [1]. The majority of recycled plastics are also often processed into
inferior secondary products. The reason for this is the lack of suitable sensor technologies for classifying
plastics, which makes it possible to separate plastic mixtures with sufficient purity (sometimes up to
99.9%). This applies in particular to technical black plastics, which often consist of a complex material
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mix and are coloured black by carbon fillers. The standard separation technologies used for sorting
plastics, such as classification using float-sink methods [2] or electrostatic separation [3] or sorting
using hyperspectral imaging (HSI) in the near-infrared spectral range [4,5], are not suitable for black
plastics. Other methods such as X-ray fluorescence (XRF) [6] are suitable for sorting black plastics but
are limited to a small number of plastic combinations.

For the sorting of technical black plastics, some approaches are currently being developed, and
some are already being offered commercially. These include hyperspectral imaging in the mid-infrared
spectral range [7,8] and terahertz spectroscopy [9,10]. Both approaches allow the sorting of black
plastics but are not optimal due to expensive instrument technology, low achievable throughputs, and
large required particle sizes. Another possibility is the use of laser-induced breakdown spectroscopy
(LIBS) or Raman spectroscopy [11,12]. However, both approaches are not yet widely used in industrial
applications for sorting black plastics.

The most promising technology at present is the classification of black plastics on the basis of their
fluorescence. Many plastics show a characteristic fluorescence if they are illuminated with intensive
laser radiation. The exact causes of fluorescence are not well studied. It is assumed that fluorescence
is mainly caused by additives or impurities in the plastics [13–15]. With this technology, it is also
possible to classify black plastics, and there has already been commercial implementation. The achieved
accuracies do not exceed 98% [16].

The aim of this work is to improve the technology of fluorescence spectroscopy for the sorting of
black plastics and thus to further increase the classification accuracy. For this purpose, fluorescence
spectroscopy is to be combined with hyperspectral imaging. In this way, in addition to the fluorescence
spectra of the plastic particles, their shape and texture are also obtained. This is especially characteristic
for the type of plastic for particles generated by cryogenic grinding [17]. Convolutional Neural
Networks (CNNs), which have achieved great success in the classification of image data, will be used
to consider the shape of the plastic particles in the classification [18–20].

For the experiments, about 400 particles each of 14 black plastics in 12 plastic classes were measured
with an imaging fluorescence spectrometer. The particles were produced by cryogenic grinding and
range in size from 5 mm to 12 mm. The data obtained was then used to train various machine
learning algorithms and compare them using statistic methods. The ‘classical’ machine learning
algorithms linear discriminant analysis (LDA [21]), k-nearest neighbour classification (kNN [22]),
support vector machines (SVM [23]), and ensemble models with decision trees (ENSEMBLE [24]) were
trained. The particle shape was not considered for these algorithms. Convolutional neural networks
were trained considering the particle shape [18]. Therefore, spectral images of the particles were
generated, which show the particle shape as well as their fluorescence properties. For plastics without
fluorescence, reflectivity in the near-infrared spectral range (NIR) was used to detect the position
and shape of the particles. For all trained algorithms, an automatic hyperparameter optimization by
random search (RS, [25]) was performed. The aim was to increase the achievable overall classification
accuracy of the models. The hyperparameter optimization by BOA was also tried but did not provide
better results than RS and is therefore not shown for reasons of clarity. At the same time, an automated
optimization of the hyperparameters of the classification algorithms allows for a simple training of
models for the classification of new plastics. This reduces the demands placed on plant operators
during subsequent industrial use, since the user does not need to have any prior knowledge of machine
learning. The obtained classification accuracies of the models were examined by means of ANOVA with
subsequent Tukey test with regard to statistically significant differences. Models for the simultaneous
classification of all 12 plastic classes and for the classification of 41 industrially relevant mixtures of
two to three plastic classes were examined.

It was found that CNNs using the spectral and shape information can achieve statistically
significantly and better overall classification accuracy for the classification of all 12 plastics than
classical machine learning algorithms using only the spectral information. For the classification of
the mixtures, there were no differences between the three considered algorithms—ENSEMBLE, SVM,
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and CNN. Furthermore, the automatic optimization of the hyperparameters by random optimization
proved to be a very good possibility to improve the overall classification accuracy of the models.
In total, the desired overall classification accuracy of 99.9% could be achieved for 18 of the 41 plastic
mixtures with two or three classes.

