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Abstract: The use of recycled aggregate in new concrete has often been limited due to concerns over
their quality and structural performance. This research aims to investigate the physical properties
of recycled roof tile aggregate and its suitability for concrete production. Physical properties of
recycled roof tile aggregate are compared to normal crushed stone aggregate. Effects of recycled roof
tile aggregates on strength and durability of recycled roof tile concrete was compared with normal
aggregate concrete using mechanical properties and durability tests. The experimental results showed
that high water absorption and low strength of aggregate have a great effect on the workability and
strength of the concrete containing recycled roof tile aggregate. Aggregate density, water absorption,
crushing value and abrasion value of the recycled roof tile aggregate were found to be lower than
crushed stone aggregate and concrete containing recycled roof tile aggregate had low strength and
slow strength development. Similar durability performance of recycled roof tile aggregate concrete
and normal aggregate concrete was observed except when exposed to freezing and thawing.

Keywords: recycled roof tile aggregate; recycled roof tile aggregate concrete; concrete durability;
mechanical properties

1. Introduction

The use of concrete in different civil engineering applications has placed a high demand on
constituent materials. Tremendous degradation of natural areas has been occurring over the years
due to a large expansion of the construction industry and the continuous use of natural resources [1].
The advancement in the construction industry introduces several concerns regarding the availability of
natural aggregate resources, as they are being rapidly depleted. High annual aggregate production has
a significant impact on the environment [2]. In published papers, one of the objectives of the new waste
reuse and recycling policies in the construction and industrial sectors is to use recycled aggregates as a
substitute for conventional natural aggregates, with the aim of reducing both use of natural resources
and environmental impact caused by dumping [3]. These waste materials can solve problems like lack
of aggregates in construction sites and environmental problems [4]. This paper provides additional
knowledge of material properties of recycled roof tile aggregate, strength and durability performance
of concrete containing recycled roof tile as coarse aggregate. Suitability of recycled waste materials, like
roof tile in concrete production, would go a long way in addressing the high dependency on natural
mineral aggregate, aggregate depletion issue, and environmental problem.

In published papers, usage of demolished roof tile as an aggregate of concrete has recently been
proposed. The use of waste clay tiles as a partial replacement of aggregate in concrete is one of the
alternatives to the virgin aggregate [5]. It is reported that shrinkage of concrete is decreased by using
recycled roof tile aggregate due to the effect of internal curing by the moisture supply of aggregate
particles to the surrounding cement paste [6]. Although the strength of recycled roof tile aggregate
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particles is usually lower than the normal crushed stone aggregate, compressive strength of concrete
with roof tile aggregate is often similar to or larger than the normal crushed stone aggregate [7,8].
Additional study on the properties of concrete containing recycled roof tile aggregate is still needed to
utilize it more effectively. In this study, properties of recycled roof tile aggregate and its suitability for
concrete production is investigated. Physical properties of recycled roof tile aggregate are compared to
normal crushed stone. Similarly, mechanical properties and durability of concrete containing recycled
roof tile aggregate are compared to normal aggregate concrete in order to evaluate the effect of recycled
roof tile aggregate on strength and durability of concrete.

2. Materials and Methods

2.1. Materials Used

Ordinary Portland cement conforming to Japanese Industrial Standards (JIS) R 5210 [9] from the
same source was used throughout the experiment. River sand (S) and fine recycled roof tile (RTS)
were used as fine aggregate while crushed sandstone (G) and coarse recycled roof tile (RTG) were
used as coarse aggregate for the different mix proportions of concrete. In addition, air entraining
agent (AE), air entraining and water reducing agent (AEWR) and superplasticizer (SP) were used
as chemical admixtures in accordance with JIS A 6204 [10]. Both coarse and fine recycled roof tile
aggregate samples were subjected to sieve analysis in accordance with JIS A 1102 [11] to obtain the
gradation curve and fineness modulus. Tests of specific gravity, water absorption, aggregate crushing
value and abrasion resistance of recycled roof tile aggregate were determined and compared to normal
crushed stone aggregate.

