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Abstract: To optimize the preparation process of polymer electrolytes by in situ UV curing and
improve the performance of polymer electrolytes, we investigated the effect of carrier film phase
conversion time on the properties of polymer electrolyte properties in all-solid-state LIBs. We
compared several carrier films with phase conversion times of 24 h, 32 h, 40 h, and 48 h. Then, the
physical properties of the polymer electrolytes were characterized and the properties of the polymer
electrolytes were further explored. It was concluded that the carrier membrane with a phase transition
time of 40 h and the prepared electrolyte had the best performance. The ionic conductivity of the
sample was 1.02 × 10−3 S/cm at 25 ◦C and 3.42 × 10−3 S/cm at 60 ◦C. At its best cycle performance, it
had the highest discharge-specific capacity of 155.6 mAh/g, and after 70 cycles, the discharge-specific
capacity was 152.4 mAh/g, with a capacity retention rate of 98% and a discharge efficiency close to
100%. At the same time, the thermogravimetric curves showed that the samples prepared by this
process had good thermal stability which can meet the various requirements of lithium-ion batteries.

Keywords: phase conversion time; UV curing; solid polymer electrolyte; porous carrier membrane;
lithium-ion battery

1. Introduction

Lithium-ion batteries with a high energy density and good cycle stability are widely
used in portable devices, electric vehicles, and smart grids. Unfortunately, the liquid
electrolytes used in the market for power batteries pose potential safety problems due
to their low flash point [1]. As researchers pursue higher-energy power batteries, safety
concerns have also emerged. As technology continues to evolve and application require-
ments continue to improve, lithium-ion batteries face several key challenges, such as the
market demand for higher safety and energy density [2,3]. Traditional lithium-ion battery
technology faces bottleneck problems in these aspects, so it is urgent to develop a new
generation of lithium-ion battery technology [4,5].

All solid polymer electrolytes have the advantage of a wide electrochemical window,
good thermal stability, low packaging requirements, and high production efficiency; they
can significantly improve the operating conditions and safety of lithium-ion batteries in
extreme environments [6,7]. The main challenge in achieving all-solid-state lithium batter-
ies is to obtain solid electrolytes with considerable ionic conductivity [8,9]. The interface
impedance between the solid electrolyte and the electrode also needs to be reduced. The
plastic crystal solid-state polymer electrolyte prepared with succinonitrile (SN) not only
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overcomes the above shortcomings but also has good ionic conductivity at ambient tem-
perature, showing a large electrochemical window, which greatly expands the application
range of lithium-ion batteries [10,11]. At the same time, it has excellent electrochemical
performance and no liquid exists, therefore, it shows excellent safety [12,13].

To further improve the performance of polymer electrolytes, the preparation process
of the electrolyte carrier membrane is further optimized. The essence of the electrolyte
carrier membrane is the PVDF-HFP phase conversion membrane [14,15]. In 1963, Leob
and Sourirajan invented the phase conversion process for the first time and produced
reverse osmosis membranes with asymmetric structures [16]. Thus, the polymer separation
membrane was provided with an industrial value [17]. Since then, the phase conversion
process has been widely studied and applied, gradually becoming the main flow method
of polymerization separation membrane production [2,18].

The so-called phase conversion membrane is used to prepare a homogeneous polymer
solution of a certain composition, which changes the thermodynamic state of the solution
through certain physical methods, so that phase separation occurs from the homoge-
neous polymer solution and finally transforms it into a three-dimensional macromolecular
network-type gel structure [19,20]. In this gel structure, the polymer is in a continuous
phase and the dispersed phase is the pore structure left after the elution of the dilute
polymer phase [21].

In general, when the casting liquid enters the gel bath and solidifies into a film, the
major structure of the film is fixed [22,23]. However, the porosity and pore diameter can
be adjusted by some post-treatment methods [24]. There are two kinds of post-treatment
methods: heat treatment and solubilization treatment. Heat treatment is mainly used
to reduce the porosity, while solvent treatment is mainly used to increase the porosity.
Organic non-solvent treatment is when the newly formed wet film is soaked in some
organic non-solvent, replacing the water in the wet film, and then dried [25]. These organic
non-solvents are alcohols or hydrocarbons [1,26]. This is because the non-solvent for
membrane formation by the phase separation method is generally water [19,27]. The main
component of the dilute liquid remaining in the pore after film formation is water and its
surface tension is as high as 72.3 dyn/cm. The pore size of the membrane is generally on the
order of 10−8–10−6. According to the Laplace equation, in the drying process, the capillary
tube stress is up to 1.45–145 bar, which easily causes capillary tube collapse, reduces the
porosity, and damages the membrane property [28,29]. Wang compared the performance of
membranes treated without organic non-solvent treatment and with methyl alcohol, ethyl
alcohol, 1-propyl alcohol, and n-hexane in the drying condition [17,27]. It was found that
the membrane permeability was increased by 3–4 times and the membrane pore diameter
was slightly increased after organic non-solvent treatment. The increased flux is mainly
provided by the increase in the effective porosity [8,30].