2. Materials and Methods

2.1. Description of the Used Black Plastics

For the experiments carried out, 14 different black plastics in 12 plastic classes were used. The
sales description and the manufacturer of the plastic samples are not known. The following types of
plastics have been investigated:

• high-density polyethylene (HDPE, 399 particles);
• polypropylene (PP, 399 particles);
• polyoxymethylene (POM, 399 particles);
• polyphenylene sulfide (PPS, 400 particles);
• polyamide 6 and polyamide 6 (PA6) with glass fibre /without glass fibre (798 particles);
• polyamide 66 and polyamide 66 (PA66) with glass fibre /without glass fibre (756 particles);
• polyamide 66 with flame retardant (PA66 V0, 396 particles);
• styrene-butadiene rubber (SBR, 390 particles);
• polybutylene terephthalate (PBT, 399 particles);
• thermoplastic elastomers (TPE, 397 particles);
• thermoplastic polyurethanes (TPU, 392 particles);
• thermoplastic copolyester (TEEE, 402 particles).

The numbers show the amount of particles measured per polymer. The samples of the polymers
were obtained from a recycling company and crushed to a grain size of 5 mm to 12 mm by cryogenic
grinding before examination [17]. The polyamides (PA6 and PA66) were measured with and without
glass fibres as additional filler. For the evaluation, plastics with and without glass fibres were considered
as one class.

2.2. Imaging Fluorescence Spectrometer

For the investigation of the black polymer particles, an imaging fluorescence spectrometer was
used, which was described in detail by Gruber et. al. [26]. A schematic representation of the system is
shown in Figure 1. It consists of an excitation laser with a wavelength of 450 nm and an output power
of 2000 mW (4290 2W 450 nm Blue Dot Laser Module, Wuhan Besram Technology Inc., Wuhan, China),
a rotating mirror (dynAxis S, Scanlab, Puchheim, Germany), a dichroic mirror with an cut-off frequence
of 473 nm (Di03-R473, Semrock Inc., Rochester, NY, USA), a long pass filter with an edge wavelength of
458 nm (LP03-458RE, Semrock Inc., Rochester, NY, USA), and a visible and near infrared (wavelength
range 400 nm to 1000 nm) hyperspectral camera (Hyperspec-VNIR, Headwall Photonics Inc., Bolton,
MA, USA) with a Si-EMCCD detector with 1004 × 1002 pixels (Luca R 604, Andor Technology Ltd.,
Belfast, UK) and a lens with a focal length of 23 mm and a maximum aperture of f/1.4 (Xenoplan
23 mm f/1.4; Jos. Schneider Optische Werke, Bad Kreuznach, Germany). Lasers with other wavelengths
were tested, but the 450 nm lasers provided the best compromise of achievable fluorescence and
price performance ratio. In addition to the excitation laser, near-infrared LEDs with a wavelength of
870 nm (Vishay IR diode, RS Components GmbH, Frankfurt am Main, Germany) are used as additional
illumination sources. The samples are moved with a linear stage (VT 80, PI Micos, Eschbach, Germany).
The control of the system components and the data acquisition is carried out by software developed
in-house (Imanto®pro, Fraunhofer IWS, Dresden, Germany).
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LEDs λ = 870 nm. F: Long pass filter. GM: Rotating mirror. LA: Excitation laser. MT: motion unit. 
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and lateral dimensions. This results in a FOV of ~90 mm, a lateral resolution of ~360 μm, and a spectral 
resolution of ~1.5 nm. The velocity of the motion unit was set to 4 m s−1 to obtain square pixels. For 
the measurement, about 40 particles each were separated from each other and placed under the 
camera. Ten measurements were performed for each polymer, resulting in around 400 particles per 
plastic. The result of each measurement was one hypercube with a lateral size of ~1000 × 1000 pixel 
and 380 spectral bands between 400 nm and 1000 nm. The raw data of the measurements can be found 
in [27]. 

After data acquisition, the polymer particles in the hypercubes were separated from the 
substrate by a threshold value based on their NIR reflectivity at 870 nm. Very small particles with a 
size of less than 10 pixels (<0.5 mm side length) were removed from the data. Subsequently, the 
wavelength range of the hypercubes of the polymer particles was cut to 103 spectral channels 
between 501 nm and 664 nm. No fluorescence is to be expected outside these wavelengths. 

2.4. Classification Experiments 

The sequence of the classification experiments including the pre-processing of the data and the 
optimization of the hyperparameters of the classification models is shown in Figure 2. Algorithms 
from ‘classical’ machine learning as well as from deep learning were used. In both approaches, the 
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black plastics. HSI: visible and near-infrared HSI camera. DM: Dichroic mirror. LED: near-infrared
LEDs λ = 870 nm. F: Long pass filter. GM: Rotating mirror. LA: Excitation laser. MT: motion unit.

2.3. Data Acquisition and Preprocessing

The measurements of the black plastic particles were performed with the described imaging
fluorescence spectrometer. The measurements were performed with a working distance of 280 mm, an
exposure time of 25 ms, a recording frequency of 22 Hz, a gain of 2×, and 2× binning in the spectral
and lateral dimensions. This results in a FOV of ~90 mm, a lateral resolution of ~360 µm, and a spectral
resolution of ~1.5 nm. The velocity of the motion unit was set to 4 m s−1 to obtain square pixels. For
the measurement, about 40 particles each were separated from each other and placed under the camera.
Ten measurements were performed for each polymer, resulting in around 400 particles per plastic.
The result of each measurement was one hypercube with a lateral size of ~1000 × 1000 pixel and 380
spectral bands between 400 nm and 1000 nm. The raw data of the measurements can be found in [27].

