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Abstract

The agro-industry is among the largest methane emitters, posing a critical challenge for
sustainability. In rural areas, producers lack effective technologies to manage daily organic
waste. Anaerobic digestion (AD) offers a circular pathway by converting waste into
biogas and biofertilizers; however, its adoption is limited by inappropriate designs and
insufficient operational control. Theoretical-applied research addresses these barriers by
improving the design and operation of small-scale biodigesters, elevating pH and Electrical
Conductivity (EC) from passive indicators to first-order control variables. Based on the
design of a compact biodigester previously validated in the Chillón Valley and replicated
in Huaycán under a utility model patent process (INDECOPI, Exp. 001087-2025/DIN), a
stoichiometric NaHCO3 strategy with joint pH–EC monitoring was formalized, defining
operational windows (pH 6.92–6.97; EC 6200–6300 µS/cm and dose–response curves
(0.3–0.4 kg/day for 3–4 day) to buffer VFA shocks and preserve methanogenic ionic strength.
The system achieved stable productions of 370–462 L/day, surpassing the theoretical
potential of 352.88 L/day calculated by Buswell’s equation. A multivariable predictive
model (linear, quadratic, interaction terms pH × EC, temperature, and loading rate) was
developed and validated with field data: R2 = 0.78; MAPE = 2.7%; MAE = 11.2 L/day;
RMSE = 13.8 L/day; r = 0.89; residuals normally distributed (Shapiro–Wilk p = 0.79). The
proposed approach enables daily decision-making in low-instrumentation environments
and provides a replicable and scalable pathway for the safe valorization of organic waste in
rural areas. The design consolidates the shift from reactive to proactive and co-optimized
pH–EC control, laying the foundation not only for standardized protocols and training in
rural systems but also for improved environmental sustainability.

Keywords: anaerobic digestion; compact biodigester; pH and electrical conductivity (EC);
multivariable predictive model; rural sustainability

1. Introduction
The acceleration of population growth and urbanization has led to a substantial

increase in organic waste generation globally, particularly from agricultural and animal
production systems. Projections suggest this trend will continue to 2050, exacerbating
Greenhouse Gas (GHG) emissions and adversely affecting soil and water resources [1,2].
The production of biogas from agro-industrial waste has been widely explored as an
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energy and environmental solution in the context of the circular economy [3]. Agro-
industrial waste consists of organic materials and by-products generated in agricultural
production and processing, including both animal manure and lignocellulosic biomass,
among others. Biogas projects can generally be associated with multiple substrate sources,
such as liquid and solid waste from agribusiness, wastewater treatment plants that include
anaerobic digestion in their system, directly from energy crops in agriculture, or from the
capture of biogas produced in landfills [4]. Current practices in managing animal and
agricultural waste often rely on inadequate disposal methods, which contribute significantly
to methane emissions and environmental pollution. The transition towards sustainable
waste management technologies, such as AD and composting, faces challenges related to
required investments and technical development [5,6].

AD has matured in industrialized countries for valorizing organic waste at pilot and
industrial scales. However, in developing countries, its adoption is still in early stages
due to technological and infrastructural limitations, despite the large quantities of organic
waste and energy demands that justify its expansion as a strategy for the circular economy
and energy security [7,8]. In parallel, pre-treatments and co-digestion (AcoD) have been
proposed to enhance biodegradability and biogas yield; at full scale, AcoD is used to
stabilize digestate and mitigate inhibitions caused by volatile fatty acids (VFAs), improving
the C/N balance and availability of micronutrients [9,10]. Nevertheless, operational gaps
continue to explain instabilities, especially in small and rural plants [11].

AD stability is highly sensitive to operational and biochemical variables: pH, alkalinity,
VFA, organic loading rate (OLR), hydraulic retention time (HRT), temperature, and C/N
ratio. Poor control of these parameters leads to acidification episodes, loss of methano-
genesis, and system shutdowns [12,13]. In cold climates or with inadequate insulation,
thermal gradients and temperature variations exceeding 2–3 ◦C/h impair reaction kinetics
and trigger system failures, demanding tailored design and operational solutions for rural
environments [14,15].

Despite numerous reviews and guidelines, the dominant literature prioritizes temper-
ature, pH, HRT, OLR, C/N, and VFA/TA (FOS/TAC) but rarely integrates EC as a control
variable in full-scale plants, even though EC reflects the ionic strength and buffering capac-
ity of the medium—parameters closely linked to resilience against acid accumulation and
feed shocks [16,17]. Recent studies emphasize that EC plays a significant role in digestion
and process stability, yet it is often overlooked or poorly monitored in practice [18,19].
This gap is particularly critical in domestic and rural biogas plants, where routine monitor-
ing is limited to pH and temperature, and operation relies on manual mixing and scarce
resources [20,21].

In previous studies, EC has often been omitted or treated as a secondary variable for
several reasons. Primarily, the dominant literature has focused on well-established param-
eters such as pH, temperature, HRT, and OLR, which have historically been considered
the main determinants of process stability and biogas production efficiency. EC, which
reflects the ionic strength and buffering capacity of the medium, has received less attention
because its mechanistic interpretation and control are more complex, especially in rural or
small-scale systems where instrumentation for real-time measurement is limited.

Furthermore, the absence of replicable operating protocols that integrate active EC
measurement and clear thresholds or operating windows has relegated EC to the role of
a passive indicator rather than an active control variable. In fact, although EC is directly
related to microbial resilience to acid accumulation and changes in organic load, its dynamic
monitoring has not been sufficiently incorporated into conventional operational practices,
especially in rural contexts where manual and low-tech methods predominate.
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This research addresses this gap by uniquely integrating EC as a first-order control
variable, together with pH. An operational framework based on dual pH–EC monitoring
is formalized, defining specific operational windows (pH 6.92–6.97; EC 6200–6300 µS/cm)
and dose–response curves for the stoichiometric dosing of NaHCO3. This strategy allows
for the buffering of volatile fatty acid shocks and preserves the methanogenic ionic strength
necessary for the stability and productivity of the biodigester. Moreover, a multivariable
predictive model is developed and validated that incorporates linear, quadratic, and inter-
action terms among EC, pH, temperature, and loading rate, achieving a high predictive
capacity under limited technical resource field experimental conditions.

This proactive and co-optimized control paradigm surpasses the traditional reactive
approach focused solely on pH, establishing EC as a crucial axis to maintain microbial
homeostasis and buffering capacity, which are essential for resilience against variations
in substrate composition and loading. Thus, the study not only presents a significant
methodological advancement by incorporating EC as a controllable variable in rural and
small-scale anaerobic digestion systems but also delivers replicable protocols and predictive
tools that facilitate safer, more robust, and sustainable management of organic waste
valorization in these contexts.

pH remains the “sentinel” parameter of methanogenesis (an optimal range of around
6.8–7.2), but keeping it stable requires preserving the buffering capacity (alkalinity) against
VFA pulses. The technical literature recommends bicarbonate dosing as a corrective or pre-
ventive measure against acidification, supported by clear stoichiometric principles [22,23].
However, without measuring EC—an indicator of the ionic environment and the availabil-
ity of HCO3/CO2—pH adjustments may be reactive and insufficiently robust against load
and compositional variations, especially when co-substrates rich in potentially inhibitory
compounds (proteins, lipids, phenolics, and monoterpenes) are used [24,25]. The most
cited operational reviews describe control frameworks based on pH–VFA–TA and tem-
perature–HRT–OLR–C/N, but they do not establish thresholds or monitoring routines for
EC linked to alkalinity management, nor do they propose co-optimization protocols for
pH–EC to stabilize the digester’s ionic regime [26,27].

Experimental evidence confirms that instability caused by the accumulation of VFAs
and spikes in OLR leads to drops in CH4 production if system buffering variables are not
properly controlled, particularly in co-digestion processes [28,29]. In developing countries,
where AD could divert large organic waste flows from open dumping and generate dis-
tributed energy, reported plants are typically single-stage, mesophilic, and operating in
monodigestion. Moreover, the number of plants described in scientific papers is lower
than the number of installed systems, making it difficult to learn from real operational data
and standardize best practices [30,31]. Economic barriers (capital and operational costs
and equipment imports) and technical challenges (pre-treatment, source segregation, and
variable control) also persist, slowing large-scale adoption [32,33].

The methodological gap is not only technological; the most widespread kinetic/predictive
models (e.g., growth fittings and empirical models) are trained as being decoupled from on-
line control routines and rarely include coupled operational variables (pH–EC–temperature
–VS–OLR) with interaction terms, which limits their capacity to predict and manage the
plant under real conditions. The research carried out in [14] in the Chillón Valley provided
the scientific basis and a reproducible design-operation framework for rural biodigesters
with structural improvements (inlet/outlet geometry, burial: 1.1 m, free volume: 30%,
and passive insulation) and operational improvements (semi-continuous regime, induced
agitation, management of HRT/OLR, and recirculation) that stabilize operation. In that
study, the pH and EC variables were addressed as simple controls, with punctual and reac-
tive actions under an essentially decoupled governance. Based on that experience, it was
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identified in Huaycán that such an approach is insufficient; pH and EC behave as coupled
and dominant state variables in the process’s stability and productivity. Consequently, this
research proposes a paradigm shift: moving from reactive monitoring to a proactive and
co-optimized governance of pH–EC as the axes of operational control. It is worth noting
that the biodigester design in question and its replica in Huaycán are also in the process
of being patented as a utility model before INDECOPI (Exp. 001087-2025/DIN), which
supports its transferability and standardization potential.

Therefore, the community lacks replicable operational protocols that integrate EC
measurement, active alkalinity management, and predictive modeling validated in the
field for small, rural plants. This work addresses that gap by proposing, for Huaycán, an
operation architecture based on dual pH–EC control and its integration into a predictive
model that incorporates linear, quadratic, and interaction terms among design and opera-
tion variables, with experimental validation under rural conditions and limited resources.
In particular, the operationality of stoichiometric alkalinization with NaHCO3 under joint
pH–EC control: transforming acid–base/ionic balances into implementable control rules
(target windows, dose–response curves, and limits to avoid osmotic stress).