The processing time with organic non-solvent, that is, the phase conversion time of
the carrier film, has a great influence on the porosity of the phase conversion film [31],
thus greatly affecting the mechanical strength of the phase conversion membrane and the
properties of the polymer electrolyte formed by the membrane [32]. In this paper, the effect
of the phase transition time on the properties of the carrier film and polymer electrolytes is
explored. The physical properties of carrier films prepared with various phase conversion
times of 24 h, 32 h, 40 h, and 48 h are characterized. Further characterization of the polymer
electrolyte is then carried out to obtain the best technology. The results showed that the
carrier membrane prepared with a phase conversion time of 40 h has the best performance
and that the corresponding polymer electrolyte performance is also the best.

2. Experiment
2.1. Materials

LiTFSI (99%, purchased from Aladdin Co., Ltd., Ontario, CA, USA), ethoxylated
trimethylolpropane triacrylate (ETPTA, Mw ≈ 692, purchased from Aladdin Co., Ltd.,
Ontario, CA, USA), 2-hydroxy-2-methyl-1-phenyl-1-propanone (HMPP, a photoinitiator,
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purchased from Aldrich Industrial Inc., Wyoming, IL, USA), polyethersulfone (PSE) and
polyvinylpyrrolidone (PVP) (purchased from Sinopharm Group Chemical Reagent and
BASF, Shanghai, China), sulfoxane, butyrolactone, succinonitrile (SN), and adiponitrile
(purchased from Aladdin Co., Ltd., Ontario, CA, USA), and PVDF-HFP (purchased from
SOLVAY Co., Ltd., Shanghai, China) were obtained [14,33,34].

2.2. Preparation of Carrier Film and Polymer Electrolyte with Different Phase Transition Times

First, we prepared the carrier film according to the previous process. We dispersed
PVDF-HFP, surface-modified alumina (wt15%), polyether sulfone, and polyvinylpyrroli-
done (PVP) uniformly in a mixture of NMP and DMF. The specific preparation process is
shown in Figure 1 [14,33,34].
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Figure 1. Flow chart of carrier film preparation with different phase transition times.

The membrane was then removed and placed in a mixture of ethanol–water (1:1).
The soaking solution was replaced every 8 h, and the phase conversion time was set as
24 h, 32 h, 40 h, and 48 h for the experimental group. The phase conversion membrane
was dried and the impurities in it dissolved and precipitated to obtain a carrier film with
good performance. Then, the phase conversion film was cut into 16 cm diameter slices to
prepare the polymer electrolyte for the next step. Next, the carrier membrane adsorbed the
precursor liquid, and the polymer electrolyte was prepared by the UV curing method. Thus,
we further characterized the electrochemical properties of electrolytes and batteries [10].

2.3. Preparation Method of Polymer Electrolyte

In this experiment, we used the UV curing method to prepare polymer electrolytes.
First, the carrier films with different phase conversion times previously prepared were cut
to the size of a button cell diaphragm for use. Then, the precursor liquid of the electrolyte
was prepared. The specific method is to mix a certain proportion of 1.2 g succindinitrile
(SN) with 0.8 g LiTFSI. Because the two will promote each other to lower the melting point,
it will melt into a liquid in a few minutes. Then, 0.05 g of plasticizer was added to the
mixed solution and stirred well. After that, 0.2 g of the polymeric monomer ETPTA of
this electrolyte was added to the mixed solution and mixed thoroughly for a few minutes
until well blended. Finally, the electrolyte precursor was prepared by adding a small
amount of photoinitiator, about 0.01 g. The carrier film with the best surface effect was then
selected to fully absorb the electrolyte precursor. When the quality of the carrier film did
not change, it was covered on the electrode plate in the battery shell and irradiated with
high-intensity ultraviolet light. After a few minutes, in situ UV polymerization curing was
completed [14,33,34]. This method has the advantage of simple operation, high efficiency,
and no pollution.
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2.4. Material Characterization Method

The scanning electron microscope (SEM; Hitachi S-4800, Hitachi Co., Ltd., Tokyo,
Japan) was used for characterization. To improve the conductivity of the sample, the
sample was treated with gold spray, and the secondary electron mode was used to observe
the electrolyte section. The structure of the sample was analyzed by X-ray diffraction
(XRD). The role of Nicolet 6700 Fourier Transform (Thermo Electron Corporation, Waltham,
MA, USA) infrared spectroscopy (FT-IR) is to analyze the functional groups present in the
polymer electrolyte. The thermal stability of the polymer electrolyte prepared in this paper
was analyzed by thermogravimetric analysis with a thermal analyzer (Q2000, TGA/DSC3+,
Mettler, Switzerland) [14,33,34].

