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Abstract: All-solid-state batteries (ASSBs) are the important attributes of the forthcoming technologies
for electrochemical energy storage. A key element of ASSBs is the solid electrolyte materials. Garnets are
considered promising candidates for solid electrolytes of ASSBs due to their chemical stability with Li
metal anodes, reasonable kinetic characteristics (σLi ∼ 10−3–10−4 S · cm−1) and a wide electrochemical
window. This study is aimed at the analysis of the experimental data available for garnet thin films,
examining the ionic conductivity through the film/substrate lattice mismatch, the elastic properties
and the difference in the thermal expansion characteristics of the film and the substrate, the deposition
temperature of the film, and the melting point and the dielectric constant of the substrate. Based
on the results of this analysis and by introducing the corresponding characteristics involved as the
descriptors, the quantitative models for predicting the ionic conductivity values were developed.
Some important characteristic features for ion transport in garnet films, which are primarily concerned
with the film/substrate misfit, elastic properties, deposition temperature, cation segregation and the
space charge effects, are discussed.
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1. Introduction

One of the basic elements of the electrochemical energy storage solutions of the near-term
future is the all-solid-state batteries (ASSBs) [1–3]. These technologies can be considered as one
of the most satisfying a demand systems of the new generation, offering enhanced safety [4–6].

Among the most investigated solid electrolytes, garnet-structured compounds
LixLa3M2O12 [7–10] attract considerable attention. These compounds exhibit a number of
attractive characteristics such as a wide electrochemical window, possible compatibility
with Li metal anodes as well as adequate transport characteristics. They are known to
have the following polytypes: two cubic and one tetragonal (Figure 1). The tetragonal
polymorph of the space group I41/acd is characterized by the complete Li ordering, where
Li occupies all three different available sites: 4-coordinated 8a site, two octahedral—16f , and
32g sites. The cubic polymorph (c-LLZO) is characterized by a disordered Li distribution:
Li+ partially occupies the sites with tetrahedral (24d) and octahedral coordination (48g and
96h), where Li cations are located depending on the Li content and the composition of the
garnet structure. This difference results in Li-ion conductivity of the cubic polymorph that
is about two orders of magnitude higher. Usually, the stabilization of the superionic phase
is achieved through the aliovalent doping [11]. Alternatively, the superionic phase can
be stabilized by Li deficiency [12] or by proton exchange [13]. Accordingly, based on the
experimental data, the obtaining of c-LLZO garnet films with no doping, which has been
performed in a number of studies, may be explained as a consequence of the Li loss [14] or
as the result of the strain stabilization.
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Figure 1. Garnet-structured solid state electrolytes: (a) garnet polymorphs: the schemes of Li distri-
bution for two cubic polymorphs; (b) the difference in Li sites in cubic and tetragonal polymorphs.
The part of the figure is reprinted with permission from refs. [14,15]. Copyright of the American
Chemical and Physical Societies.

This study is aimed at the analysis of the collected experimental data on the Li-ion
conductivity in garnet films considering a number of affecting factors. One of them is
the strain influence. In recent decades, strain engineering was explored as an effective
way to modulate material properties [16–19]. Thus, strain engineering was successfully
applied for tuning the band structure [20,21], in valleytronics [22], for tuning ferroic prop-
erties [17,23,24], phase stabilization and transitions [25–29], Li ion [30–33] and oxygen
ion [18,34–37] conductivity control.

The conductivity values in the films are highly dependent on the interaction between
the film and substrate materials. Achieving a coherent connection can be facilitated by
avoiding large misfit values, utilizing materials with closely matched elastic characteristics,
mitigating the negative effects of space charge layer formation [38–41], and minimizing
substantial differences in thermal expansion coefficients. In [40], Joachim Maier empha-
sized, “As Frenkel [42] has already pointed out, and as was quantified very early in the
electrochemistry of liquid electrolytes, deviations from local electroneutrality and, conse-
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quently, from bulk stoichiometry occur in regions close to the surface. . . This implies that
the thermodynamic equilibrium must consider surface-surface interactions (transport of the
cation from the free to the contacted surface)”. Additionally, many of the oxides employed
as solid-state electrolytes possess lithiophobic surfaces with uneven morphologies [28].
Thus, even post-annealing treatments can enhance Li-ion transport characteristics at the
interfaces. Such treatments might focus on the transformation from lithiophobicity to
lithiophilicity [43,44] or enhancement of characteristics through voltammetric methods [45].
Among recent studies potentially valuable not only for investigation but also for modulat-
ing grain boundaries, the work of Reichert et al. [46] should be mentioned. The latter could
be of principal importance for various reasons. An illustration is provided in Figure 2,
where the variation in migration energy barrier is depicted for grain boundaries containing
amorphized domains compared to those with a non-amorphized structure [47].