After data acquisition, the polymer particles in the hypercubes were separated from the substrate
by a threshold value based on their NIR reflectivity at 870 nm. Very small particles with a size of less
than 10 pixels (<0.5 mm side length) were removed from the data. Subsequently, the wavelength range
of the hypercubes of the polymer particles was cut to 103 spectral channels between 501 nm and 664
nm. No fluorescence is to be expected outside these wavelengths.

2.4. Classification Experiments

The sequence of the classification experiments including the pre-processing of the data and the
optimization of the hyperparameters of the classification models is shown in Figure 2. Algorithms
from ‘classical’ machine learning as well as from deep learning were used. In both approaches, the
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pre-processing of the data differs, while training and validation are the same. The individual steps are
described in more detail in the following sections.

Different data sets were considered for the classification attempts. The overall model of all
measured plastic particles was considered (see chapter 2.1). In total, 5534 particles were used for the
experiments. The overall model was used to compare the algorithms with regard to their overall
classification accuracy and to estimate the influence of automatic hyperparameter optimization.
Forty-one industrially relevant plastic mixtures with a maximum of three classes were considered (see
Table A3). These data sets are based on actual plastic mixtures, in particular from the automotive and
electronics industries. They thus enable a good estimation of the suitability of the imaging fluorescence
method for the high-purity sorting of technical black plastic waste.

All calculations were performed with Matlab® R2017b and a Windows 10TM computer with an
Intel® CoreTM i5-4590 with 3.3 GHz, 16 GB RAM and a Nvidia® GTX 1080 Ti graphics card with
11 GB GDDR5X memory and a processor clock of 1632 MHz.
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Figure 2. Schematic representation of the classification experiment procedure with hyperparameter
(HP) optimization.

2.4.1. Machine Learning

The first approach is to classify the mean spectra of the fluorescence of the plastic particles after
pre-processing and principal component analysis [28] using classical machine learning algorithms.
Four classification algorithms were compared—linear discriminant analysis (LDA [21]), k-nearest
neighbour classification (kNN [22]), classification ensembles with decision trees (ENSEMBLE [24]),
and support vector machines (SVM [23]) with a radial basis and linear kernel.
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For these experiments, a mean spectrum was calculated for each plastic particle. Subsequently,
the spectra were subjected to a data pre-processing consisting of principal component analysis
and sometimes Savitzky-Golay smoothing [29] and normalization. Savitzky-Golay smoothing is a
frequently used method for smoothing in spectroscopy. The obtained data set can then be used for
training the classification models. The classification models were validated by tenfold cross-validation.
For this purpose, each data set is divided into 10 parts, and then 10 classification models are trained,
whereby one part of the data is always not taken into account for training. The obtained model is then
applied to the part of the data not considered, and the overall classification accuracy is determined.
The mean value of all 10 tests gives the cross-validated overall accuracy.

2.4.2. Deep Learning

In the second approach, classification experiments were carried out using CNNs [18]. CNNs
are a method of deep learning which can achieve very good results in the classification of image
data. CNNs consist of artificial neurons arranged in several stacked layers (Figure 3). Typical CNNs
consist of one or more convolutional layers followed by pooling layers. After some repetitions of
convolutional and pooling layers, they can be followed by fully connected layers. The output of all
layers is transformed by an activation function (often reLu function). The output of the fully connected
layer is then transformed into a probability function. To avoid an overfitting of the CNNs dropout
layer, augmentation of the input images or regularization methods like early stopping can be used.
CNNs are trained with backpropagation in a supervised manner [18]. An example configuration of a
CNN is show in Figure A1.
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Before the actual classification experiments, the hypercubes of the HSI measurement had to be
converted into an image with less spectral channels. For this purpose, a principal component analysis
was first performed with all particle spectra [28]. A new image (called a score image) was then
created for each polymer particle using the scores obtained from the first three principal components.
The obtained scores were then scaled by nearest-neighbour interpolation to a size of 64 × 64 pixels.
The obtained data set from the score images of the plastic particles and the associated classes was then
used for the training of the CNNs. The validation of the CNNs is done by fivefold cross-validation.
After each epoch of the training, the overall accuracy for the validation set was calculated. The training
of the CNNs was aborted if, after five consecutive training epochs, no improvement of the overall
classification accuracy for the validation data set could be determined. This method is called early
stopping and is used to reduce overfitting during training.
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Since the training of CNNs is very computationally intensive, it is not always useful to train a
new CNN from scratch. Especially with similar classification problems, it is possible to use an already
trained CNN as a starting point for a model for a new classification problem. This method is called
transfer learning [30]. Transfer learning is used here for the classification attempts of the 41 industrial
relevant plastic mixtures. Therefore, the best received CNN trained for the classification of all plastics
is used. The learned weights of the neurons of this CNN are used as a starting point for the training of
a new CNN for the new classification problem. For this, only the last layers of the original CNN (the
last fully connected and the softmax layer) have to be adapted to the new classification problem, and
then the training can be carried out normally.