This article presents several contributions, such as the following:

• Raising EC and pH to first-order control variables with clear thresholds.
• Validating a traceable multivariable predictive model for daily operational decision-

making under field conditions.
• Delivering a replicable and scalable protocol for rural biodigesters aimed at the safe

and sustainable valorization of organic wastes.

2. Materials and Methods
Establo Villa Asís (Avenida Andrés A. Cáceres, parcel 5; 17 km of Carretera Cen-

tral, Huaycán, Ate, Lima) (Figure 1) is a productive and educational facility featuring
milk milking, artisanal processing (cheese, yogurt, manjar, and ice cream), and guinea
pig breeding modules. Additionally, it operates as a site for guided tours for schools
and the general public, promoting circular economy and sustainability through the val-
orization of waste into energy and biofertilizers. The facility integrates dairy production
and guinea pig modules, generating two main organic waste streams. Based on oper-
ational measurements and conservative estimates, the daily availability of waste (wet
basis) is approximately 120–200 kg/d from guinea pigs—with a population 1500: 900 large
(1.0–1.2 kg), 400 medium (0.5–0.7 kg), and 200 small (0–0.3 kg)—and 48 bovine heads:
11 lactating cows, 10 pregnant, 10 heifers, 10 young cows, 6 young bulls, and 1 breeding
bull, producing around 1540–2050 kg/d. This quantification supports the sizing and opera-
tion of a wet anaerobic digestion system aimed at the energetic and agronomic valorization
of these residues.

Figure 1. Geographical location of the Villa Asís biogas plant, Lima district.
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2.1. Characterization of ORGANIC Matter

Table 1 summarizes the key physicochemical characteristics of the substrates used in
this study: bovine manure and guinea pig manure. These parameters include elemental
composition (carbon, hydrogen, oxygen, nitrogen, and sulfur) and solids content (total
solids and volatile solids), which are critical indicators for evaluating the biodegradability
and biogas production potential of the substrates. This elemental analysis of organic mate-
rials was carried out under the approach of Alvarez et al. (2025) [14]. Understanding these
properties is essential to optimizing the co-digestion process, as variations in elemental and
solid fractions influence microbial activity, substrate stability, and methane yield during
anaerobic digestion.

Table 1. Physicochemical characteristics of the substrates.

Parameter Units Bovine Manure Guinea Pig

C % 47.70 46.20
H % 6.63 7.12
O % 34.52 32.78
N % 2.06 2.32
S % 0.95 0.81
TS % 16.13 18.20
VS % 14.47 16.55

In the context of improving small-scale biodigester designs for rural conditions, the
characteristics of the system play a critical role in ensuring operational efficiency and
biogas production. The biodigester analyzed in the case study by Alvarez et al. (2025) [14]
features specific design parameters tailored to improve the anaerobic digestion process
under typical rural constraints. Table 2 summarizes the key design specifications of this
biodigester, including its volume, construction material, burial depth, inlet and outlet
configurations, and the manual agitation system employed. These design features are
fundamental to achieving stable mesophilic conditions, effective substrate mixing, and
sufficient free gas volume for safe and efficient biogas accumulation.

Table 2. Design characteristics of the biodigester.

Parameter Units Value

Total biodigester capacity L 1100
Working volume (effective load) L 770 (70% of capacity)
Construction material — High-Density Polyethylene (HDPE)
Burial depth m 1.10
Inlet angle ° 45
Inlet distance m 3
Outlet height cm 65
Outlet distance m 2
Free gas volume (headspace) % 30% of total volume
Agitation system — Manual, induced by feeding

2.2. Theory of Methane Potential Estimation

The Busswell equation [34], shown in Expressions (1) and (2), was used to determine
the theoretical methane yield to empirically study substrates.

The literature reflects that the Buswell equation provides a sound theoretical basis
for predicting methane production from the elemental composition of the substrate (C,
H, O, N, S) but needs to be combined with empirical data kinetic adjustments, modeling
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tools, and case-specific analysis to arrive at predictions that fit the operational reality of
commercial-scale biodigesters [35–39].
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2.3. Variables’ Measurement

The technological equipment used to monitor variables in the field was the same as
that used in the previous study of the Chillón Valley [14] (Supplementary Materials). The
Orion Star A211 pH Benchtop Meter (Thermo Scientific, Waltham, MA, USA) was used to
measure the pH and temperature inside the biodigester. Temperature measurements were
also obtained using an RTD (Resistance Temperature Detector, Xi’an Xinyuan Industrial
Equipment Co., Ltd., Xi’an, China), which operates by detecting changes in the electrical
resistance of materials like platinum, nickel, or copper. A commonly used RTD type,
the Pt100, measures 100 ohms at 0 °C and adheres to international calibration standards
such as IEC 60751 [40]. Additionally, biogas was measured using the JK/G1.6 m device
(Qiantang District, Hangzhou, Zhejiang, China, which consists of four compartments
separated by synthesized diaphragms. These compartments are periodically filled and
emptied, with the diaphragms being moved by a gear connected to a crankshaft. This
crankshaft actuates valves that control the gas flow. The measurement principle relies on
pressure differences created by the gas flowing through the four chambers, causing the
diaphragms to move back and forth. The volume of gas is transmitted to the meter via a
series of mechanical linkages, and consumption is displayed through a counter, enabling
accurate biogas measurement.

2.4. Theoretical Foundation: The Role of pH and NaHCO3 in Anaerobic Digestion

pH is one of the most critical factors in anaerobic digestion, as it regulates enzymatic
activity and the balance between the acidogenic and methanogenic phases. Methanogens
(Methanobacterium, Methanosarcina) are extremely sensitive to acidification: their optimal
range is between 6.8 and 7.2, while values below 6.5 drastically inhibit their methanogenic
metabolism. Sodium bicarbonate acts as a buffering system due to its reversible dissociation
into HCO−

3 and CO2 [41,42]:

NaHCO3 ↔ Na+ + HCO−
3 (3)

HCO−
3 + H+ ↔ H2CO3 ↔ CO2 + H2O (4)

This equilibrium neutralizes the protons released by the accumulation of VFAs dur-
ing acidogenesis, increasing the total alkalinity (TAC) and stabilizing the pH within the
methanogenic range.

2.5. Fitted Mathematical Model

For the development of the fitted mathematical model, an undefined logistic model (5)
was used to describe the relationship between the bicarbonate dose (NaHCO3) and the pH
in the biodigester:

pH(D) = pHmin +
pHmax − pHmin

1 + e−k(D−D50)
(5)

where
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• pHmin = 4.50 initial inhibition pH of the system).
• pHmax = 6.86 (asymptotic value reached in your data).
• k = 5.00 (response slope: sensitivity of pH to bicarbonate changes).
• D50 = 0.384 kg/day (dose to reach 50% of the maximum pH increase).

The best practices proposal for design allows us to propose a mathematical model to
predict the daily biogas production and methane content as a function of variables related
to the design and operation of the biodigester. The independent and dependent variables
of the study [14] are presented in Table 3.

Table 3. Independent and dependent variables of the study.

Variable Type Variable Description Unit

Independent

Vf Free volume for biogas storage %

Hs Outlet height of the digester m

Ain/out Inlet and outlet angle of the digester ◦

Tr Hydraulic retention time d

Ab Manual agitation Binary (0 or 1)

Cd Co-digestion proportion %

Rb Biol recirculation L/d

RMO:A Organic matter ratio kg/kg

Dependent
Pbiogas Daily biogas production L/d

QCH4 Methane content in biogas %

A multiple regression model, including linear, quadratic, and interaction terms (6),
is used:

Pbiogás = β0 +
8

∑
i=1

βiXi +
8

∑
i=1

βiiX2
i +

8

∑
i<j

βijXiXj + ε (6)

where

• β0: Model intercept.
• βi: Coefficients of linear terms.
• βii: Coefficients of quadratic terms.
• βij: Coefficients of interaction terms.
• ε: Random error term.
• Xi: Independent variables.

2.6. Extension and Validation of the Predictive Model: Integration of Operational and
Biochemical Parameters

The proposed mathematical model (7) constitutes a robust extension of the original
Valle del Chillón model, explicitly integrating construction variables (free volume, reten-
tion time, agitation, co-digestion ratio, and recirculation) together with operational and
biochemical variables (fresh volatile solids, EC, pH, temperature, and their interactions).
This formulation enables the prediction of daily biogas production under advanced
experimental and operational scenarios, maximizing the model’s fitting capacity and
predictive scope (Table 4). This model can be extended based on these and other variables
that are controlled.
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Table 4. Independent and dependent variables used in this study.

Variable Type Variable Description Unit

Independent Vf Free gas volume %
Independent Tr Hydraulic retention time days
Independent Ag Agitation (0/1) –
Independent Cd Co-digestion proportion (% bovine manure) %
Independent Rb Biofertilizer recirculation L/d
Independent VSfresh Volatile solids from fresh substrate fed kg/d
Independent Conductivity EC of digestate µS/cm
Independent pH Digestate pH –
Independent Temperature Digestate temperature ◦C

Dependent Pbiogás Daily biogas production L/d

Pbiogas (L/day) = β0 + β1Vf + β2Tr + β3 Ag + β4Cd + β5Rb

+ β6VSfresh + β7Conductivity + β8pH + β9Temperature

+ β10(Conductivity × pH) + β11(VSfresh × Temperature)

+ β12(Vf × Tr) + β13(Ag × Cd)

+ β14(Conductivity)2 + β15(pH)2 + β16(Temperature)2

+ β17(VSfresh)
2 + β18(Conductivity × Temperature)

+ β19(pH × Temperature)

(7)

2.7. Pseudo-R2 in Logistic Regression Models

In logistic regression models, such as the one used to predict QCH4 , the traditional
coefficient of determination (R2) is not directly applicable due to the nonlinear categorical
nature of the logistic function. Instead, alternative measures known as pseudo-R2 are used,
with McFadden’s pseudo-R2 being one of the most common and widely accepted [43–46].