We usually use the AC impedance method to measure the ionic conductivity of poly-
mer electrolytes. Ionic conductivity is calculated as σ = L/(R·S). First, the electrochemical
stability of polymer electrolytes is generally analyzed using cyclic voltammetry curves.
The electrolyte was assembled into a lithium metal/polymer electrolyte/stainless steel
asymmetric battery which was analyzed with a scan rate of 0.1 mV/s [14,33,34].

3. Results and Discussion

Figure 2 shows the optical images of carrier films prepared at different phase conver-
sion times. It can be seen that the carrier film was grayish-white, almost opaque, and it
had good flexibility. From a macro point of view, there was no significant difference in the
surface state of the carrier film prepared at the four different phase transition times, all of
which were uniform and flat membrane structures.
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Figure 2. The optical images of the carrier films prepared with different phase transition times.

To further explore the effect of the phase transition time on the performance of the
carrier membrane, the mechanical strength of the carrier membrane and the electrolyte
prepared by the carrier membrane were tested. Figure 3a,b shows the mechanical property
curves of the carrier membranes and electrolytes. It can be seen that the mechanical strength
of the carrier film decreases gradually as the phase transition time increases. Interestingly,
however, the mechanical strength of the electrolyte it forms is not monotonous. With the
increase in the phase transition time from 24 h to 40 h, the mechanical strength of the
electrolyte gradually increased. However, when the phase conversion time reached 48 h,
the mechanical strength of the electrolyte began to decline to a value lower than that at
40 h. According to this phenomenon, we speculate that when the phase transition time is
too long, it may affect the internal structure of the electrolyte and decrease the mechanical
strength of the electrolyte. The most likely reason for this is that the phase transition time
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is too long so a large pore structure in the carrier membrane is formed. Because the pore
structure is too sparse, it is difficult for the electrolyte to attach to the surface of the skeleton
to form a uniform and stable structure.
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The research on the interface between electrodes and electrolytes in solid-state batteries
has always been a hot topic. Li et al. combined solid polymer electrolytes with defect-rich
Ga2O3 nanobricks to prepare high-performance lithium metal batteries and the effect was
also very good [35]. Seongsoo et al. studied the interface contact between solid metal
lithium battery electrodes and solid electrolytes and achieved very good results [36]. To
verify our hypothesis, the micromorphologies of the carrier films prepared with different
phase transition times and the corresponding electrolytes were analyzed. Figure 4a–h
shows the SEM images of the carrier membranes and electrolytes. It can be seen from
Figure 4a–d that with the increase in the phase transition time, the porosity and pore
structure of the surface of the carrier film gradually increase, so the mechanical strength
gradually decreases. This is also a good explanation for the phenomenon in Figure 3a.
As can be seen from Figure 4e–h, the electrolyte formed after ultraviolet curing presents
a folded shape on the surface of the carrier film, which is caused by the volatilization of
the plasticizer. As displayed in Figure 4e–g, the fold structure gradually became dense,
which is caused by the gradual increase in the porosity on the surface of the carrier film.
However, in Figure 4h, the fold structure on the electrolyte surface suddenly appears
less, and significant roughness appears on the electrolyte surface. This is caused by the
excessive macropore structure in the carrier membrane which makes the pore structure too
sparse so that the electrolyte cannot be well attached to the skeleton surface. Therefore, the
phenomenon in Figure 3b can also be well explained.