2.4.3. Hyperparameter Optimization

Hyperparameters are the parameters of the classification algorithms used to control the algorithms
themselves. These parameters are set before the actual training of the models and are not learned
during the training. Other parameters, such as the pre-processing of spectral data by smoothing or
normalization, can also be considered as hyperparameters. The hyperparameters can have a large effect
on the overall classification accuracy of the trained algorithms, which is why an optimization is useful.
Often this optimization is guided by trial and error and the experience of the user. This process is often
time-consuming and finding an optimal result is not guaranteed. For this reason, methods for automatic
hyperparameter optimization are increasingly being used, especially for classification algorithms
with high computational effort and many hyperparameters (e.g., CNNs). These algorithms attempt
an iterative approach to the optimal hyperparameters of the classification algorithm using various
mathematical methods. An example of such an algorithm is the Bayesian Optimization Algorithm
(BOA, [31]). A disadvantage of these algorithms is that their calculation itself is time consuming and
computationally intensive. A quick and easy alternative is the Random Search algorithm (RS), which
selects the next hyperparameter randomly. It has been shown that the differences between RS and
other hyperparameter optimization algorithms are often small [25]. Therefore, the RS algorithm is
used here for hyperparameter optimization. For this the algorithm implemented in Matlab R2017b
was used slightly modified.

Hyperparameter optimization was used both for the ‘classical’ machine learning algorithms and
for CNN training. The standard hyperparameters and the ranges in which these parameters were
optimized are summarized in Table A1 for classical machine learning and in Table A2 for CNNs. For all
algorithms, models with standard hyperparameters (derived from the Matlab® R2017b documentation)
were also trained to estimate the effect of automatic hyperparameter optimization.

Hyperparameter optimization using RS was performed on 30 epochs, which means that
30 models with different random hyperparameters were trained to find a good set of hyperparameters.
The validation was done by external and internal cross validation. For this purpose, the entire data
set is divided into ten (for the classical machine learning algorithms) or five (for the CNNs) parts for
the cross validation, and hyperparameter optimization is performed over 30 epochs with each of the
partitions. For each part of the data, 30 models with different hyperparameters are trained to achieve
good overall classification accuracy. Each of these individual models is in turn validated by five-fold
cross-validation (for the classical machine learning algorithms) or two-fold cross-validation (for the
CNNs). This is called the inner loop, which is used to optimize the hyperparameters. The model with
the best overall classification accuracy found in the inner loop is then used to predict the left out data
of the first cross-validation to obtain a good estimate of the real overall accuracy of the model. This is
called the outer loop. This approach is shown schematically in Figure 2.

2.4.4. Model Comparison

The classification models are compared using the calculated overall classification accuracies
of the cross validation. In order to determine whether there are statistically significant differences
between the overall accuracies obtained, the overall accuracies were compared by means of univariate
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ANOVA and a subsequent Tukey test. The significance level chosen was α = 5%. The prerequisites for
the application of ANOVA are the normal distribution and the homoscedasticity of the data. These
conditions are checked here by the Anderson-Darling Test [32] and the Brown-Forsythe Test [33].
No deviations from these prerequisites were found for any of the experiments. The third prerequisite
of ANOVA is the independence of the examined data. This is only partially given for cross-validation.
Although the test data are independent of each other, since each data point appears only once in a test
data set, the training data are not independent, since one data point is used several times for training.
It has been shown that this dependency leads to a slightly increased Type 1 error when comparing
different data sets [34]. This would mean that the ANOVA indicates a statistically significant difference,
although none exists between the overall accuracies of the classification models. However, we accept
the increased error here because the expected increase is small and because we do not have enough
data to run the experiments with independent training, validation, and test sets. In addition, the effect
of a slightly increased error probability is also small, and the method is nevertheless sufficient for
comparing different classification methods.

3. Results and Discussion

3.1. Imaging Fluorescence Measurements

Figure 4 shows example measurements of three particles of different black plastics. The three
plastics have different fluorescence properties: PA6 shows a clear fluorescence, SBR shows only a partial
fluorescence, and HDPE shows no fluorescence. The additional illumination (870 nm) and measurement
of the samples in the NIR spectral range is of particular importance for the measurement of HDPE.
This makes it possible to measure the position and shape of non-fluorescent plastics. In addition, a
simple differentiation between the background and the particles is easily possible.
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Figure 4. Color-coded fluorescence intensity of three particles of black plastics measured with the
imaging fluorescence spectrometer at a wavelength of (a) 530 nm and (b) 870 nm. (c) Example spectra
of the three plastic particles. Red: polyamide 6 (PA6). Blue: styrene-butadiene rubber (SBR). Green:
high-density polyethylene (HDPE). Grey: background.