McFadden’s pseudo-R2 is calculated as follows:

pseudo-R2 = 1 − ln Lmodel
ln Lnull

(8)

where

• ln Lmodel: natural logarithm of the likelihood of the fitted model.
• ln Lnull: natural logarithm of the likelihood of the null model (a model that includes

only the intercept).

Pseudo-values for R2 in logistic regression are typically lower than R2 values in linear
regression and are not directly comparable. A pseudo-R2 between 0.2 and 0.4 indicates a
model with good predictive capacity.

2.8. Statistical Analysis
2.8.1. Mean Absolute Error (MAE)

The mean absolute error (MAE) (9) is a commonly used metric to quantify the average
magnitude of errors between observed (real) and predicted (model) values, without consid-
ering their direction. It provides a straightforward measure of the accuracy of a predictive
model, expressed as the average absolute difference between the actual data points and the
model estimates. MAE is widely used in evaluating model performance due to its intuitive
interpretation and sensitivity to individual prediction errors.

MAE =
1
n

n

∑
i=1

|yreal,i − ymodel,i| (9)
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• yreal,i: observed value.
• ymodel,i: predicted value.
• n: number of observations.

2.8.2. Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) (10) is a widely used metric to measure the
average magnitude of the errors between observed (real) and predicted (model) values.
It provides a quadratic scoring rule that penalizes larger errors more than smaller ones,
making it sensitive to outliers. RMSE is particularly useful for assessing the accuracy of
predictive models, offering a clear numerical value that represents the standard deviation
of the prediction errors.

RMSE =

√
1
n

n

∑
i=1

(yreal,i − ymodel,i)2 (10)

2.8.3. Mean Absolute Percentage Error (MAPE)

The Mean Absolute Percentage Error (MAPE) (11) is a statistical measure used to
assess the accuracy of a predictive model by expressing the average absolute error as a
percentage of the observed values. It provides a normalized metric that facilitates the
comparison of errors across different datasets or scales. MAPE is particularly useful when
interpreting the relative size of forecast errors, making it an intuitive and widely used
criterion in model evaluation.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yreal,i − ymodel,i

yreal,i

∣∣∣∣ (11)

2.8.4. Coefficient of Determination (R2)

The coefficient of determination, denoted as R2 in Equation (12), is a commonly used
statistical measure that quantifies the proportion of the variance in the observed data
explained by the predictive model. It provides an indication of how well the model fits the
data, with values closer to 1 representing a better fit. In regression analysis, R2 serves as a
key metric to evaluate the accuracy and explanatory power of the model by comparing the
residual variance with the total variance of the observed values.

R2 = 1 − ∑n
i=1(yreal,i − ymodel,i)

2

∑n
i=1(yreal,i − ȳreal)2 (12)

2.8.5. Pearson Correlation Coefficient (r)

The Pearson Correlation Coefficient (r) (13) is a statistical measure that quantifies the
strength and direction of the linear relationship between observed (real) and predicted
(model) values. It ranges from −1 to 1, where values close to 1 indicate a strong positive
correlation, values near −1 indicate a strong negative correlation, and values around 0
suggest no linear correlation. For a clearer and more meaningful interpretation, the strength
of the correlation can be classified into categories such as very weak correlation (|r| < 0.1),
weak correlation (0.1 ≤ |r| < 0.3), moderate correlation (0.3 ≤ |r| < 0.5), strong correlation
(0.5 ≤ |r| < 0.7), very strong correlation (0.7 ≤ |r| < 0.9), and near perfect correlation
(0.9 ≤ |r| ≤ 1.0). Such classification provides better insight into the predictive accuracy
and reliability of the model than relying solely on the numeric values of −1, 0, or 1. This
coefficient is widely used to assess the predictive accuracy and consistency of models by
comparing predicted outputs with actual data.
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r =
∑n

i=1(yreal,i − ȳreal)(ymodel,i − ȳmodel)√
∑n

i=1(yreal,i − ȳreal)2 ∑n
i=1(ymodel,i − ȳmodel)2

(13)

3. Results
The experimental system presented (Table 5) was originally designed for the co-

digestion of bovine manure and guinea pig manure, aiming to maximize energy yield and
operational stability through the synergy between both substrates. However, as part of a
deliberate and scientific operational strategy, the process was initiated by first establishing
a robust microbial base through the monodigestion of bovine manure, which acted as the
main inoculum for the biodigester startup.

Table 5. Model validation data.

Date Fresh VS Conductivity pH Temp. Actual Prod. Model Prod. Abs. Error Rel. Error
(kg/d) (µS/cm) – (◦C) (L/d) (L/d) (L/d) (%)

1 July 2025 1.2075 6020 6.86 20.7 368.0 365.2 2.8 0.76
2 July 2025 0.6415 6220 6.91 22.7 374.0 389.7 −15.7 −4.20
3 July 2025 1.3585 6130 6.91 22.1 370.0 378.8 −8.8 −2.38
4 July 2025 0.6038 6360 6.95 24.0 376.0 369.3 6.7 1.78
5 July 2025 1.2830 6160 6.93 20.4 380.0 402.7 −22.7 −5.97
6 July 2025 0.6792 6230 6.97 21.3 374.0 406.8 −32.8 −8.77
7 July 2025 1.2075 6210 6.96 20.6 383.0 375.9 7.1 1.85
8 July 2025 0.6415 6050 6.93 20.6 435.0 413.5 21.5 4.94
9 July 2025 1.3585 6140 6.89 22.1 395.0 410.6 −15.6 −3.95
10 July 2025 0.6038 6120 6.93 21.8 426.0 399.2 26.8 6.29
11 July 2025 1.2830 6190 6.95 21.7 404.0 420.1 −16.1 −3.99
12 July 2025 0.6792 6120 6.94 20.0 402.0 421.2 −19.2 −4.78
13 July 2025 1.2075 6240 6.94 21.3 433.0 427.8 5.2 1.20
14 July 2025 0.6415 6240 6.95 20.9 431.0 421.9 9.1 2.11
15 July 2025 1.3585 6220 6.95 22.7 416.0 421.4 −5.4 −1.30
16 July 2025 0.6038 5940 6.91 20.7 401.0 400.6 0.4 0.10
17 July 2025 1.2830 6080 6.95 20.7 412.0 418.3 −6.3 −1.53
18 July 2025 0.6792 6160 6.95 21.7 415.0 429.4 −14.4 −3.47
19 July 2025 1.2075 6100 6.94 21.6 438.0 447.3 −9.3 −2.12
20 July 2025 0.6415 6120 6.95 21.7 462.0 455.4 6.6 1.43

The values presented in Table 6 correspond to the theoretical maximum potential
for biogas and methane production. These were estimated by applying the Buswell and
Mueller (1952) equation based on the elemental composition of each substrate, considering
the actual contribution of VS in the fresh Organic Matter (OM). It is important to highlight
that these values do not represent the expected real operational performance in anaerobic
digestion systems at laboratory or industrial scale, but rather the maximum biochemical
potential, which, depending on the system and operating regime, may achieve around
30% efficiency.

Table 6. Estimated theoretical production of methane and biogas for 1 kg of substrate, calculated
using the Buswell equation under total degradation (100%).

Type of Digestion CH4 (L/kg OM) CH4 (L/kg VS) Biogas (L/kg OM) Biogas (L/kg VS)

Monodigestion (bovine manure) 19.33 133.6 32.20 222.5
Monodigestion (guinea pig) 43.14 260.7 71.90 434.4

The results obtained show that the theoretical biogas potential per kg of OM is sub-
stantially lower than the value reported per kg of VS, due to the low fraction of VS in the
fresh OM of both substrates. This methodological approach is not only consistent with
experimental practice and the recommendations of IEA Bioenergy and the international
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literature, but also allows direct comparison with the actual production observed in the
system, which is based on the daily feeding of OM.

Based on the conversion factors determined in this research (yields per VS for cattle
and guinea pig) and biomass availability, the combined theoretical methanogenic potential
amounts to approximately 28.2–39.3 m3 CH4/day, equivalent to approximately 44–66 m3

biogas/d (assuming 50–60% CH4). Figure 2 shows the daily biogas production obtained
for different bovine manure/guinea pig substrate ratios. Although the 30:70 ratio offers
the maximum theoretical and experimental yield, the selection of the 70:30 mixture for
the biodigester operation is supported by the analysis of the C/N ratio obtained from the
actual elemental analysis of the substrates.

According to laboratory data, the C/N ratio of the 70:30 mixture is 22.1, while in
the 30:70 mixture, it decreases to 20.8. Both proportions fall within the optimal range
considered for anaerobic digestion (15–30); however, higher values within this range are
associated with greater stability and a lower risk of ammonia inhibition, which is especially
relevant when increasing the fraction of guinea pig manure richer in nitrogen.

Figure 2. Distribution of biogas production for different substrate proportions (bovine ma-
nure/guinea pig).

For this reason, the 70:30 mixture is prioritized, sacrificing a fraction of the potential
biogas yield in favor of a more robust, stable, and safe, long-term operation. This decision
aligns with literature recommendations to maintain microbiological stability and avoid
inhibition episodes in biogas plants.

Therefore, the choice is based on the balance between maximizing methanogenic poten-
tial and ensuring safe operating conditions, grounded in the real chemical characterization
of the substrates and the fundamental principles of anaerobic digestion.

3.1. Monitoring of Key Operational Variables
Temperature and pH

Figure 3 illustrates the daily simultaneous monitoring of the pH and temperature in
the biodigester during the initial operation phase (March-April), an essential approach to
understanding microbial dynamics and system stability. From the startup, a progressive
decrease in pH is observed, reaching minimum values close to 4.8, indicative of severe
acidification attributable to the accumulation of VFAs during the accelerated acidogenic
phase. Meanwhile, the system temperature fluctuates within a mesophilic range (25–32 °C),
with moderate variations but without reaching critical values for microbial activity.
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Figure 3. Simultaneous evolution of pH and temperature in the biodigester during the initial phase.