Figure 2. Illustration of the migration barrier and Li vacancy concentration for the grain boundaries
with a presence of the amorphized domains as well as for the grain boundaries with non-amorphized
structure. The figure is reprinted with permission from [47] (licensed under CC BY-ND 2.0).

The questions regarding the role of amorphization processes in garnet solid elec-
trolyte thin films have been discussed in various studies, yielding, however, conflicting
conclusions [5,48,49]. This inconsistency in the provided results is evidently associated
with the complexity of the processes occurring at the interfaces. In [50], the authors delve
into the relationship between the presence and interaction of defects at incommensurate
interfaces with low-melting fusibility (leading to the formation of eutectic non-autonomous
phases). This phenomenon can be attributed to the significant weakening of bonds within
interacting substructures. It is known from the T-x diagrams that the highest concentration
of discontinuities of solid solutions generally corresponds to the melting point of eutectic
compositions [51].

Through an analysis of the very limited experimental data available for garnet thin
films, certain characteristics impacting Li-ion conductivity were identified. Among the
parameters influencing Li-ion conductivity in garnet thin films, one can distinguish film/
substrate misfit, the elastic properties of both the film and substrate, differences in their
thermal expansion characteristics, deposition temperature, dielectric constant of the sub-
strate, as well as the compound composition. The machine learning approaches involved
in this study, namely Long Short-Term Memory (LSTM) neural networks and probabilistic
backpropagation Bayesian neural networks (PBP), have demonstrated the potential for
addressing problems with very limited available data.

One of the most important conclusions of this study is the emphasized role of (i) the
elastic properties of the film and the substrate with the defined range of values for the
elastic characteristics that correspond to the enhancement of ionic conductivity values,
(ii) the ratio of the melting point of the substrate and the deposition temperature, (iii) the
dielectric constant of the substrate, as well as (iv) the cation segregation-related processes as



Batteries 2023, 9, 430 4 of 19

the characteristics which came to the fore as a result of the analysis of the experimental data
available.

2. Materials and Methods
2.1. Methodology

Artificial neural networks are among the most popular machine learning methods,
with an ever-growing interest in their methodology directly associated with the principles
of human-level reasoning [52]. Recurrent Neural Networks (RNNs) are artificial deep
learning feed-forward neural networks that transmit information across different time steps
through connections between the hidden layers of the individual nets composing the RNN.
This allows the weights of these connections to be shared over time. RNNs, as an efficient
type of neural networks, have several modifications. One of the most known types of RNNs
is the Long Short-Term Memory Neural Networks (LSTM) [53,54]. This modification is
widely acknowledged for its ability to preserve valuable information across the time, thus
preventing its loss during the training process. It consists of a set of recurrently connected
memory cells that replace the conventional nonlinear units of an RNN. These memory cells
contain three types of gates organized in a single general unit: input, output, and forget
units. This architecture allows the storage of information over a prolonged period of time,
in contrast to the simple RNN architecture characterized by gradient vanishing during
the training.

The input vectors xt
i with descriptor values are presented to the cell. Subsequently, the

cell can activate one of the mechanisms depending on the training data already seen and
currently considered: the input gate can remain closed, the input data can be transferred
to the training while preserving the cell state Ct, or the forget option (activated by the
forget gate ft) can reset the cell state vector to zero. Finally, the cell state can be shared
with the hidden layer of the next network, or used exclusively for the current output gate
(Figure 3a).

For the forward pass of the LSTM neural network, wih represents the weight of the
connection from unit i to the unit in the hidden layer. The input to the unit in the hidden
layer at time t is denoted as at j, and the activation of unit h at time t is bt

h. The equations in
Figure 2a are presented for the network comprising I input units, H hidden units, and K
output units. Nonlinear and differentiable activation functions are assumed.