It can be seen that the shape of the plastic particles is well represented and that there are clear
spectral differences between PA6 and SBR. In a next step, the fluorescence of all investigated plastics
should be compared in order to estimate the spectral differentiability of the plastics. For this purpose,
the hypercubes obtained were pre-processed as described in Chapter 2.3. The results are the mean
value spectra of all measured plastic particles. A principal component analysis was applied to this data
set after L1 normalization. Figure 5 shows the score plot of the first and second principal components.
The first two principal components describe 95% of the variance of the data set. Each point in the score
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plot corresponds to the mean spectrum of a plastic particle. Similar spectra are close together in the
score plot, while different spectra are separated.

It can be seen that some of the plastics (e.g., SBR and PPS) are spectrally different from the others.
However, some of the investigated samples also show clear overlaps (e.g., TPE, TPU, and TEEE) in
the score plot. For these plastics, classification on the basis of spectral properties is probably more
difficult. For these plastics, the classification can possibly be improved by considering the particle
shape. Furthermore, it can be seen that the plastics PA6 and PA66 exhibit a large spectral variability
and can be found at several positions in the score plot. This might be due to the fact that plastics with
and without glass fibre additives are regarded as one plastic class. Overall, however, the score plot
only provides an initial indication of the possibility of classifying plastics.
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3.2. Classification Experiments

3.2.1. Classification of all Plastics by a Single Prediction Model

First, the classification experiments were carried out with a data set from all 12 plastic classes
as a worst-case scenario. In the real recycling process, it is usually not necessary to identify and sort
more than two or three different plastics. The calculation of the classification models serves to compare
the performance of the different algorithms for the classification of the black plastic particles and to
estimate the practicability of the automatic hyperparameter optimization. Only the evaluation for the
overall accuracy and not for other accuracy measures, like kappa coefficients, is shown.

The models were trained once with the standard hyperparameters for the classification algorithms
taken from the Matlab® R2017b documentation. In addition, the hyperparameters of the models
were optimized using RS. No pre-processing or data augmentation takes place during these tests.
For optimization using RS, the value range of the hyperparameters was also determined on the basis
of the Matlab® R2017b documentation. The standard hyperparameters and their ranges for the
optimization are shown in Table A1 for the algorithms LDA, kNN, SVM, and ENSEMBLE and in
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Table A2 for the CNNs. A total of seven hyperparameters must be optimized for the DA algorithm,
eight for the kNN algorithm, eight for the SVM, 10 for the ENSEMBLE algorithm, and 17 for the CNN.

Figure 6 shows the course of the automatic hyperparameter optimization using RS. The plot shows
the test accuracy (overall accuracy, often the outer loop) against the number of function evaluations
performed. It can be seen that, after 10 calculated functions, significantly better hyperparameters
were found. Between 10 and 25 function evaluations, only a slight improvement can be seen. After
25 function evaluations, only the CNNs show a slight improvement. The reason for this is probably
the larger number of possible hyperparameter combinations for the CNNs. However, since the
improvements after 30 function evaluations are also small for the CNNs and the computational effort
is high, a termination of the experiments after 30 function evaluations seems reasonable. It can also be
seen that the optimization for the SVMs works worst, which results in a slow increase of the average
overall classification accuracy and a large standard deviation. After the optimization the overall
classification accuracy (86.8%) is comparable with that of the DA algorithm (86.2%). For the remaining
algorithms, the CNNs show the best results (92.2%). kNN and ENSEMBLE algorithms lead to very
similar results (89.8%), and the DA provides a much lower overall classification accuracy.Recycling 2019, 4 FOR PEER REVIEW  10 
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Table 1 shows the comparison of the obtained overall classification accuracies and the kappa
coefficients of the RS-optimized models and the overall accuracies and kappa coefficients of the models
trained with standard hyperparameters. Only the overall accuracy is discussed here, because the
results for the kappa coefficients are very similar. The highest overall accuracy is achieved for the
CNNs, where the overall accuracy for the models trained with standard parameters is higher than for
the models optimized with RS. However, the difference is small at 1.5%. With the other algorithms,
higher overall classification accuracies are achieved using RS. The differences in the overall accuracies
are statistically relevant for all algorithms except the SVMs, with a significance level of α = 5%. This
result shows that the automatic optimization of the hyperparameters is suitable for the training of good
classification models. With the CNN models, the high number of hyperparameters to be optimized
probably leads to the worse result of the optimization. Perhaps training more models would further
improve overall classification accuracy. However, this also results in a longer training time, which is
already very long, especially for the CNNs.
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Overall, it can be seen that the best classification accuracy of 93.5% can be achieved with the
CNNs for the classification of all 12 plastic classes. This result is statistically significantly better than
the overall classification accuracy of the other models. In the classical machine learning algorithms,
kNN and ENSEMBLE deliver the same overall classification accuracy of 89.8% and are thus statistically
significantly better than the SVM and DA models. For these models, 86.8% and 86.2% overall
classification accuracy, respectively, are achieved. For a further application, it makes more sense to use
the ENSEMBLE instead of the kNN algorithm, since kNN models often require a lot of memory space
and only allow a low prediction speed [21].