It is important to highlight that although the temperature was maintained within
an adequate operational range for anaerobic digestion, the extreme acidification of the
pH became the main limiting factor, jeopardizing methanogenic activity. This behavior
evidences that, under the rural design conditions and feeding employed, temperature alone
does not guarantee process stability if pH is not rigorously controlled.

The simultaneous monitoring of both variables allowed early identification of the need
for intervention (alkaline correction), demonstrating that success in biogas production de-
pends on a holistic management of critical parameters, and that pH control is fundamental
for the survival and optimal performance of methanogenic archaea, even under apparently
favorable thermal conditions.

Figure 4 shows the daily temporal evolution of pH and EC during the initial operation
phase (March–April) of the biodigester, where a critical early acidification phenomenon
was observed. The system experienced a progressive pH drop below 5.0, accompanied
by fluctuations in EC, indicating accumulation of VFAs and an imbalance in the system’s
buffering capacity.

Figure 4. Simultaneous evolution of pH and EC in the biodigester during the initial phase.

During the initial process stage, Figure 4 shows a sustained pH decrease below 5.0,
accompanied by low and stable EC, reflecting an accelerated acidogenesis scenario in which
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the accumulation of volatile fatty acids exceeds the buffering capacity of the system, gener-
ating a strongly inhibitory environment for methanogenesis. The strategic intervention,
indicated in the shaded area (April 5–13) through controlled addition of NaHCO3, pro-
duces an immediate effect: pH quickly rises above the critical threshold of 6.5, restoring the
optimal range for methanogenic archaea, while EC experiences a transient peak, indicative
of increased buffering capacity and ionic availability in the medium. After the intervention,
a progressive stabilization of pH around optimal values (6.8–7.2) is observed along with a
gradual decrease in EC, confirming both the effective neutralization of accumulated acids
and the functional reactivation of the methanogenic community and the restoration of
biogas production, validating the critical importance of monitoring and timely intervention
in anaerobic digestion systems.

3.2. Interpretation: Evolution of pH and Bicarbonate Dose

Proper pH control in a biodigester is essential to maintain the stability of the anaerobic
digestion process and to ensure efficient biogas production. In this context, the controlled
addition of NaHCO3 acts as a buffering agent to neutralize the acidification caused by
the accumulation of volatile fatty acids. The following interpretation details the different
phases observed in the evolution of pH and the applied bicarbonate dose during the
experimental operation, highlighting the system’s response to chemical interventions and
their impact on microbiological stability (Figure 5).

3.2.1. Initial Phase (04/05—pH ≈ 5.02)

• The system showed strong initial acidification due to rapid hydrolysis and acidogene-
sis, with an inhibitory pH (<6.0) that halted methanogenic activity.

• The initial addition of 300 g of NaHCO3 began to partially buffer the acidity, evidenced
by a progressive increase to pH 5.8 within 48 h.

Figure 5. Severe acidification and recovery intervention phase.

3.2.2. Controlled Overcorrection (04/07–04/11)

• Successive doses of 0.3 to 1.0 kg/day of NaHCO3 were added.
• This produced an exponential rise in pH, reaching the optimal range (6.9–7.0) in just

96 h, significantly faster than the standard rate reported in the literature (5–7 days
with stoichiometric dosing).
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• At this point, the bicarbonate concentration exceeded the calculated ideal dose by 41%,
which increased total alkalinity and accelerated the neutralization of VFAs (acetic,
propionic, and butyric acids).

3.2.3. Stabilization (04/12)

• The blue line (actual pH) shows a plateau trend at pH ≈ 6.95, while the red line
(actual dose) indicates that recent NaHCO3 additions were higher than the estimated
stoichiometric requirement.

• This bicarbonate overfeeding, although not producing immediate negative effects,
increased the EC (above 13,000 µS/cm in subsequent days), indicating ionic accumu-
lation and possible osmotic stress if maintained long-term.

The rapid recovery of pH to the optimal range for methanogenic activity significantly
favored the reactivation of the microbial consortium responsible for methane production,
which was subsequently reflected in a marked increase in biogas generation, exceeding
400 L/day. From an acid–base balance perspective, it is likely that the ratio of VFAs to total
alkalinity (TAC), considered a proxy for operational stability, decreased from critical values
above 0.5 to stable ranges below 0.3, correlating directly with the alkalinization induced
by the bicarbonate addition. However, excessive use of NaHCO3 may have exceeded the
required proton absorption capacity, raising alkalinity without providing additional pH
benefits. Quantitatively, the intensive bicarbonate correction was effective, achieving a
pH increase from 5.02 to 6.95 in just seven days, three days earlier than expected with a
standard correction. This rapid stabilization was accompanied by overdosing, implying an
excess of approximately 41%, since the actual cumulative dose was around 4.9 kg compared
to an estimated ideal dose of 3.4 kg. Although this excess accelerated the system’s recovery,
it generated a secondary increase in EC that should be carefully monitored to avoid possible
osmotic effects and to ensure a controlled transition to a full and stable methanogenic phase.

3.3. Biogas Production Control

This section compares the theoretical methane production estimated using the Buswell
equation, the model proposed by [14], and the experimental values obtained in monodiges-
tion and co-digestion systems. The temporal dynamics of daily methane production were
analyzed as a function of substrate composition and operating conditions, with the aim of
evaluating the degree of approximation to the estimated theoretical values. This analysis
demonstrates the effectiveness of the operational strategies applied and clarifies the influ-
ence of substrate type and critical parameter management on the actual performance of
rural-scale biodigesters.

Figure 6 shows the temporal evolution of daily methane production in the bovine
manure monodigestion system, using this substrate as the base inoculum after recovery of
the biodigester. The dashed red line corresponds to Buswell’s theoretical potential. It is
important to note that Buswell’s equation provides a specific yield (L CH4/kg VS) and not
absolute production. In order to compare it directly with the experimental data expressed
in L/day, this value was converted to absolute production by multiplying the theoretical
yield (286 L CH4/kg VS) by the average volatile solids feed (≈0.90 kg VS/day), obtaining
≈258 L CH4/day. The blue line represents the theoretical production reported in [14] of
265 L/day, while the orange curve corresponds to the experimental production measured
in the field.

The results show that, after restoring optimal pH and buffer capacity conditions, the
system reached a stable production pattern, with measured values frequently exceeding the
reference of 258 L CH4/day and reaching peaks above 400 L/day. The standardized values
presented in Table 6 are, again, expressed in CH4 (L/kg VS) and derived from normalized
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field data. This does not mean that Buswell’s theoretical potential has been exceeded, but
rather that absolute volumetric production increased as a result of the organic load applied,
which varied between 0.60 and 1.35 kg VS/day.

Figure 6. Actual biogas production compared to theoretical production (258 L CH4/day).

This outstanding behavior is attributable to the combination of strict pH control and
deliberate adjustment of EC during startup through alkaline intervention with sodium bi-
carbonate. This operational strategy quickly restored the optimal environment for methano-
genesis, accelerating the adaptation of the microbial community and favoring the efficient
conversion of organic matter into biogas, even under rural conditions with manual stirring
induced only by feeding. This comparison was made on the basis of field measurements,
rather than against the actual stoichiometric maximum. Furthermore, without direct data
on CH4 composition, it is impossible to say whether the observed increase represents a
net gain in methane or simply additional CO2. Comparison based solely on field measure-
ments, rather than against the actual stoichiometric maximum, introduces a significant
limitation in assessing the efficiency of the biogas production process. Field measurements
may be subject to inherent variability in operating conditions and inaccuracies in data
collection, which could distort the interpretation of full-scale performance.

Furthermore, the absence of direct data on CH4 composition creates significant un-
certainty regarding the nature of the observed increase. Without specific analysis of the
methane content, it is not possible to discern whether the increase corresponds to a genuine
net gain in methane production, which is the energetically valuable component of biogas,
or whether it is simply an increase in the concentration of carbon dioxide CO2, which does
not contribute energy and may be indicative of suboptimal processes or even energy losses.

These limitations highlight the need for more detailed and quantitative analyses of
biogas composition, as well as an experimental design that includes stoichiometric reference
parameters for a more accurate assessment of the process. Only with this data will it be
possible to optimize and validate predictive models with greater certainty and practical
applicability.

Figure 7 shows the evolution of the actual daily biogas production (orange line)
following the operational transition to co-digestion of bovine manure and guinea pig ma-
nure in a 70:30 ratio, compared with the estimated theoretical potential (red dashed line,
352.88 L/day) calculated according to the Buswell equation and the real physicochemi-
cal characteristics of the substrates. The blue line represents the theoretical production
determined in [14] of 265 L/day. A quantitative leap in biogas production is observed com-
pared to the monodigestion stage, with actual values consistently exceeding the theoretical
potential on most monitored days, reaching peaks above 440 L/day. This outstanding
performance confirms the metabolic synergy of co-digestion, where the substrate mixture
improves the nutritional balance and favors microbial diversity, increasing the rate of
organic matter conversion into biogas.
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It is worth noting that this result was made possible thanks to the operational strategy
of establishing a robust base inoculum (bovine manure monodigestion) before progres-
sively introducing the complementary substrate (guinea pig manure), as well as the active
management of pH and EC. Timely intervention with sodium bicarbonate and rigorous
monitoring allowed for maintaining optimal conditions for methanogenesis, minimizing
inhibition risks, and stabilizing the system, even in a rural context with limited resources
and manual stirring.

Figure 7. Actual biogas production compared to theoretical production (352.88 L CH4/day).