Demolished roof tile (shown in Figure 1) made up of clay or cement, which was then crushed
(shown in Figure 2) and sieved into coarse and fine recycled roof tile aggregate (shown in Figures 3
and 4) by the supplier. The recycled roof tile aggregate sample used in this study contains clay roof
tile (50%), cement roof tile (43%) and others (7%). For the preliminary investigation, the physical and
mechanical properties of both fine and coarse recycled roof tile aggregate were determined, which
provides opportunity to identify the main differences between recycled roof tile aggregate and normal
crushed stone aggregate.
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2.2. Mix Proportion of Concrete

Following a successful trial mixing, three mix proportions G+S, RTG+S, and RTS+G were
designed. During the first set, water-cement ratio (w/c) was kept constant (50%) in order to determine
the properties of concretes RTG+S and G+RTS while in the second set it was varied to 30, 45 and
55% for the determination of strength and durability of RTG+S concrete. Concrete G+S serves as
control mix since it is composed of only normal aggregates. Concrete containing fine recycled roof tile
aggregate (G+RTS) and coarse recycled roof tile aggregate concrete (RTG+S) were used to evaluate
the effect of recycled roof tile aggregate on the strength and durability of concrete. Table 1 shows
mixed proportions of concrete with different materials. AEWR was used in concrete with w/c of 45%,
50%, and 55%, while SP was used in concrete with w/c of 30% to obtain desirable workability at low
water cement ratio. Moreover, the sand-coarse aggregate ratio (s/a), which is the ratio of fine to coarse
aggregate by volume, was varied for different concrete mixes, as shown in Table 1. Specifically, the
value of s/a was taken to be smaller for the concrete mixture with lower water cement (w/c = 30%) and
the concrete mixture containing fine aggregate with a lot of finer particles (G+RTS) in order to obtain
better workability for casting and compaction.

Table 1. Material mix proportions of concrete.

Mix
w/c
(%)

s/a
(%)

Air
Content

(%)

Slump
(Slump

Flow) (cm)

Unit Content (kg/m3) Unit Content (mL/m3)

W C S G SP AEWR AE

G+S
50

47 5.7 16.0 175 350 815 936 - 3500 3.5

G+RTS 36 5.5 12.0 190 380 522 1086 - 3800 38.0

RTG+S 47 6.5 20.0 180 360 805 795 - 3600 3.6

RTG+S

30 43 1.1 (71.0 × 68.0) 170 567 675 784 8400 - 3.8

45 46 5.4 21.0 180 400 773 794 - 4000 1.6

55 48 5.4 20.0 180 327 835 793 - 3600 3.6

w/c: water cement ratio; s/a: sand aggregate ratio; SP: superplasticizer.
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2.3. Test Methods

Preliminary investigation of aggregate properties like the gradation, density, water absorption,
and strength was conducted on aggregates and the results are shown in Section 3.1. Trial mixes were
used to approximate mix designs for the desired concrete fresh properties. Actual mix proportions that
meet desired properties were cast.

For compressive strength test, modulus of elasticity and splitting tensile strength, cylindrical
specimens of diameter 100 mm and depth 200 mm were prepared, cured at 20 ◦C and test measurements
done at 7, 28 and 91 days. For drying shrinkage, beam specimens (100 × 100 × 400 mm) were cast,
cured at 20 ◦C and kept in the temperature controlled room at 20 ◦C and 60% Relative Humidity (R.H).
Two specimens per mix proportion were used for the measurement of length change for a period of six
months with measurements taken at ages 0, 3, 7, 14, 28, 56, 91 and 182 days.