The parameters of LSTM were optimized using Bayesian optimization methods.
Bayesian optimization [55–57] is an efficient approach for optimizing black-box functions.
Bayesian optimization techniques consist of three consecutive and repeated steps: (i) using
the prior to define the point for function evaluation, (ii) evaluating the function f(x) value
at this point, (iii) updating the prior with the new data <x, f(x)>. Surrogate acquisition
functions are used for the first step, which are introduced to replace the unknown black-box
functions evaluating the value of the function at a given point. The most widely used ac-
quisition functions are: (i) improvement-based (Probability of Improvement (PI), Expected
Improvement (EI)), (ii) optimistic (Upper Confidence Bound (UCB)), (iii) information-based
(Thompson sampling (TS), Entropy Search (ES), Predictive Entropy Search (PES)) [55]. The
approximation of the function values usually involves Gaussian Processes as the most
popular methodology or alternative probabilistic methods which allow to introduce the
prior probability.

The second approach is the Probabilistic Backpropagation Bayesian Neural Net-
works (PBP) [58] (Figure 3b). Given data D = {xn,yn}N

n = 1, where xn∈RD and correspond-
ing scalar variables yn∈R, yn = f (xn; W) + εn, where f (·; W) is the output value with
weights given byW and noise variables εn.

The likelihood of target variable given weightsW and noise precision γ:

p(y|W , X, γ) =
N

∏
n = 1

N (yn| f (xn;W), γ−1) (1)
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PBP does not use the point estimates of the weight during the training process instead
the set of the Gaussians is generated during the training process in order to approximate
the activations:

p(W|λ) =
L

∏
l = 1

Vl

∏
i = 1

Vl−1+1

∏
j = 1

N (wij,l |0, λ−1) (2)

where wij,l is the weights and λ is a precision parameter. The details on how the prior for λ
is chosen are given in the original publication.

The posterior distribution for the parametersW , γ and λ can then be obtained accord-
ing to Bayes’ rule as follows:

p(W , γ, λ|D) =
p(y|W , X, γ)p(W|λ)p(λ)p(γ)

p(y|X)
(3)

The output predictions are performed using predictive posterior distribution:

p(ytarget|xtarget,D) =
∫

p(ytarget|xtarget,W , γ)p(W , γ, δ|D)dγdλdW (4)

where p(ytarget|xtarget,W , γ) = N (ytarget|f (xtarget), γ).
At the end of the forward stage, PBP computes the logarithm of the marginal prob-

ability of the target variable. In the second phase, the network propagates the gradient
of this quantity with respect to the means and the variances of the approximate Gaussian
posterior, which are finally used to update the corresponding values of the means and the
variances of the posterior approximation of the Gaussians. The update rule used by PBP is
not a standard. Let f (w) correspond to an arbitrary likelihood function for the weights. The
weights are updated according to the Bayes’ rule:

s(w) = Z−1 f (w)N (w|m, v) (5)

where Z is the normalization constant. Updated values for the mean and the variance are
obtained using the gradient of the logarithm of the normalization constant Z:

mnew = m + v
∂logZ

∂m
(6)

vnew = v− v2

[(
∂logZ

∂m

)2
− 2
(

∂logZ
∂v

)]
(7)

The Shapley explainability [59] analysis has been used in this study to evaluate the
contribution of the data descriptors. The Shapley value [60]-based analysis is the method
adopted from cooperative game theory. This approach evaluates the distribution of the gain
earned by the team among its members. In regression, one may interpret it as the value of
the dependent parameter, while the individual members of the game are the descriptors
(independent variables) involved in the modeling. The evaluated global Shapley value
Φ f (i) can be considered as the part of the model’s accuracy associated with the individual
descriptors and can be defined as:

∑
i∈N

Φ f (i) = Ep(x,y)[ fy(x)] (8)
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where p(x,y) is the labelled data distribution, f y(x) is the model’s predicted value, and N is
the number of features. The local Shapley values correspond to the explainability of the
features on data point x:

φv(i) = ∑
∈Ni

|S|!(n− |S| − 1)!
n!

[v(S ∪ i)− v(S)] (9)

The feature values are added one at a time, averaged over all orderings the team is picked.

Figure 3. Principal scheme of (a) Long Short-Term Memory Neural Networks (LSTM) and (b) Proba-
bilistic Backpropagation Bayesian Neural Networks (PBP).
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2.2. Computational Procedures

The leave-one-out procedure is used for the validation of models. For the optimization
of the model’s parameters, the validation compounds were separated from the training set.