Figure 8 shows a saturation behavior, typical of systems with limited buffering capacity,
where the pH responds to increases in the bicarbonate dose until reaching a stable maximum
level. In this case, the optimal pH range for methanogenic activity (6.9–7.2) is achieved
with a dose close to 0.4–0.5 kg/day of bicarbonate. Although the actual additions made
were higher than this saturation dose, between 0.8 and 1.0 kg/day, this overdose allowed
for accelerated pH recovery, reaching the desired values in less time. This trend indicates
that while doses higher than necessary do not further increase the pH, they do contribute
to a faster system response to restore optimal conditions, which is beneficial for the startup
and stability of the biodigester.

Figure 8. Logistic model fit: Bicarbonate dose vs. pH in biogas digester.

3.4. System Sensitivity

The pH response to the NaHCO3 dose is a key aspect for the efficient and stable control
of the biodigester. Analyzing the system’s sensitivity

(
dpH
dD

)
(14) allows for determining

the optimal amount of bicarbonate needed to quickly restore the pH range favorable for
methanogenic activity, avoiding both prolonged acidification and unnecessary overdosing.
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Based on the obtained logistic fit, relevant scientific conclusions are drawn that validate
the applied strategy and offer recommendations for future corrections to optimize the
process from a thermodynamic and biological perspective. Near the D50 dose, the rate of
pH change reached its maximum value, which can be approximated as

dpH
dD

≈ 1.57
∆pH

kg NaHCO3
(14)

This means that in this region, every 100 g of NaHCO3 added increased the pH by approxi-
mately 0.16 units. However, above doses of 0.6–0.7 kg/day, the slope of the curve flattens,
indicating that adding more bicarbonate produces diminishing returns.

From these observations, several scientific conclusions arise. First, the logistic curve
validates the strategy applied: although a slight overdose of bicarbonate was administered,
this led to a reduction in the duration of inhibition. For future corrections, a sequential dose
of 0.3–0.4 kg/day for 3–4 days would be sufficient to reach the optimal pH range without
excess. Finally, this fit demonstrates thermodynamic and biological coherence, as the pH
behavior follows the neutralization kinetics controlled by the system’s alkalinity and the
CO2/HCO−

3 equilibrium.

3.5. Effect of pH on Biogas Production During the Inoculation and Co-Digestion Phases

Figure 9 illustrates the relationship between pH and the daily biogas production
(L/day) in two distinct operational phases: the inoculum stabilization phase using cattle
manure as the sole substrate, and the co-digestion phase, which integrates guinea pig
manure as a co-substrate.

During the initial inoculum phase, the system undergoes microbial adaptation and
colonization, using exclusively bovine manure as substrate. In this stage, biogas production
was moderate, stabilizing below 350 L/day. A notable decrease in pH was observed at
the start of the process due to the accumulation of volatile fatty acids (VFAs), a common
phenomenon in newly started anaerobic digesters. This acidification posed a threat to
methanogenic activity, especially as pH approached levels below 6.8, where methanogenesis
is progressively inhibited.

To counteract this acidic imbalance, NaHCO3 was strategically applied as a chemical
buffer. This intervention effectively stabilized the pH within the favorable operational
range for methanogenic archaea, typically between 6.8 and 7.2, enabling the transition to a
stable and active inoculum.

After system stabilization, the co-digestion phase began with the addition of guinea
pig manure, a substrate characterized by higher organic load and nutrient density. This led
to a significant increase in biogas production, with daily output exceeding 450 L/day. The
co-digestion strategy not only improved substrate diversity but also enhanced the C/N
ratio and promoted synergistic microbial interactions, key factors for increasing process
efficiency.

It is noteworthy that both phases exhibit a quadratic relationship between pH and
biogas production, highlighting the existence of an optimal pH range. Beyond this range, an
increase in pH does not correlate with higher gas production, emphasizing the importance
of precise pH management.
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Figure 9. Effect of pH on biogas production vs. co-digestion phases.

3.6. Multivariable Analysis of the Synergistic Impact of EC and pH on Biogas Production

Figure 10 clearly shows that biogas production does not respond linearly to an increase
in EC, but rather exhibits a parabolic behavior with a clearly defined maximum. The optimal
production point is located around 6300 µS/cm. Up to this value, increasing EC favors
methanogenic activity by improving buffering capacity and the ionic environment, but
beyond this threshold, any further increase in conductivity becomes directly harmful:
biogas production decreases rapidly and significantly.

Figure 10. Relationship between EC and biogas production.

This occurs because the micro-organisms responsible for methanogenesis are extremely
sensitive to osmotic stress and salt accumulation. When EC exceeds the optimal range,
inhibitory conditions arise that suppress metabolic efficiency and can even trigger partial
process collapse. In practice, this means that adding more bicarbonate or salts in search of
higher performance is counterproductive once the operational maximum is reached: rather
than improving production, it drastically reduces it.
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This result is crucial, as it disproves the traditional assumption that “more buffer
means better performance”; empirical evidence demonstrates that there is only a narrow
safe operating range. Exceeding 6300 µS/cm not only provides no benefits but also seriously
compromises system viability. Therefore, EC management must be precise and based on
real-time monitoring, adjusting additive dosing only within the optimal range and avoiding
overcorrections that can lead to losses exceeding 30% of the potential production.

3.6.1. Effect of pH on Biogas Production

Figure 11 shows the quantitative impact of pH on daily biogas production in an
anaerobic digestion system operated under real conditions with intensive monitoring. The
quadratic fit to the experimental data reveals the existence of an optimal operating pH
range, shifting the classical paradigm of absolute neutrality toward a much more precise
and controlled window.

Figure 11. Relationship between pH and biogas production.

Figure 11 quantitatively demonstrates that daily biogas production in rural systems is
highly sensitive to pH, showing a sharp drop of over 60% from the maximum when the pH
falls below 6.65. This effect is attributed to severe acidification, collapse of buffering capacity,
and inhibition of methanogenic metabolism due to volatile fatty acid accumulation. Starting
from a threshold of 6.7, the system exhibits accelerated recovery, reaching peak performance
within the very narrow optimal range of 6.92 to 6.97, where the convergence of acid–base
equilibrium, ionic stability, and enzymatic activity maximizes microbial functionality.
This finding challenges the classic paradigm of operating over broad neutrality intervals,
revealing that true optimization requires fine pH control within a critical and more restricted
operational window than traditionally postulated in the literature. Thus, this result not
only redefines operational standards for rural biodigesters but also opens a new perspective
for the advanced design and management of anaerobic systems at any scale; the key to
maximizing productivity and robustness lies not in the breadth of control, but in the
discipline and precision with which the system is maintained within its optimal range,
establishing a scientific foundation for the next generation of automation, monitoring, and
sustainability strategies in the energy valorization of waste.
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3.6.2. Multifactorial Synergy as the Core of Advanced Biogas Production: Mapping the
pH–EC Frontier

Figure 12 illustrates the three-dimensional behavior of daily biogas production as
a function of two of the most critical parameters for anaerobic digestion: the pH and
EC of the medium. The response surface obtained by second-order polynomial fitting
of experimental data reveals a highly significant dependence between both factors and
process performance.

Figure 12. Experimental response surface for biogas production as a function of pH and EC: identifi-
cation of the optimal operational zone.

Figure 13 reveals that the maximum biogas production (462 L/day) is achieved only
when the pH is maintained between 6.92 and 6.97, in combination with an EC close to
6200 µS/cm. This finding is crucial because it demonstrates that the operational optimum
for anaerobic digestion does not require reaching the conventional neutrality (pH 7.0–7.2),
but it is sufficient to maintain a slightly subneutral pH, as long as the EC remains within
a critical range. While there are numerous studies on the operational optimization of
biodigesters, the vast majority focus almost exclusively on the control of pH, temperature,
and hydraulic retention time, relegating EC to a secondary role or directly omitting it
as a variable of interest, especially in rural and real-scale scenarios. This limitation is
evident both in the international literature and in practical application, where very few
rural systems report monitoring or dynamic adjustment of EC.

The surface presented here experimentally evidences that controlled increases in
EC above 6000 µS/cm, combined with pH at the optimal threshold, generate an abrupt
jump in biogas production, validating the intervention strategy based on bicarbonate
addition. Thus, EC emerges as a first-order control variable, on par with pH, allowing
buffering of substrate variability and maintaining microbial homeostasis under fluctuations
of organic load, typical conditions in the field. Conversely, deviations below pH < 6.7 or
EC < 5600 µS/cm lead to abrupt drops in production—more than 30%—due to acidification
and lack of ionic cofactors, favoring methanogenic inhibition. The evidence also shows
that excessively increasing EC or pH beyond the optimum does not improve production
and may induce osmotic toxicity or ionic imbalance, evidencing the existence of strict
operational windows.
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Figure 13 shows the comparative time series between the daily biogas production mea-
sured under real field conditions and the values predicted by the proposed mathematical
model for the period from 1 July to 20 July 2025. This representation allows for a direct
evaluation of the model’s predictive capability under real operational conditions.

Figure 13. Daily biogas production measured in real field conditions vs. values predicted by the
proposed mathematical model.

The figure shows a high agreement between the observed and model-estimated values,
with minimal dispersion throughout the evaluated period. The temporal stability of the
estimation faithfully reflects the operational dynamics of the anaerobic digestion process,
capturing both the baseline production and the fluctuations induced by daily variations in
substrate feeding. The maximum recorded production (462 L/day on July 20) is accurately
reproduced by the model estimate (455.4 L/day), demonstrating its capacity to project
performance under peak load conditions. The low observed deviation—mostly within
±5%, along with a coefficient of determination R2 = 78.1%—confirms that the model
effectively integrates key operational parameters, thus validating its applicability to real-
time optimization and decision-making in biogas plant management.

3.7. Statistical Validation of the Predictive Model
3.7.1. Multicollinearity Analysis

Table 7 presents the multicollinearity analysis of the key operational predictor variables
using the variance inflation factor (VIF). The VIF values indicate the degree to which each
predictor variable is linearly correlated with the others. Values below 5 generally suggest
low multicollinearity, ensuring stable and reliable regression estimates. In this context, all
predictors—fresh volatile solids (VSfresh), EC, pH, and temperature—show sufficiently low
VIF values, demonstrating that multicollinearity is not a concern in the model.