For chloride penetration test, sodium chloride (NaCl) solution with a concentration of 10%
was prepared and used in accordance with Japan Society of Civil Engineer (JSCE)-G 572-2007 [12].
Cylindrical specimens (Ø100 × 200 mm) were cured in water for 28 days and then dried for 7 days
in a temperature controlled room. During the first day of drying, the specimen length was reduced
by cutting off approximately 25 mm from both end faces. Epoxy coating was then applied on the
specimens with the end faces exposed. Specimens were then immersed in sodium chloride (NaCl)
solution. After 91 and 182 days under NaCl solution, specimens were split and surfaces sprayed
with solutions of silver nitrite and Uranine with 1% concentration. The penetration depth was then
measured at 10 points on each end face of every split side and the average was taken as the penetration
depth. For acid attack test and sulfate attack test, Japan Standard Test on Materials (JSTM) Building C
7401 [13] was used. Specimens (100 × 100 × 400 mm) were immersed in 2% hydrochloric acid (HCl)
solution and 10% Sodium sulfate (Na2SO4) solution for acid attack and sulfate attack, respectively,
for a period of 182 days. Change in weight and dynamic modulus of elasticity of specimens was
used to evaluate the resistance of concrete. Freezing and thawing test was done in accordance with
JIS A 1148:2010 [14]. The specimens (100 × 100 × 400 mm) were cured underwater for 28 days, and
thereafter transferred to the freezing and thawing chamber for actual test. Freezing and thawing
test was performed for 300 cycles with each cycle changing from 5 ◦C to −18 ◦C. Change in weight
and dynamic modulus of elasticity of specimens was used to evaluate the frost resistance of concrete.
For carbonation test, water cured specimens (100 × 100 × 400mm) were kept in a temperature controlled
room for 4 weeks. Between seven and eight weeks of age, the opposite top & bottom surfaces along the
400 mm length, and both end surfaces were coated with epoxy resin. The test was conducted under
recommended conditions for accelerating neutralization (20 ± 2 ◦C, 60 ± 5% R.H and carbon dioxide
concentration 5 ± 0.2%). Specimens were put in the chamber with the uncoated side surfaces in a
vertical direction and spacing of 20 mm between the specimens. At about a fifth of the specimen, it
was split across, cleaned with a fine brush and phenolphthalein sprayed on the specimen cross-section.
Phenolphthalein solution is made up of phenolphthalein powder, ethanol and water. Penetration
depth at five points was measured when the promotion period reached 1, 4, 8, 13, and 26 weeks after
the start of the accelerated test.

3. Results

3.1. Properties of Aggregate

Aggregate properties together with the water/cementitious ratio have a direct influence on fresh
and hardened concrete properties as they govern the strength, workability, and durability. Recycled
roof tile aggregate has higher water absorption, crushing values and abrasion values than the normal
aggregate but exhibits lower specific gravity and bulk density, as shown in Table 2. Aggregates with
such characteristic are generally referred to as low-quality aggregates due to the inferiority of such
properties to normal concrete aggregate. Particle size distribution of aggregate is indeed an important
parameter in determining paste requirement for workable concrete. Figures 5 and 6 shows the grading
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of aggregate used in the experiments with upper and lower limits specified by Japan Society of Civil
Engineers. Grading of fine aggregate illustrates that fine recycled roof tile aggregate contains more
than 20% of particles finer than 0.15 mm as shown by the gradation curve. Gradation curve of the
coarse recycled roof tile aggregate shows better distribution.

Table 2. Physical and mechanical properties of aggregates and standards for test methods.