The Spearmint-PESC package was used for the Bayesian optimization of LSTM pa-
rameters: the number of neurons, the dropout value, and the number of epochs were
subjected to optimization. The parameters were optimized within the defined range using
the Predictive Entropy Search (PES) [61] acquisition function: the number of neurons was
varied from 5 to 100, the dropout was varied in the entire range from 0.0 to 1.0, and the
number of epochs was varied from 80 to 500. As a result of the optimization, LSTM was
used as it is realized in the Keras library with the following parameters: the dropout = 0.06,
the batch size = 1, the number of epochs in training = 3200, the number of neurons = 12.

For PBP, the following parameters of the methods were used: the number of hidden
units = 5 and the number of epochs is 100.

These two best models were used for target property prediction both individually
and jointly. The ensemble prediction, where the ionic conductivity value for each of the
predicted compounds was assessed as the average value between the predictions made by
these two approaches, showed the best performance.

3. Results and Discussion
3.1. Analysis of Experimental Data on Ionic Conductivity Values in Garnet Thin Films

The experimental data on Li-ion conductivity values in garnet films are very limited
in comparison to those related to the bulk structures. The collected data comprise the
information on twenty-nine garnet films. The information includes composition, deposition
method, processing history, obtained type of structure (with cubic or tetragonal symmetry
or amorphous), film thickness, and conductivity values (see Table 1).

One can see that garnet films were obtained with a variety of deposition methods, in-
cluding sol-gel, pulsed laser deposition (PLD), radio frequency (RF) magnetron sputtering,
and chemical vapor deposition (CVD). Deposited films represent all possible variants of
the structure: the cubic polymorph (c-LLZO), the tetragonal polymorph (t-LLZO), their
mixture, as well as the amorphous phases.

The substrates are represented quite narrowly by compounds of three space groups
of symmetry of crystal structures, Pm3̄m, Fm3̄m, and Ia3̄d, and are represented by several
amorphous and crystalline substrates: Si, Si oxides and nitrides, Pt, titanates, and ruthenates
of Sr2+, MgO, ITO, and Gd3Ga5O12 are used. The lattice constants, elastic properties,
coefficients of thermal expansion, and dielectric constants of the substrates are given in
Table 2.
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Table 1. Experimental data on Li-ion conductivity in the considered garnet film electrolytes: the target compound/precursors, the method of deposition and its
temperature, the substrate, the structure of deposited film, the film thickness and the ionic conductivity values

Ref. Target Compound/Precursors Method of Deposition Deposition
Temperature Substrate Structure

Film Thickness,
nm

Conductivity,
S cm−1

[62] Li-La-Zr sol Sol-gel: spin-coating 600 Si-Pt amorphous 307 nm 1.67 × 10−6

[62] Li-La-Zr sol Sol-gel: spin-coating 700 Si-Pt amorphous 307 nm 1.10 × 10−6

[62] Li-La-Zr sol Sol-gel: spin coating 800 Si-Pt amorphous 307 nm 8.53 × 10−7

[62] Li-La-Zr sol Sol-gel: spin coating 600 Si-Pt amorphous 130 nm 3.56 × 10−7

[5] Li6.19Al0.28La3Zr1.75Ta0.25O12 PE-CVD 50 Si3N4 amorphous 500 nm 2.86 × 10−9

[5] Li6.19Al0.28La3Zr1.75Ta0.25O12 PE-CVD 300 Si3N4 amorphous 500 nm 2.39 × 10−8

[5] Li6.19Al0.28La3Zr1.75Ta0.25O12 PE-CVD 500 Si3N4 amorphous 500 nm 4.27 × 10−9

[63] Li–La–Zr–O RF magnetron sputtering 27 SiO2-Si amorphous 561 nm 4.00 × 10−7

[64] LLZO CVD 950 SrRuO3 c-LLZO 4500 nm 1.40 × 10−5

[65] Li tert-butoxide, La tris-diisopropylformamidinate,
tetrakis(dimethylamido)zirconium, trimethylaluminium ALD 27 Si (100) amorphous 86.5 nm 1.00 × 10−8