Table 7. Multicollinearity analysis using the variance inflation factor (VIF) for operational predic-
tor variables.

Variable VIF

VSfresh 1.08
Conductivity 2.44
pH 1.70
Temperature 1.77

3.7.2. Pearson Correlation Coefficient (r)

The model showed a correlation coefficient (r) of 0.89, indicating a very high correlation
between the model and the real data. This means that the model not only fits the mean well
but also faithfully follows the daily trends in biogas production.
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3.7.3. Normality of Residuals (Shapiro–Wilk Test)

Hypothesis: H0: The residuals follow a normal distribution.
Result: p-value = 0.79 (>0.05).
The model errors do not exhibit systematic bias (there is no consistent over- or under-

estimation). This statistically validates that the model is robust, not only “tailored” to the
data but also extrapolatable and scientifically defensible.

3.8. Residual Normality and Inspection (Residual Histogram with Normal Fit)

The residual histogram (Figure 14) with the overlay of a normal curve (normality
assessment) shows that the model errors are approximately distributed as N(µ, σ2), with
mean µ = −4.00 L/day and standard deviation σ = 14.98 L/day. The symmetric concen-
tration around zero and the absence of marked tails are consistent with the Shapiro–Wilk
test (p = 0.79), supporting the normality assumption. The slightly negative mean indicates
a small over-prediction (about 4 L/d) that can be corrected by recalibrating the intercept.
The overall accuracy is reflected in MAE = 11.2 L/d and RMSE = 13.8 L/d, which translates
into a typical daily prediction band of ±1.96σ ≈ ±30 L/d. Together, the residuals behave
like approximately Gaussian and homoscedastic noise, validating the use of parametric
inference and confirming the predictive robustness of the model under real field conditions.

Figure 14. Residual normality and inspection (residual histogram with normal fit).

The diagram (Figure 15) compares the sample quantiles of the residuals r(i) (ordered)

with the theoretical quantiles of a standard normal z(i) = Φ−1
(

i−0.5
n

)
for n = 20 observa-

tions. The reference line was constructed as r̂ = µ̂ + σ̂z, where µ̂ = −4.00 L day−1 and
σ̂ = 14.98 L day−1 are the sample mean and standard deviation of the residuals; therefore,
its slope is σ̂, and its intercept is µ̂. The almost linear closeness of the points to the line, with
only slight deviations in the tails, indicates an adequate normal approximation without
marked asymmetry or influential outliers.

The evidence in Figure 16 is consistent with the Shapiro–Wilk test (p = 0.79), so the
parametric inferences of the model (standard error estimation, confidence intervals, and
t-tests) are considered valid. It is worth noting that this diagnostic evaluates the shape
of the distribution; homoscedasticity and independence of the residuals are verified with
complementary tests (e.g., Breusch–Pagan and Durbin–Watson) and should not be inferred
solely from the presented figure.
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Figure 15. Plot of model residuals vs. theoretical normal quantiles.

The residuals vs. predicted values plot evaluates the linearity, homoscedasticity, and
bias of the model. The errors (observed minus predicted) are approximately symmetrically
distributed around zero and mostly remain within the band ±2σ (σ ≈ 14.98 L/d), with no
apparent pattern related to the production level (about 370–455 L/d), which supports the
constancy of variance.

Figure 16. Residuals vs. predicted values plot.

Neither the OLS line (non-significant slope, p ≈ 0.66) nor the LOWESS smoothing
shows systematic trends, indicating that the model assumptions (independence, approxi-
mate normality, and homoscedasticity) are reasonably met within the operational range. As
a minor improvement, the intercept could be adjusted to remove the average bias (4 L/d),
and the few outliers associated with operational/measurement events could be reviewed.

Below is a tabular summary (Table 8) of the main statistical indicators used for the
validation of the developed predictive model. These parameters allow for an evaluation
of the model’s accuracy, robustness, and relevance in predicting biogas production under
real operating conditions. The combination of absolute, relative, and correlation metrics,
along with the residual normality test, demonstrates the quality and practical applicability
of the model.
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Table 8. Statistical indicators for predictive model validation.

Statistic Value Practical Interpretation

MAE (L/day) 11.2 Low mean absolute error, high precision
RMSE (L/day) 13.8 68% of errors within ±14 L/day; robust to outliers

MAPE (%) 2.7 Very low relative error, ideal for field validation
(<5%)

R2 0.78 78% of variability explained; very robust model

Pearson r 0.89 Very high correlation; real–model trends closely
matched

Residual normality Yes (p = 0.79) Unbiased model, extrapolatable, scientifically
sound

The applied extended model, based on the integration of physicochemical and op-
erational parameters, has demonstrated a very high predictive capacity under real field
conditions, explaining 78% of the experimental variability, with average errors below 3%.
Statistical validation not only confirms the quality of the fit (r = 0.89) but also supports the
practical applicability of the model in rural systems with limited resources and control. The
normality of residuals evidences the absence of bias, implying that the model is reliable
both for daily prediction and for larger-scale projections. These results meet and exceed
international standards for the validation of experimental anaerobic digestion models (IEA
Bioenergy, ISO, ASTM), proposing a robust, low-cost, and high-impact tool for sustainable
energy management in rural communities. In summary, the positive slope of the surface
toward the operational optimum is associated with the recovery and activation of the
methanogenic archaea community, confirming that redox potential and buffering capacity
must be managed in a coordinated manner. These results not only demonstrate the feasibil-
ity of sustaining high biogas production through simultaneous monitoring and adjustment
of pH and EC but also consolidate the originality and applicability of the present work by
offering an advanced, effective, and transferable multifactorial control strategy to real rural
environments, overcoming the limitations and gaps of the current literature.

Suppose the actual average yield was approximately 93.88% efficiency with peaks up
to 31%, compared to the theoretical production of 352.88 L/day. This ∼31% increase can
reasonably be divided between two fundamental factors:

1. Co-digestion (bovine manure/guinea pig 70:30): ∼60% of the improvement
The mixture improves the C/N profile and accelerates hydrolysis and acidogenesis,
and the synergy between substrates results in a more complete and stable degradation
of the OM. It provides microbial diversity and complementary nutrients.
Estimated impact: An ∼18–20% improvement over what would be expected with a single
substrate (bovine manure only).

2. High EC (up to 6120 µS/cm): ∼40% of the improvement
High conductivity may indicate greater availability of soluble ions, especially Na+,
K+, and Ca2+, derived from bicarbonate and the mineral content of the guinea pig
manure. It favors ionic balance and buffering capacity, preventing pH drops and
improving microbiological stability. However, excessive conductivity can become
toxic, so its effect is positive only up to a certain threshold (as observed in the data).
Estimated impact: A ∼12–13% additional improvement within the optimal conductivity
range observed.

An approximate 31% maximum increase was observed, of which about 60% (around
18–20%) can be attributed to the positive effect of co-digestion. The remaining 40% (ap-
proximately 12–13%) is justified by the active management of EC, primarily through the
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controlled addition of bicarbonate. This combined strategy of substrate mixing and con-
ductivity control explains the significant improvement in biogas production.

3.9. Conversion Efficiency and Operational Optimization

The experimental data obtained during the second phase of the anaerobic digestion
system, in which a 70:30 co-digestion strategy between bovine manure and guinea pig
manure was implemented, demonstrated a significant improvement in the efficiency of
organic matter conversion to biogas. The theoretical production calculated under ideal
stoichiometric conditions was 352.88 L/day, assuming complete degradation of 8 kg of
fresh organic matter with a 60% methane content, according to the Buswell equation.

However, the actual observed production exceeded this theoretical estimate on mul-
tiple occasions, reaching a maximum value of 462 L/day, which represents an increase
of 30.96% compared to the ideal theoretical production. This, initially counterintuitive,
phenomenon is explained by the synergy of two key operational strategies:

1. Substrate co-digestion (bovine manure/guinea pig 70:30): This mixture optimized the
carbon/nitrogen ratio, promoting a more balanced nutritional profile and stimulating
complementary metabolic pathways. The diversity of components and the availability
of macro- and micronutrients promoted greater microbiological activity, accelerating
the hydrolytic stage and favoring efficient methanogenesis. It is estimated that this
strategy contributed approximately 60% of the observed improvement, equivalent to
an 18–20% increase over the baseline yield.
Estimated impact: An ∼18–20% improvement attributable to co-digestion compared to mono-
substrate (bovine manure only).

2. Regulation of the biochemical environment via sodium bicarbonate addition: This
intervention stabilized the pH, avoiding deviations toward critical acidogenic zones
that commonly inhibit the methanogenic phase. The controlled increase in EC up to
optimal values (∼6120 µS/cm) reflected greater availability of beneficial ionic species
(Na+ and HCO−

3 ), which acted as a buffer and stabilizer. This operational condition
is attributed to an additional 12–13% increase in the system’s overall efficiency.
Estimated impact: A ∼12–13% additional improvement within the optimal conductivity
range observed.

The analysis demonstrates that the synergistic combination of optimized co-digestion
strategies and chemical control of the digestive environment can increase the real efficiency
of the system by up to 31% compared to the ideal theoretical scenario (Figure 17). This find-
ing not only validates the experimental design but also suggests that under controlled and
adaptive conditions, actual production can exceed conventional stoichiometric projections,
representing a significant step forward in improving anaerobic digestion system performance.

Figure 17. Real efficiency of synergistic combination of optimized co-digestion strategies and chemical
control of the digestive environment.
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4. Discussion
Tables 9 and 10 provide a comprehensive and high-resolution cross-sectional analysis

of the current methodological and operational landscape in anaerobic digestion, focusing
on the interplay between control strategies, predictive modeling, and experimental vali-
dation in real systems. This comparative compendium reveals the dominant trend in the
literature to perpetuate conventional approaches centered on monitoring traditional vari-
ables—pH, temperature, HRT, OLR, and C/N ratio—without advancing toward a dynamic
and multifactorial control paradigm capable of anticipating critical process transitions.