Aggregate
Type Sample

Specific
Gravity
(g/cm3)

Water
Absorption

(%)

Bulk
Density
(kg/m3)

Fineness
Modulus

Abrasion
Value (%)

Crushing
Value (%)

Fine
aggregate

River sand (S) 2.59 2.55 1735 2.82 N/A N/A

Roof tile (RTS) 2.29 9.85 1340 2.55 N/A N/A

Coarse
aggregate

Crushed stone
(G) 2.64 0.76 1615 - 11.1 9.7

Roof tile
(RTG) 2.25 9.94 1300 - 33.5 28.4

Test methods JIS A 1110 [15] JIS A 1104
[16]

JIS A 1102
[11]

JIS A 1121
[17] BS 812 [18]
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3.2. Fresh Properties

The standard test for fresh properties of concrete was carried out to verify workability, which was
recorded immediately after every mix as per universal recommendation. Slump value, air content
and temperature of both normal aggregate concrete and recycled roof tile aggregate concrete were
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recorded. Although both recycled roof tile and normal aggregates were used in a surface saturated dry
condition, the workability of concrete containing fine recycled roof tile (G+RTS) showed lower slump
value, while concrete with coarse recycled roof tile (RTG+S) has higher slump value than the control
mix. The slump value of G+RTS concrete has decreased by about 27%, while RTG+S concrete increased
by 14% with respect to the control mix. Interestingly, G+RTS concrete decreased in slump despite 12%
higher in water content, while RTG+S concrete used 6% higher water content as compared to G+S
concrete. For RTG+S concrete with a w/c ratio of 30%, slump flow (71.0X68.0 mm) was measured due
to high workability, which is the diameter of concrete after subsidence.

As per setting time, the results show longest elapsed time from initial to final setting of concrete
containing fine recycled roof tile, as shown in Figure 7. Apparently, there is little difference in initial
setting time but a marginal difference in the final setting time, especially between the control mix
and RTG+S. Nonetheless, a big margin was observed in the final setting time, especially between the
control mix and G+RTS concrete.
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3.3. Hardened Properties of Concrete

3.3.1. Mechanical Properties

Figure 8 shows the relationship between compressive strength of concrete samples with
cement-water ration (c/w) whereas Figure 9 shows strength development of the different concretes
with age. Fitting lines and their corresponding equations at 7 & 28 days compressive strength are
generated for the determination of water cement ratio (w/c) of RTG+S concrete and control mix at the
same compressive strength. According to generated equations for 28 days compressive strength, for
40 N/mm2 and 80 N/mm2, w/c of RTG+S concrete decreased by 4% and 9%, respectively, compared to
normal concrete. This implies that cement content would increase if recycled roof tile aggregate is
used for high strength concrete as compared to normal aggregate concrete. As for normal strength
concrete, difference in w/c is small and this meant that the disadvantage is minor.

Figure 10 shows the splitting tensile strength of concrete containing coarse recycled roof tile
aggregate with w/c 30, 45 & 50%. The relationship between compressive and tensile strength of concrete
with coarse recycled roof tile aggregate and normal aggregate concrete is shown in Figure 11. Predicted
values obtained from Equation (1), which is suggested by “Guidelines for Control of Cracking of Mass
Concrete” [19] published by Japan Concrete Institute (JCI), are also shown in Figure 11. Observed
results are similar to tensile strength calculated from JCI prediction values and as a result, the JCI model
equation can be applied to predict tensile strength of RTG+S concrete. Results for modulus of elasticity
of the three types of concrete are shown in Figure 12, while Figure 13 shows the relationship between
compressive strength and modulus of elasticity of concretes G+S and RTG+S. Predicted values for
modulus of elasticity based on compressive strength were obtained using Equation (2), proposed by
JCI Guidelines [19]. Modulus of elasticity of RTG+S concrete is lower than the predicted values by JCI
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model. This implies that JCI model equation is not appropriate to be used in predicting modulus of
elasticity for RTG+S concrete. Therefore, 60% of the values predicted by Equation (2) for modulus of
elasticity for RTG+S concrete were used.

ft (t) = 0.13 × fc’(t)0.85 (1)

Ec (t) = 6300 × fc’(t)0.45 (2)

Where,

Ec (t): Modulus of elasticity of concrete at age t (N/mm2);
ft (t): Splitting tensile strength of concrete at age t (N/mm2);
fc’(t): Compressive strength of concrete at age t (N/mm2);
t: age of concrete (days).