Table 1. Comparison of the obtained average overall classification accuracies and kappa coefficients
with confidence intervals (α = 0.05) of the experiments with all 12 black plastics, with and without
hyperparameter optimization. The best overall classification accuracy is shown in bold. The asterix (*)
shows a statistically significant difference between the models trained with standard parameters and
the models trained with RS (calculated with ANOVA, α = 0.05).

Overall Accuracy Kappa Coefficient

standard parameter random search standard parameter random search
DA 66.0 ± 1.0 86.2 ± 0.6 * 0.623 ± 0.011 0.845 ± 0.006 *

kNN 87.2 ± 0.4 89.8 ± 0.4 * 0.859 ± 0.005 0.885 ± 0.006 *
ENSEMBLE 83.5 ± 1.1 89.8 ± 0.9* 0.819 ± 0.012 0.874 ± 0.017 *

SVM 86.4 ± 0.8 86.8 ± 1.0 0.85 ± 0.009 0.861 ± 0.01
CNN 93.5 ± 0.6 92.2 ± 0.6 * 0.916 ± 0.005 0.906 ± 0.007 *

3.2.2. Classification of Relevant Plastic Mixtures by Individual Prediction Models

After the classification experiments with all investigated plastic particles, further experiments
for the classification of 41 mixtures of a maximum of three different plastic classes were carried out.
A total of 41 plastic mixtures were selected which correspond to them typically expected to receive at a
recycling company (see Table A3). The number of samples per plastic class is shown in Section 2.1.

The following six models were trained for all mixtures:

• one ENSEMBLE and one SVM model with standard parameters (Table A1)
• one ENSEMBLE and one SVM model with hyperparameter optimization (Table A1)
• a CNN with standard parameters (Table A2)
• a CNN with transfer learning.

For transfer learning, the best CNN for the classification of all plastic particles from Section 3.2.1
was selected. The training and the validation were carried out as for the models for the classification of
all plastic classes.

The results of the experiments are presented in Table 2. The results for the kappa coefficients are
not shown because the results are very similar. It can be seen that both the models with hyperparameter
optimization by random search for the ENSEMBLE and SVM models and the CNNs trained with
transfer learning are better than the models trained with the standard parameters. For ENSEMBLE
and SVM, the mean improvement in overall classification accuracy is 0.7 percentage points and
1.9 percentage points, respectively. For the CNNs, the difference is even 21.7 percentage points. This
large difference indicates that the completely new training of the CNNs does not work well for the data
sets studied. One possible reason for this is the relatively low number of training images available for
CNN training. When using transfer learning, the CNN only has to be adapted to the new data set, for
which a smaller data set is sufficient. The results show that both automatic hyperparameter optimization
and transfer learning are good methods for increasing the overall accuracy of the algorithms used.
This would enable the relatively fast training of new algorithms even for untrained personnel in a later
industrial application.
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Table 2. Results of the classification attempts of the 41 individual models considered. The highest
overall classification accuracy is shown in bold. For reasons of clarity, the confidence interval of the
tests is not shown. Only the overall accuracy is shown because the results for the kappa coefficient are
very similar.

ENSEMBLE
Standard
Parameter

ENSEMBLE
Random
Search

SVM
Standard
Parameter

SVM
Random
Search

CNN
Standard
Parameter

CNN
Transfer
Learning

M1 99.4 99.9 93.2 100.0 77.2 100.0
M2 100.0 100.0 99.7 100.0 87.7 100.0
M3 99.7 99.9 97.3 100.0 75.1 100.0
M4 86.1 90.4 84.9 89.6 70.2 89.6
M5 99.8 100.0 99.3 100.0 87.2 100.0
M6 98.8 99.6 97.5 99.8 71.0 99.8
M7 99.6 100.0 99.4 100.0 83.9 100.0
M8 98.4 99.2 98.2 98.9 87.6 98.9
M9 98.3 99.4 97.2 99.8 75.2 99.8