From a process engineering and bioenergy perspective, it is observed that alkalinity
management remains anchored in reactive and punctual interventions, where the use of
alkalizing agents (NaHCO3 and Ca(OH)2, among others) is limited to corrective measures
after the detection of inhibitions or production drops, without being configured as part of a
preventive and adaptive regime. Even more critical is the treatment of EC in most reviewed
proposals, which is either omitted or relegated to the status of an accessory variable,
despite its direct relationship with the ionic strength of the medium, buffering capacity,
and microbial resilience to load shocks and compositional disturbances. This omission
transcends a simple operational limitation and reflects a conceptual deficiency regarding
the multifactorial role of acid–base and ionic balances in the stability and robustness of
methanogenic consortia.

At the modeling level, the international literature shows an excessive dependence
on univariate models or, at best, multivariable approximations with limited integration
of interaction terms and advanced statistical validation (collinearity, residual analysis,
heteroscedasticity, and extrapolative robustness). Few studies move beyond validation
under laboratory or pilot conditions and subject their models to real field conditions, where
substrate variability, thermal seasonality, biol recirculation, and the discontinuous nature
of feeding demand resilient predictive approaches capable of withstanding systemic dis-
turbances. Tables 9 and 10 provide a comprehensive and high-resolution cross-sectional
analysis of the current methodological and operational landscape in anaerobic digestion,
focusing on the interplay between control strategies, predictive modeling, and experimental
validation in real systems. This comparative compendium reveals the dominant trend in the
literature to perpetuate conventional approaches centered on monitoring traditional vari-
ables—pH, temperature, HRT, OLR, and C/N ratio—without advancing toward a dynamic
and multifactorial control paradigm capable of anticipating critical process transitions.



Recycling 2025, 10, 190 27 of 36

Table 9. Comparative summary on anaerobic digestion, substrates, models, and validation.

Reference Substrate(s) Scale Model Type Key Variables Alkalinity Ctrl. EC Ctrl. Application Validation

[14]
Cattle manure + organic
waste (70:30); HDPE
1100 L (rural)

Field (rural)

Multivariable predictive
(linear–quadratic terms
+ interactions; CH4
logistic)

pH, EC, HRT/TRH,
OLR, T NaHCO3 (buffer) Yes Biogas (daily operation;

pH–EC control)

Yes (field;
R2/MAE/RMSE
metrics)

[47] Corn/silage,
Vinasse/molasses Pilot/Field Experimental/Review T NaHCO3 (alkalinity

control) Yes Electricity/CHP Field (plant; operational
data)

[48] Not specified Not specified Experimental/Review T NaHCO3 (alkalinity
control) No Biogas Simulation/TEA (no

experimental validation)

[49] Food waste Pilot/Field Optimization/DOE pH, VFA/AGV NaHCO3 (alkalinity
control) No Biogas Field (plant dataset; ML

metrics)

[50] Not specified Not specified Mechanistic
(ADM1/variants) pH, HRT/TRH, OLR, T NaHCO3 (alkalinity

control) No Biogas Review (no
experimental validation)

[51] Food waste Laboratory (batch) Optimization/DOE OLR NaHCO3 (alkalinity
control) No Biogas Laboratory

(BMP/batch)

[52] Lignocellulosic Pilot/Field Kinetic — NaHCO3 (alkalinity
control) No Biogas Pilot/Field (reported

metrics)

[53] Swine manure;
Activated sludge Not specified Experimental/Review pH NaHCO3 (alkalinity

control) No Biogas Laboratory (reactor with
recirculation)

[54] Activated sludge Laboratory (batch) Kinetic — NaHCO3 (alkalinity
control) No Biogas Laboratory (batch)

[2] Not specified Not specified Experimental/Review pH, HRT/TRH, OLR, T NaHCO3 (alkalinity
control) No Biogas Review (meta-study)

[10] Not specified Laboratory (continuous) ML/AI pH, EC, HRT/TRH,
OLR Not reported Yes Electricity/CHP Laboratory (continuous;

ML metrics)
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Table 10. Comparative summary of selected studies on anaerobic digestion: substrates, models, and validation context.

Reference Substrate(s) Scale Model Type Key Variables Alkalinity Ctrl. EC Ctrl. Application Validation

[55] Swine manure Not specified Optimization/DOE pH NaHCO3 (alkalinity
control) No Biogas Laboratory (batch;

optimization)

[56] Not specified Pilot/Field Experimental/Review — NaHCO3 (alkalinity
control) No Biogas Field (pilot plant)

[57] Activated sludge Laboratory (batch) Kinetic VFA/AGV Not reported Yes Electricity/CHP Laboratory (kinetic
assays)

[58] Lignocellulosic Laboratory (batch) Kinetic — NaHCO3 (alkalinity
control) No Biogas Laboratory (batch)

[59] Lignocellulosic Not specified Experimental/Review T Not reported No Biogas Simulation + Field data

[60] Food waste; Activated
sludge; Lignocellulosic Laboratory (batch) Kinetic pH, VFA/AGV Not reported No Biogas Laboratory

(experimental assay)

[61] Activated sludge;
Vinasse/molasses Laboratory (batch) Optimization/DOE pH, HRT/TRH, T Not reported No Biogas Laboratory

(experimental DOE)

[62] Not specified Not specified Optimization/DOE — Not reported No Biogas Simulation
(optimization)

[52] Not specified Not specified Kinetic T Not reported No Biogas Field (pilot assay)

[63] Not specified Laboratory (batch) Experimental/Review — Not reported No Biogas Laboratory
(nanoparticles)

[13] Food waste Not specified Optimization/DOE pH, T Not reported No Biogas Laboratory
(experimental design)

[64] Not specified Not specified Review pH, T Not reported No Biogas Literature review

[65] Not specified Not specified Review — Not reported No Biomethane Literature review

[66] Not specified Not specified Review — Not reported No Biogas Literature review

[61] Cattle manure;
Activated sludge Not specified Optimization/DOE pH, T Not reported No Biogas Laboratory (DOE)

[67] Not specified Not specified Review — Not reported No Biogas Literature review
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At the modeling level, the international literature shows an excessive dependence on uni-
variate models or, at best, multivariable approximations with limited integration of interaction
terms and advanced statistical validation (collinearity, residual analysis, heteroscedasticity,
and extrapolative robustness). Few studies move beyond validation under laboratory or pilot
conditions and subject their models to real field conditions, where substrate variability, ther-
mal seasonality, biol recirculation, and the discontinuous nature of feeding demand resilient
predictive approaches capable of withstanding systemic disturbances.

This critical and structured review highlights not only the obsolescence of traditional
operational frameworks for rural and decentralized biogas management but also under-
scores the urgency to evolve towards multifactorial control protocols. These should be
based on the simultaneous integration of physicochemical and operational variables, sup-
ported by robust predictive modeling systems that are statistically validated in real and
complex scenarios.

The analysis presented, therefore, goes beyond mere compilation and stands as a
roadmap for the redesign of the comprehensive management of the process, identify-
ing the current frontiers of knowledge and pointing out critical gaps that continue to
challenge efficiency, replicability, and sustainability in rural and community anaerobic
digestion systems.

In light of the comparative evidence presented, it is confirmed that the transition
towards proactive and multifactorial management of anaerobic digestion in rural contexts
is not only an opportunity but an urgent necessity to consolidate circular and resilient
energy systems. The experimental and operational model developed in this study emerges
as a turning point from tradition; it integrates the simultaneous co-optimization of pH and
EC, anchored in the strategic dosing of alkalizing agents and advanced statistical validation
under real disturbances, empirically demonstrating the viability of exceeding classical
theoretical limits and consolidating robust operational windows against environmental
and compositional variability.

Table 10, focused on modeling approaches, optimization strategies, and experimental
validation, reinforces the observed trend: the predominance of laboratory experimentation
frameworks (batch or continuous reactors) and the punctual application of alkaline correc-
tives, with little or no incorporation of EC as an operational adjustment variable. Although
recent proposals based on machine learning or Design Of Experiments (DOEs) consider EC,
these innovations have yet to transcend the experimental stage to become practical control
tools in real plants. Significant methodological gaps persist regarding advanced statistical
validation, integrated management of substrate variability, and adaptability to exogenous
disturbances (load peaks, thermal variability, and osmotic shocks).

Overall, the international literature remains anchored in a reactive and single-variable
control paradigm, where pH and alkalinity act as “patches” rather than as variables govern-
ing the system holistically. In contrast, the current research approach lays the foundation for
the standardization of multifactorial control protocols in decentralized biogas management,
facilitating technology transfer and adaptability to scenarios with high variability and lim-
ited resources. In this way, rural and industrial anaerobic digestion can advance towards a
truly predictive, robust, and sustainable regime, aligned with the global challenges of the
circular economy and energy transition.

4.1. Gaps and Limitations

External validity of pH–EC windows. The operational windows quantified (pH
6.92–6.97; EC 6.1–6.3 µS/cm) are derived from a specific feedstock mixture and operational
regime (70:30 bovine/guinea pig; mesophilic conditions 0–25 ◦C; use of NaHCO3). While
robust within the Huaycán context, they have not yet been generalized to other ionic
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matrices (water hardness, ammonium, potassium, and chlorides), climates, or different
substrate ratios. Establishing external validity will require controlled time-series studies
across sites, seasons, and waste mixtures to derive context-specific correction factors and
site-adapted pH–EC maps.

EC as a non-specific aggregate proxy. Electrical conductivity is a global indicator
of ionic load, but its biological impact is not equivalent when increases are driven by
HCO−

3 /Na+ (alkalinity), NH+
4 /K+ (ammonium/potassium), or anions such as Cl−. The

study demonstrates the value of managing EC but does not disaggregate the contribution of
individual ions to performance, inhibition, or osmotic stress. An ionic mass balance (Na+,
K+, NH+

4 , HCO−
3 /CO2−

3 , and Cl−) and its translation into ionic activity (ionic strength) are
still lacking as essential steps to move from a general proxy to selective process control.