[66] LLZO PLD 700 GGG (001) c-LLZO 26.2 nm 2.50 × 10−6

[66] LLZO PLD 700 GGG (111) c-LLZO 30.3 nm 1.00 × 10−5

[67] 2,2,6,6-tetramethyl-3,5-heptanedionato lithium, lanthanum (III)
acetylacetonate hydrate, zirconium (IV) acetylacetonate LA-CVD 700 Pt t-LLZO 850 nm 4.20 × 10−6

[68] 2,2,6,6-tetramethyl-3,5-heptanedionato lithium, lanthanum (III)
acetylacetonate hydrate, tantalum (V) tetraethoxyacetylacetonate LA-CVD 600 Pt amorphous 500 nm 2.10 × 10−8

[69] LLTO Magnetron sputtering 300 ITO amorphous 530.4 nm 3.68 × 10−6

[69] LLZTO Magnetron sputtering 300 ITO amorphous 611.5 nm 2.83 × 10−6

[70] LLZO Sol-gel: spin-coating 600 Si (100) amorphous 720 nm 3.90 × 10−7

[68] 2,2,6,6-tetramethyl-3,5-heptanedionato lithium, lanthanum (III)
acetylacetonate hydrate, tantalum (V) tetraethoxyacetylacetonate LA-CVD 700 Pt c-LLZO 1400 nm 2.93 × 10−7

[69] Li0.33La0.56TiO3, Li7La3Zr2O12 (LLTO) RF magnetron sputtering 300 ITO amorphous 530.4 nm 3.68 × 10−6

[69] Li0.33La0.56TiO3, Li7La3Zr2O12 (LLTO) RF magnetron sputtering 300 ITO amorphous 611.5 nm 2.83 × 10−6

[69] Li0.33La0.56TiO3, Li7La3Zr2O12 (LLTO) RF magnetron sputtering 300 ITO amorphous 593.6 nm 6.18 × 10−7

[71] Li7La3Zr2O12 PLD 600 MgO (100) c-LLZO+t-
LLZO 200 nm 1.61 × 10−6

[72] Li7La3Zr2O12, Li2O, Ga2O3 RF magnetron sputtering 27 MgO (100) amorphous 600 nm 1.61 × 10−5

[73] Li6BaLa2Ta2O12 PLD 550 MgO (100) c-LLZO 200 nm 1.70 × 10−6

[74] Li-La-Zr sol Sol-gel: dip-coating 900 MgO (100) c-LLZO 1000 nm 2.80 × 10−7

[75] LLZO PLD 27 STO (100) amorphous 1000 nm 3.35 × 10−7

[75] LLZO PLD 800 STO (100) c-LLZO 1000 nm 1.78 × 10−7

[76] Li-La-Zr sol Sol-gel: spin-coating 400 MgO (100)
t-LLZO+c-
LLZO+
La2Zr2O7

760 nm 1.00 × 10−6
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Table 2. Types of substrates for garnet film deposition for collected experimental data: crystal
structure, coefficient of thermal expansion, lattice constant and the corresponding lattice mismatch
values of the film (c-LLZO) and the substrate, the elastic properties of the substrate and the dielectric
constant values.

Substrate Crystal
Structure

Lattice
Constant/
Mismatch

α, K−1 Poisson’s
Coefficient ν

Young’s
Modulus E,
GPa

Bulk Modu-
lus B, GPa

Shear
Modulus
G, GPa

Dielectric
Constant εr

Si (100) amorphous 2.6 × 10−6 0.22 162 97.7 66.39 11.68
Si3N4 amorphous 3.3 × 10−6 0.27 297 241 116.9 10
SiO2 amorphous 5.6 × 10−7 0.17 73 36.8 31.2 3.9
SrRuO3 Cubic, Pm3̄m 3.95/−0.09 1.03 × 10−5 0.31 161 192.3 60.1 na
Pt Cubic, Fm3̄m 3.92/−0.09 8.9 × 10−6 0.38 168 230 60.87 58
ITO amorphous 8.5 × 10−6 0.33 116 99 43.6 3.33
MgO (100) Cubic, Fm3̄m 4.212/−0.03 1.5 × 10−5 0.18 249 155 105.5 9.5
SrTiO3 (100) Cubic, Pm3̄m 3.94/−0.09 2.98 × 10−5 0.24 277 173 111.7 300
GGG (001),
(111) Cubic, Ia3̄d 12.383/−0.05 8.2 × 10−6 0.28 222 169 86.7 12.24

3.2. Models of Strain

The strain-induced effects observed in most cases of the contacts of two interfaces,
when one of them is a thin film (we avoid considering extreme cases like van der Waals-type
interactions, e.g., muscovite mica [77]), are the most viable way to flexibly modulate the
properties of thin films. Several models describing the strain mechanisms in the films are
acknowledged in the literature [78].