M10 99.3 100.0 99.2 99.9 83.3 99.9
M11 99.3 99.9 98.4 100.0 70.5 100.0
M12 100.0 100.0 98.8 100.0 71.3 100.0
M13 99.8 99.8 98.2 100.0 80.5 100.0
M14 98.0 99.3 98.4 99.3 66.6 99.3
M15 99.9 100.0 98.4 100.0 75.4 100.0
M16 99.7 99.9 99.0 99.9 75.6 99.9
M17 97.9 98.0 94.8 99.0 66.5 99.0
M18 99.8 99.9 99.0 100.0 86.1 100.0
M19 98.6 99.7 94.3 99.9 83.5 99.9
M20 100.0 100.0 97.4 100.0 81.2 100.0
M21 99.6 99.8 96.4 100.0 81.0 100.0
M22 98.9 99.7 93.5 99.8 78.2 99.8
M23 98.9 99.7 98.2 99.7 83.0 99.7
M24 99.0 99.5 98.7 99.6 86.8 99.6
M25 99.1 99.6 99.1 99.5 93.4 99.5
M26 89.1 92.1 88.7 91.5 82.3 91.5
M27 99.2 99.6 98.9 99.8 79.3 99.8
M28 98.4 99.2 98.5 98.9 84.9 98.9
M29 98.8 99.2 98.6 98.8 86.2 98.8
M30 98.5 99.3 98.4 98.7 88.7 98.7
M31 99.8 100.0 99.0 99.9 89.2 99.9
M32 98.2 99.0 97.7 98.3 74.5 98.3
M33 99.4 99.9 99.6 99.9 75.5 99.9
M34 98.5 99.0 97.8 99.4 61.7 99.4
M35 98.6 99.3 97.4 99.4 67.6 99.4
M36 99.0 99.4 97.9 99.4 71.3 99.4
M37 88.9 92.2 88.0 92.0 71.8 92.0
M38 98.3 98.6 97.4 98.9 57.5 98.9
M39 98.8 99.0 98.0 99.0 63.4 99.0
M40 98.3 98.3 97.1 98.9 64.4 98.9
M41 99.9 100.0 99.2 100.0 71.2 100.0

mean 98.3 99.0 97.1 99.0 77.3 99.0

A possible disadvantage could be the relatively long training times, especially for the use of
hyperparameter optimization by random search. For the data sets considered here, however, the
average training time per model is only 220 s for the ENSEMBLE algorithm and 273 s for the SVM
algorithm (Table 3). For transfer learning, the average training time is only 54 s. However, when
increasing the number of training data, which may be necessary to improve the overall classification
accuracy, the training times may increase considerably.
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Table 3. Average training times t for the classification algorithms used. The ensemble learning with
decision trees (ENSEMBLE) and support vector machine (SVM) models were trained with RS for 30
function evaluations with 10-fold cross-validation in the outer loop and five-fold cross-validation
in the outer loop. The CNN models were trained with transfer learning and validated with
five-fold cross-validation.

ENSEMBLE Random Search SVM Random Search CNN Transfer Learning
¯
t/s 220 273 54

The average overall accuracy of all three algorithms is 99.0%. In total, 18 of the 41 plastic
combinations achieved an overall classification accuracy of 99.9% or better, and 25 had an overall
classification accuracy of more than 99.5%. The consideration of the particle shape through the use
of CNNs did not on average lead to an improvement of the overall classification accuracy in the
experiments with the plastic mixtures. A possible reason for this can also be found in the relatively
small number of training examples. Since CNNs especially benefit from large amounts of training
data, it might be possible to improve the overall classification accuracy by further data.

Further experiments should therefore concentrate on the generation of more data for the training
of the classification algorithms. Furthermore, the development of a technical demonstrator is planned.
The aim is to further investigate the suitability of imaging fluorescence spectroscopy technology for the
classification of black plastics. Further development of the sensor system, in particular the excitation
unit and the system for generating the laser line, is also planned. In addition, other HSI cameras will
be investigated, which enable faster data acquisition and thus lead to a higher plastic throughput in
later use.

4. Conclusions

In this study, an imaging fluorescence spectrometer with additional illumination in the NIR
spectral range was used to classify technical black plastic particles after cryogenic grinding. These
plastics are arising in particular during the recycling of plastic components from the automotive or
electronics industries. Since these are often composite components, the waste is ground to small
particles before recycling and must then be sorted with high purity (99.9%). Even the smallest
impurities can reduce the quality of the recycled material and thus the achievable price. A sorting of
technical black plastic particles is not yet possible with this purity. The aim was therefore to measure
the fluorescence of the black plastics after excitation with a 450 nm laser and to classify them with
high overall accuracy using machine learning models. In addition, attempts have been made to use
the shape of the plastic particles for classification by using CNNs, thereby increasing the achievable
overall classification accuracy.

A total of around 400 particles were measured from 14 plastics in 12 plastic classes. The classification
was carried out using the algorithms discriminant analysis, k nearest neighbour classification, support
vector machines, classification ensembles with decision trees, and convolutional neural networks. It
was also attempted to find optimal model parameters, which can significantly increase the overall
classification accuracy of the models. These parameters were determined by an automatic hyper
parameter optimization by random search.