Thermogravimetric analysis was performed on the carrier films prepared at different
phase transition times and their corresponding electrolytes to explore their thermal stability.
As seen in Figure 5a, the carrier film has good thermal stability, and thermal decomposition
did not occur until temperatures in excess of 350 ◦C. This excellent thermal stability can
fully meet the requirements of the working conditions of polymer electrolytes. The thermal
stability of the carrier film with different phase transition times was not different. The
results showed that the phase transition time only changed the pore size and porosity of
the carrier film but did not change the composition and chemical properties of the carrier
film. As shown in Figure 5b, the polymer electrolyte began to lose about 40% of its weight
at 200 ◦C, mainly due to the thermal decomposition of butyronitrile. The thermal stability
of polymer electrolytes was significantly better at 205–375 ◦C when the butyronitrile was
almost completely decomposed. The weight loss above 375 ◦C was mainly due to the
thermal decomposition of LiTFSI and the carrier film. Such high thermal stability can fully
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meet the requirements of lithium-ion battery working conditions. The thermal stability of
electrolytes prepared by carrier membranes with different phase transition times was not
different [11,24].
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At the same time, we also conducted an XRD analysis of the carrier films prepared at
different phase conversion times and the corresponding electrolytes to explore the internal
structure of the samples. Figure 6b shows that there was no significant difference in the
lattice type of the electrolytes prepared by the carrier film with various phase transition
times. However, it can be seen from Figure 6a that the absorption peak intensity increased
with the increase in the phase transition time between 24 and 40 h. However, when the
phase transition time reached 48 h, the absorption peak intensity decreased. On the surface
of the 48 h sample, the internal structure of the carrier film changed suddenly, resulting
in a decrease in the absorption peak strength. This phenomenon further confirmed our
previous conjecture.
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Next, we explored the electrochemical properties of the polymer electrolytes made
from carrier films with different phase transition times. First, we tested the cycling per-
formance of the LiFePO4/PCCE/Li battery at room temperature at 0.2 C. As seen from
Figure 7a–d, the battery assembled by the polymer electrolyte with a phase conversion
time of 40 h had the best cycle performance and the highest specific discharge capacity
of 155.6 mAh/g after 70 cycles. On the 70th cycle, the discharge-specific capacity was
152.4 mAh/g with a capacity retention rate of 98% and discharge efficiency close to 100%.
In contrast, in the other groups of batteries, the discharge capacity was reduced during the
cycle. The specific discharge capacity of the sample with a phase conversion time of 48 h
decreased the fastest, therefore, we concluded that the cycle performance is the best when
the phase conversion time is 40 h.
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We next explored the ionic conductivity and the rate performance of the polymer
electrolytes made from the carrier films with different phase transition times. Figure 8a
shows the ionic conductivity of the polymer electrolytes at different temperatures. It can be
seen that the sample with a phase conversion time of 40 h had the highest ionic conductivity.
The ionic conductivity was 1.02 × 10−3 S/cm at 25 ◦C and 3.42 × 10−3 S/cm at 60 ◦C. The
ionic conductivity of the sample with a phase conversion time of 48 h decreased significantly.
This phenomenon further confirms our previous conjecture. The same conclusion can be
drawn in Figure 8b. The battery operated similarly at low current densities, however, under
the high-rate discharge, the sample with a phase conversion time of 40 h had the highest
discharge-specific capacity while the sample with a phase conversion time of 48 h had
the worst discharge effect. Based on the above results, we chose the sample with a phase
transition time of 40 h as the key research object in the future, i.e., the optimum phase
conversion time of carrier film is 40 h.

High-temperature performance is also an important index to evaluate lithium-ion
batteries. For this purpose, we assembled the best process sample into LiFePO4/S-PCCE/Li
batteries and tested the high-temperature cycling performance at 55 ◦C. The results are
shown in Figure 9. Figure 9a,b shows the charge-discharge cycle curves of the samples with
a phase conversion time of 40 h at room temperature and high temperature. The sample
still worked well at the high temperature of 55 ◦C, and the specific discharge capacity
was still very high. This shows that the sample prepared by this process can meet the
requirements of a lithium-ion battery working at high temperatures.

Finally, we studied the formation of the cathode-electrolyte-interface phase (CEI)
membrane on the cathode surface of the battery composed of the optimal process samples
and tested the TEM images of the LiFePO4 cathode under different charging states.
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As shown in Figure 10a–c, a uniform CEI film with a thickness of about 8 nm is formed
on the surface of the cathode when the cathode reaches the 100% charged state. When the
battery power reaches 100%, the CEI film on the cathode surface is separated. This ensures
that the polymer electrolyte is tightly bound to the cathode and the battery, and the battery
is able to function normally and stably [14,33].
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4. Conclusions

In conclusion, the phase conversion time of the carrier membrane has a great influence
on the performance of polymer electrolytes. With the increase in the phase transition time,
the pore structure and porosity of the carrier film increase. However, the excessive porosity
of the skeleton structure makes it more difficult to attach the electrolyte, which leads to
the deterioration in its performance. Through the analysis of carrier films prepared with
multiple phase transition times, we saw that the sample with a phase transition time of 40 h
had the best comprehensive performance. The ionic conductivity of the polymer electrolyte
prepared with this sample was 1.02 × 10−3 S/cm at 25 ◦C. When the temperature reached
60 ◦C, it had an ionic conductivity of up to 3.42 × 10−3 S/cm. When assembled into a
battery, it also had the best cycle performance, with the highest specific discharge capacity
of 155.6 mAh/g. The carrier film also had good thermal stability; at the 70th cycle, the
discharge-specific capacity was 152.4 mAh/g with a capacity retention rate of 98% and
discharge efficiency close to 100%. Therefore, the 40 h phase conversion time will be
selected as the optimal process in the follow-up study of this project. The method using in
situ UV curing has the advantages of simple operation, energy saving, and high efficiency,
and has a good practical application prospect.
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