The Matthews–Blakeslee equilibrium model [79] describes stress as a function of the
film thickness h, Burgers vector b, shear modulus G, Poisson ratio ν, dislocation geometry α
(the angle between the dislocation line and its Burgers vector), and λ (the angle between
the direction of the slip plane and the direction perpendicular to the intersection of the slip
plane and the interface). According to this model, the interface structure is affected by two
forces: (i) the force resulting from the misfit strain and (ii) the force from the tension in the
dislocation line:

Fε =
2G(1 + ν)

(1− ν)
bhε cos λ (10)

Fl =
Gb2

4π(1− ν)
(1− ν cos2 α)(ln

h
b
+ 1) (11)

The second model is the Matthews, Mader and Light kinetic model [80]:

F = β[1− exp(−α)] (12)

α =
2Gb3ρ(1 + ν) cos Φ cos2 λD0exp(−U/kT)

(1− ν)kT
(13)

β = f − [b(1− ν cos2 Θ)/8πh(1 + ν cos λ)]ln
h
b

(14)

where ρ is the dislocation density, cos Θ and cos λ are dislocation geometry parameters, G
is the shear modulus in GPa, D0 represents diffusion coefficients for dislocations, and U is
the activation energy in eV.

This model extends the system’s description by introducing thermodynamic and
kinetic parameters, as well as accounting for dislocation density. This makes it possible
to neglect the system’s equilibrium requirements and take into account time-dependent
changes and deposition rate.

Both models are based on calculations published earlier in the study by Frank and
van der Merwe [81]. The model proposed by Cammarata et al. extends the description to
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include the impact of surface free energy, volume elastic energy of the film, and reduction
in interfacial free energy (Cammarata, Sieradzki, and Spaepen model [82,83]).

One of the classical models, the Prandtl-Tomlinson model [84], also known as the
Frenkel–Kontorova model [85,86] (the model was independently introduced by two dif-
ferent groups, thus, in the literature, both names can be found), serves as the basis for
describing a wide spectrum of problems in various fields of condensed matter science [87].
One of the applications of the Frenkel–Kontorova model aligns with the strain-related
behavior in film/substrate systems and relates to describing processes investigated in
inorganic supramolecular chemistry of misfit and eutectic inorganic compounds. Here, the
misfit-induced processes significantly affect the system’s behavior, self-organization, and
physical properties [88,89]. This extended model describes a one-dimensional chain placed
in a periodic potential and introduces the incommensurability parameter γ = b/h (where b
is the bond length of the free chain and h is the period of the potential), the number of chain
bonds N, and the energy parameter Z = 2πA/(kh2) (where k is the parameter characterizing
the elasticity of the chain, and A is the amplitude of the periodic potential) [90] (Figure 4).

Figure 4. Elastic chain in a periodic potential of the substrate: h is a period of the potential of
substrate, k is the elastic characteristics of the chain, A is the amplitude of the potential. Reprinted
with permission from ref. [90]. (Copyright of Springer).

These model parameters were studied for their impact on the probability of chain
fragmentation for specific misfit values and characteristic energies. This model offers a
solid foundation for considering potential chemical interactions between the substrate and
the films.

Extending the Prandtl–Tomlinson (Frenkel–Kontorova) model to describe epitaxial
strain in the films, the film is depicted as a spring subjected to an external periodic potential.
Here, the spring constant corresponds to the elastic characteristics of the film, and the
potential well depth corresponds to those of the substrate. Further extending this model
and incorporating theoretical results from [91], this potential well depth can be employed
to describe the film-substrate adhesion.