The experiments with the total data set of all plastics showed that the best results could be
achieved using CNNs, kNN, and ENSEMBLE algorithms. The highest overall classification accuracy
was 93.5% for the CNNs. Hyperparameter optimization led to a statistically significant improvement
in overall classification accuracy for most algorithms.

When considering 41 plastic mixtures with two to three plastic per mixture, the desired overall
accuracy of at least 99.9% was achieved for 18 of the plastic mixtures. Here, the use of CNNs showed
no improvement compared to ENSEMBLE and SVM algorithms. In the future, an industry-oriented
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demonstrator for the classification of technical black plastic particles using imaging fluorescence
spectroscopy will be developed, and more data is to be recorded for the training of better models.

Overall, the method presented seems to be a promising approach for the classification of black
plastics and could contribute to an increase in the recycling of plastic waste.
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Appendix A

Table A1. Overview of the default values and the optimization ranges of the hyperparameters of
the classical machine learning models. For a description of the hyperparameters, please refer to the
literature references.

Hyperparameter Standard Value Optimization Range

for all algorithms

Savitzky-Golay smoothing no yes/no
polynomial degree for

Savitzky-Golay smoothing - 1–5

data points for Savitzky-Golay
smoothing - 3–21

normalization none none/L1/L2/Linf/SNV/min-max
No. of PCs used 10 2–20

discriminant analysis
(DA) [35]

delta 0 0–1
gamma 0 0–1

k-nearest neighbours
(kNN) [36]

number of neighbors 3 1–11
distance metric euclidean euclidean/cityblock/cosine
distance weight equal equal/invers/quadratic-invers

ensemble learning with
decision trees

(ENSEMBLE) [37]

ensemble method AdaBoost Bag / RusBoost / AdaBoost
No. of decision trees 100 10–500

learnrate 1 0.001–1
max. number of decision splits 1 1–100

min. leaf size 1 1–100

support vector
machines (SVM) [38]

kernel rbf rbf/linear
box-constraint 1 0.001–1000

kernel-scale 1 0.001–1000
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Figure A1. Schematic representation of a sample CNN. The CNN has two convolution blocks with
two convolution layers per block. The kernel size of the convolution layer is 3 × 3. The CNN uses
max-pooling with a pooling size of 2 × 2. After the last pooling layer is a dropout layer with a dropout
probability of 50%. There is one fully connected layer with 50 neurons. The reLu-Layers are not shown
in this image.
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Table A2. Overview of the optimization ranges of the hyperparameters of the CNN models. For a
description of the hyperparameters, please refer to the literature references.

Hyperparameter Standard Value Optimization Range

data augmentation [39]

reflexion no yes/no
rotation 0 0–360◦

translation 0 0–16 pixel
scaling 1 1–1.25

shearing 0 0–25%

network topologie [40]

No. of convolution blocks 4 2–4
convolution layer per block 1 1–3

No. of filters of the 1st

convolution layer 1 16 8–48

size of the convolution kernel 3 × 3 1 × 1; 3 × 3; 5 × 5; 7 × 7

pooling mode max-pooling average-pooling;
max-pooling

No. of fully connected layer 1 1–3
No. of neurons per fully

connected layer 50 25; 50; 75; 100; 150; 200

dropout possibility after last
pooling layer 2 0 0–50%

training parameter [41]
momentum 0.95 0.5–0.999

learnrate 0.01 0.001–1
L2 regularisation 0.0005 0.0001–1

1 The number of filters doubles after each convolution block. 2 There was no dropout at different places of the CNN.

Table A3. Overview of the plastic mixtures considered for the classification tests.

Abbreviation Polymers Abbreviation Polymers

M1 HDPE|PP M22 PBT|TEEE
M2 PA6|Gummi M23 PA6|TPE-HDPE
M3 PA6|PBT M24 PA6|TPE-PBT
M4 PA6|POM M25 PA6|TPE-PP
M5 PA6|PPS M26 PA6|TPU-POM
M6 PA6|TPE M27 PA6|TPU-TPE-TEEE
M7 PA6|TPU M28 PA66|TPE-HDPE
M8 PA6|PA66 M29 PA66|TPE-PBT
M9 PA6|TEEE M30 PA66|TPE-PP
M10 PA66|Gummi M31 PA66|TPU-POM
M11 PA66|PBT M32 PA66|TPU-TPE-TEEE
M12 PA66|POM M33 PBT|TPU-TPE-TEEE
M13 PA66|PPS M34 PA6|TPE|HDPE
M14 PA66|TPE M35 PA6|TPE|PBT
M15 PA66|TPU M36 PA6|TPE|PP
M16 PA66|PA66V0 M37 PA6|TPU|POM
M17 PA66|TEEE M38 PA66|TPE|HDPE
M18 PBT|Gummi M39 PA66|TPE|PBT
M19 PBT|PP M40 PA66|TPE|PP
M20 PBT|TPE M41 PA66|TPU|POM
M21 PBT|TPU
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