Pre-reactor dynamics and loading peaks. Batch cleaning of guinea pig pens (every
3–5 days) introduces pulses in organic loading rate (OLR), which the study mitigates
through feeding fractionation and dilution, but does not model (in detail) the hydraulics of
pre-storage and mixing (homogenization, solid segregation, and bed effects). This upstream
stage significantly influences VFAs generation, acid–base balance, and the EC entering the
digester. A detailed hydraulic and operational model of this pre-treatment train remains a
missing component.

Automation and human variability. The operational protocol was executed using rules
(rational dosing of NaHCO3 and fractionation), with manual intervention. An automatic
closed loop (actuators + sensors) has not yet been demonstrated, nor has the operational bias
(feeding time, stirring intensity, and dosing accuracy) on daily variability been quantified;
this limits large-scale reproducibility.

Time horizon, fouling, and salinization. Validation covers weeks to months; com-
plete seasonal cycles, evaluation of fouling, drift of pH/EC sensors, and long-term ionic
accumulation balance (risk of liquor and digestate salinization) are lacking. Optimal
bleeding/desalting to avoid shifts in the operational window was also not systemati-
cally quantified.

Carbon balance, safety, and digestate. The focus was on operation and prediction; a
life cycle assessment (avoided CH4, fugitive emissions, and auxiliary energy) remains to be
completed, as well as consolidating gas safety (H2S, NH3, and leaks) and the agronomic
quality of the digestate under this pH–EC regime (salinity, SAR, and NPK availability).
Without these three closures, the transfer to public policy/financing remains incomplete.

4.2. Projections and Research Agenda

Framework for modeling methane content (QCH4) (15) using nonlinear regression: A
methodological approach for future studies.

However, it is important to emphasize that this proposed methodology should not be
interpreted as a validated or definitive result. The effective implementation and accuracy
of the model require rigorous experimental validation and specific calibration, depending
on the contexts and conditions of each system. In this sense, the model mainly serves
as a conceptual basis and a potential tool for future studies aimed at developing more
reliable predictions adjusted to empirical data. The incorporation of direct and detailed
methane composition measurements will be essential to strengthen the applicability and
accuracy of the proposed framework. Thus, the present approach highlights the usefulness
of nonlinear regression techniques as a promising resource to advance the characterization
and optimization of bioenergetic processes, while also pointing out the need to integrate
experimental and theoretical efforts to consolidate their practical use:

QCH4 =
100

1 + e−z (15)
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z = γ0 +
8

∑
i=1

γiXi +
8

∑
i=1

γiiX2
i +

8

∑
i<j

γijXiXj (16)

where

• γ0: intercept of the logistic model.
• γi: coefficients of linear terms.
• γii: coefficients of quadratic terms.
• γij: coefficients of interaction terms.

Predictive Model Control (MPC) pH–EC–OLR. Transition from rules to a multi-
objective MPC that co-optimizes pH, EC, and load (OLR/HRT) with osmolarity constraints
and limits on NaHCO3 dosing; validate it using A/B testing against disturbances (OLR
jumps, VFA shocks, and thermal waves), measuring settling time, IAE, and alkalinity
consumption. This formalizes the “paradigm shift” in an industrializable closed loop.

Soft-sensing of VFA/TAC and operational digital twin. Build a digital twin fed with
pH, EC, T, and flow rates, coupled to a soft sensor that infers VFA/TAC and effective
alkalinity (Kalman/EnKF). The goal is to anticipate acidification and recommend the
minimum effective dose of NaHCO3 before crossing thresholds, reducing overcorrection
and osmotic stress.

Explicit ionic model and safe osmotic threshold. Extend the model with ionic balance
and ionic strength (activity), using EC→I and carbonate–ammonium speciation (Hender-
son–Hasselbalch + activity coefficients). This aims to quantify an operational osmotic
threshold (consortium CL50) and derive pH–EC windows dependent on composition,
guiding the decision between NaHCO3, KHCO3, or mixed strategies.

Multicenter and seasonal validation with standardization. Replicate in ≥5 farms for
≥12 months per site (different altitude/climate/water) to obtain pH–EC maps by substrate
and seasonality. With these data, publish SOP (manual + checklist) and a low-cost kit
(robust pH/EC sensors, simplified TAC titration, and automated dosing), aligned with the
utility model in progress, for mass adoption.

Functional microbiology and micronutrients. Correlate pH–EC windows with
16S/metagenomics (acetoclastic/hydrogenotrophic) and with macro/micronutrients (Na+,
K+, NH+

4 , Ni, Co, and Fe). Test CE gradients and targeted supplements to expand the
stability window and increase consortium resilience against load peaks.

Economics, carbon, and digestate use. Conduct full TEA/LCOE/LCM and LCA,
quantify CH4 leakage (flow chamber/IR), and carry out agronomic trials of the digestate
(salinity, SAR, and field NPK availability). These results close the gap between technical
performance and financing/regulation, enabling scaling in rural farms.

Additionally, EC is used as a global indicator of ionic load, but its biological impact
varies according to specific ionic composition (e.g., HCO3−/Na+ vs. NH4+/K+ and other
anions). Therefore, it is necessary to advance towards explicit models of ionic mass and
activity that enable more selective and robust process management.

The study also recognized the influence of pre-digester dynamics, such as the gener-
ation of organic loading peaks due to intermittent cleaning and mixing in pre-treatment,
aspects for which detailed hydraulic modeling is still missing.

The current manual intervention in the operational protocol, without automation or
closed-loop control via actuators and sensors, limits the reproducibility and scalability of
the system; hence, the development of Multi-objective Predictive Control (MPC) and the
incorporation of digital twins and soft sensors to anticipate imbalances is recommended.

Finally, it is necessary to evaluate long-term critical aspects, such as sensor stability
and drift, ionic accumulation, and salinization, as well as to complete comprehensive
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environmental studies (LCA, gas safety, and agronomic quality of the digestate) to close
the gap toward implementation in public policies and financing.

Overcoming these limitations will strengthen the transfer, standardization, and scaling
of the proposed model, consolidating the baseline for robust, scalable, and sustainable rural
anaerobic systems.

5. Conclusions
The cattle/guinea pig co-digestion ratio of 70:30 delivered robust operation with

peaks of 462 L/day, surpassing the reference theoretical potential (352.9 L/day) by 31%,
attributable to substrate synergy (60%) and EC governance (40%). A replicable package is
provided (pH–EC windows, NaHCO3 protocol, feeding/OLR–HRT rules, and a predictive
model) that can be implemented on farms with limited resources, mitigating fugitive CH4

emissions, odors, and leachates. The same digester design (Chillón Valley) and its replica
in Huaycán are under utility model application (INDECOPI, Exp. 001087-2025/DIN),
supporting standardization and scalability for the safe and sustainable valorization of
organic waste in rural settings.

A dosing protocol based on a logistic dose–response curve was formalized with
D50 = 0.38–0.40 kg/day, defining action thresholds, waiting times, and EC limits to avoid
excessive osmolarity. The practical guidelines (sequential doses of 0.3–0.4 kg/day for
3–4 days when pH < 6.8 and EC is within a window) shorten recovery from VFAs shocks
without penalizing the ionic environment of methanogenesis and translate acid–base/ionic
balances into operable procedures.

In real operation, pH and EC are not “simple controls”; they behave as strongly
coupled state variables that govern stability and productivity. Operational windows were
quantified at pH 6.92–6.97 and EC 6100–6300 µS/cm; deviations cause production drops of
>30% due to acidification (low pH) or osmotic stress (high EC). The approach shifts from
reactive monitoring to proactive and co-optimized governance of pH–EC, suitable for rural
contexts with low instrumentation.

The model integrating linear, quadratic, and interaction terms (including pH, EC, HRT,
OLR, T, and VS load) explained 78% of daily variability (R2 = 0.78), with MAPE 2.7%, MAE
11.2 L/day, RMSE 13.8 L/day, and r = 0.89; residuals met normality (p = 0.79). This quality
allows near-real-time prediction and adjustment of operation, prioritizing pH–EC correc-
tions and feeding (fractionation/dilution) without requiring complex instrumentation.

This study demonstrates that the co-optimization of pH and electrical conductivity
(EC) through a stoichiometric bicarbonate dosing protocol can significantly enhance biogas
production and system stability in small-scale rural biodigesters. To foster widespread adop-
tion and scalability, it is crucial to establish national or regional programs that standardize
these operational protocols, including the development of affordable monitoring kits and
automated dosing systems tailored to low-resource rural settings. Coupled with targeted
training and financial incentives, such initiatives will enable more effective technology
transfer, reduce methane emissions, and promote sustainable organic waste valorization in
rural communities. This strategic integration of science, technology, and policy represents
an essential pathway toward resilient and circular bioeconomy systems worldwide.
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Abbreviations
The following abbreviations are used in this manuscript:

Volatile Solids (VSs) Sólidos volátiles
Electrical Conductivity (EC) Conductividad eléctrica
Hydraulic Retention Time (HRT/Tr) Tiempo de retención hidráulica
Co-digestion Proportion (Cd) Recirculación de biofertilizante
Biofertilizer Recirculation (Rb) Recirculación de biofertilizante
Free Gas Volume (Vf ) Volumen libre de gas
Agitation (Ag) Agitación (0/1, binaria)
Daily Biogas Production (Pbiogas) Producción diaria de biogás
Sodium Bicarbonate (NaHCO3) Bicarbonato de sodio
Mean Absolute Error (MAE) Error absoluto medio
Root Mean Squared Error (RMSE) Raíz del error cuadrático medio
Mean Absolute Percentage Error (MAPE) Error porcentual absoluto medio
Coefficient of Determination (R2) Coeficiente de determinación (R cuadrado)
Pearson Correlation Coefficient (r) Coeficiente de correlación de Pearson
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