Figure 14 illustrates that G+RTS concrete showed fastest and highest shrinkage, whereas RTG+S
concrete demonstrated the slowest shrinkage during first two months. Maximum shrinkage for mix
containing fine recycled roof tile exceeded the limit value of 800 × 10−6 micro-strain during the six
month period.
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3.3.2. Durability

Test results for carbonation of RTG+S concrete were almost similar to G+S concrete, as shown
in Figure 15. In view of the foregoing, chloride penetration depths for RTG+S and G+S concretes
were also similar, as illustrated in Figure 16. Since the penetration depth is highly dependent on
porosity of concrete matrix, obtained results for both carbonation and chloride penetration might
seem different from expected results due to high absorption rate of recycled roof tile aggregate.
Study shows poor performance of RTG+S concrete against freezing and thawing, with drastic change
in the dynamic modulus of elasticity and subsequent failure after 150 cycles. It can be observed
that the relative dynamic modulus of elasticity of RTG+S concrete significantly decreased after only
30 cycles. The values at 30 and more cycles are in the range of 20% and 40%, and they are much lower
than 60%, which is regarded as the general target for concrete with freezing and thawing durability.
The fluctuation in the observed data can be seen in RTG+S concrete, as shown in Figure 17. This is
because the precise measurements of dynamic modulus of elasticity are often difficult on concrete
specimens severely damaged by freezing and thawing cycles. Figure 18 shows changes in the dynamic
modulus of elasticity of concretes RTG+S and G+S exposed to both HCl and Na2SO4. Similarly,
Figure 19 shows change in mass of concrete exposed to both HCl and Na2SO4 solutions. Results
showed greater loss in both dynamic modulus of elasticity and mass of concrete when exposed to
hydrochloric acid than a sodium sulfate solution with fast drop experienced during the first month.
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Overall, obtained results depict minor effect of coarse recycled roof tile aggregate against hydrochloric
acid attack and sodium sulfate attack, since the change in the dynamic modulus of elasticity and mass
for both G+S concrete and RTG+S concrete are similar throughout.
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4. Discussions

Physical and mechanical properties of aggregates play an important role in the overall strength
and performance of concrete, both in the fresh and hardened state. Experimental results indicate that
recycled roof tile aggregate had a higher porosity, water absorption and contaminant content, lower
density, lower crushing value, and lower abrasion resistance than natural aggregate. Such data justify
that the recycled roof tile aggregate used in this study was inferior to normal crushed stone aggregate
and as a result yielded concrete with lower density.

G+RTS concrete used relatively higher water content and higher dosage of AE. This is because
RTS includes a very large amount of fine particles, which absorb AE agent on their surfaces [20].
Compressive strength of concrete at ages 7, 28 and 91 days were measured for evaluation of strength
development during the first three months after casting. Observed compressive strength of recycled
roof tile aggregate concrete was lower than normal aggregate concrete, especially at low water cement
ratio. It was reported by Midorikawa et. al. [21] that compressive strength with w/c of 0.5 containing
clay roof tile coarse aggregate (absorption: 9.6%) was higher than normal aggregate concrete and that
this was due to good bonding between cement paste and aggregate particles with rough surfaces.
However, similar trend could not be found in this study. This may be because the samples of recycled
roof tile aggregate used in this study were different in properties of strength and texture. Moreover,
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experimental results showed that concrete containing coarse recycled roof tile aggregate (RTG+S) had
low strength as compared to concrete with fine recycled roof tile aggregate (G+RTS). These results
indicate that coarse recycled roof tile aggregate had a larger influence on strength of concrete when
100% of coarse or fine aggregate was replaced by recycled roof tile aggregate.

Test data indicate lower modulus of elasticity of concrete containing recycled roof tile aggregate
than the normal aggregate concrete mix. Studies by Bui et al. [6] indicates that the partial replacement of
normal coarse aggregate by recycled roof tile aggregate at a 40% replacement ratio by volume decreases
modulus of elasticity of concrete by 4.9–12.8%. This trend was also reported in a published paper by
Tobita et al. [7], which demonstrated that modulus of elasticity of clay roof tile aggregate concrete was
significantly lower than that of normal aggregate concrete. Predicted relationships with compressive
strength of modulus of elasticity Ec (t) and splitting tensile strength fc’(t) were obtained using the JCI
2016 guidelines, as previously described in Section 3.3.1. The graphs show that JCI model Equation (1)
can be used to predict the splitting tensile strength of concrete RTG+S but Equation (2) is not suitable
for prediction of modulus of elasticity of the same concrete type. As a result, the authors have proposed
use of “0.6” of JCI model equation to predict modulus of elasticity for concrete containing coarse
recycled roof tile. This reduction coefficient, “0.6” is about the same as that for modulus of elasticity of
light-weight aggregate concrete proposed by Japanese specification for structural design of concrete
structures [22].

The permeability of concrete is associated with the pore structure of paste matrix and aggregate,
which means that the rate of ingress of substances such as sodium, chloride, carbon dioxide, etc., into
concrete is highly dependent on the pore structure of the concrete. Concrete RTG+S showed similar
or better performance against chloride ingress and carbonation as compared to G+S concrete, which
implies that such concrete could be a good option in carbonated or chloride aggressive environments
such as coastal and marine structures. These experimental results showed that high porosity of
recycled roof tile aggregate does not cause high rates of ingress of substances. It was reported in
published papers that the use of roof tile aggregate improved resistance to carbonation and chloride
ion penetration of concrete. It was also reported by Muragishi et al. [23] that the moisture in roof tile
aggregate particles might have the effect of internal curing, which densify the microstructure of cement
hydration. It can be seen that the experimental results of carbonation and chloride ion penetration
shown in this study also support the idea of internal curing by roof tile aggregate.

By visual observation of samples during the study, deterioration of specimens was more when
exposured to the hydrochloric acid (HCl) solution than sodium sulfate (Na2SO4) solution. Research has
it that by visual verification of samples after 6 months, deterioration of the specimen was more when
exposured to the acidic solution than sulfate solution [24]. For freezing and thawing resistance, test
results of dynamic modulus of elasticity showed a drastic change for concrete RTG+S and subsequent
failure just after 150 cycles. The overall data indicate that recycled roof tile aggregate concrete has poor
durability against freezing and thawing. These findings agree with experimental results in a published
paper by Kasai et al. [25], in which pour frost resistance was observed in concrete with clay roof tile
coarse aggregate with absorption of 7.86%. Henceforth, it is suggested that recycled roof tile aggregate
is not suitable for concrete structures in severe freeze-thaw exposure conditions. Overall, the obtained
data showed the interesting durability performance of recycled roof tile aggregate in concrete, but the
additional study will be helpful to counter check the findings of this study.

5. Conclusions

The results obtained allow the following conclusions to be drawn:

� Results of water absorption, specific gravity, crushing value and abrasion value show that recycled
roof tile has inferior physical properties than normal crushed stone aggregate.

� The compressive strength, splitting tensile strength, drying shrinkage and modulus of elasticity
of concrete containing recycled roof tile aggregate becomes a concern when it is used for
high strength.
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� The JCI model equation is not recommended for prediction of modulus of elasticity for concrete
containing recycled roof tile aggregate. A modified equation of the JCI can be used to predict
modulus of elasticity for concrete containing recycled roof tile and this equation was used in
this study.

� Test data shows poor performance of concrete containing recycled roof tile against freezing
and thawing as compared to normal aggregate concrete. No adverse effect of recycled roof tile
aggregate against carbonation, acid attack, and chloride penetration.
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