In subsequent models developed in this field, particular emphasis has been placed
on the misfit values of the lattice constants of the film and the substrate. In another
study [91], the authors, drawing from experimental data on the application of interfacial
stress, introduced structural phase diagrams with film thickness and lattice misfit as the
main parameters. This allowed them to differentiate regions of coherent and incoherent
stable and pseudomorphic structures, along with the area of strain spinodal decomposition
for strong and weak substrate adhesion. Two modes of film growth are distinguished:
(i) Stranski–Krastanov (SK) and (ii) Volmer–Weber (VW). The latter involves the nucleation
of solid clusters from the vapor phase (resulting in island-like formation of the film), while
the former represents a compromise between VW and Frank van der Merwe growth types.
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The former provides two-dimensional growth, allowing the formation of a monolayer
when atoms from layer N-1 are fully deposited before layer N starts forming.

3.3. Descriptors Refinement

The models developed in this study are based on introducing specific parameters that
describe the objects and details of the deposition process, which are hereafter referred to as
descriptors. These descriptors establish a connection between the introduced characteristics
and Li-ion conductivity. The experimental methods for obtaining garnet films are quite
diverse, and this diversity, combined with the limited available data, makes it challenging
to quantitatively describe much of the information related to film growth. In Figure 5, Li-ion
conductivity is plotted as a function of several parameters that were selected following
preliminary data analysis. These parameters include the difference in coefficients of thermal
expansion (a), the shear modulus of the substrate (b), and the ratio of the deposition
temperature to the melting point of the substrate (c). A similar trend with the shear modulus
was observed for both the film and the substrate materials in terms of Pugh’s ratio.

Based on the analysis of the experimental data, it can be assumed that there is a range
of values for the elastic characteristics of the substrate materials (e.g., within the range of
shear modulus G values) for which the physical contact between the film and substrate is
optimal (Figure 5b).

The conducted analysis of the impact of the Tdepos/Tm ratio reveals the following
observations: (i) enhanced conductivity values can be distinguished in garnet thin films
deposited on ITO and MgO substrates. In the case of the MgO substrate, the thin films
(with thicknesses of 200 and 760 nm) exhibited two phases, tetragonal and cubic, as a
result of deposition (Figure 5d; shown with diamond markers), (ii) an increase in the film’s
thickness may also be responsible for the stabilization of alternative phases, as observed
for the Pt substrate, where the tetragonal polymorph was present due to film deposition
(Figure 5d; t-LLZO is shown with square markers).

The parameters that were initially considered as descriptors during the preliminary
search are as follows: (i) the film thickness, (ii) the misfit between the film and substrate
materials, (iii) the deposition temperature (inverse value), (iv) the difference in thermal
expansion coefficients between the film and the substrate, (v) the ratio of the deposition
temperature to the melting point of the substrate, (vi) electronegativities for the sub-
strate and film cations (considered individually or as a ratio), (vii) the shear modulus,
(viii) parameters evaluating the elastic properties of the film and the substrate (please refer
below), (ix) Pugh’s ratio, (x) the product of the ratio of elastic characteristics of the substrate
and the thickness of the film, as well as the deposition temperature and the difference in
coefficients of thermal expansion between the substrate and the film (please refer to the
parameter accounting for thermally-induced macro-strain), (xi) the dielectric constant of
the substrate, and (xii) the working pressure during the process of film deposition.

The final set of descriptors includes seven parameters: (i) inverse deposition tempera-
ture, (ii) ratio of the deposition temperature to the melting point of the substrate, (iii) normal-

ized shear modulus, (iv) the elastic properties of the film, described as follows:
E(1− ν)

h
,

where E, in GPa, represents Young’s modulus (characterizing materials’ stress-strain rela-
tionships), h is the film thickness, and ν is Poisson’s ratio (the ratio of transverse contraction
or strain to axial strain), (v) the misfit value, (vi) the dielectric constant of the substrate, and
(vii) the product of the following three parameters: ratio of the elastic characteristics of the
substrate and the thickness of the film, the deposition temperature, and the difference in the
coefficients of thermal expansion between the film and substrate materials (accounting for

thermally-induced macro-strain):
Esubstrate(1− νsubstrate)

hfilm
· Tdepos · ∆CTE(substrate-film).

The importance of considering the ratio of the deposition temperature to the melting
point is determined by several factors: first, if this ratio is below one-third, it implies that
dislocation movement is the dominant mechanism of plastic deformation, making misfit
value, elastic characteristics, and film thickness values even more crucial [92]; second,
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the likelihood of secondary phase formation and reactions at the interfaces significantly
increases (this assumption is valid at least for Ta-doped LLZO compounds deposited on
Si3N4 substrate); third, due to the previous point, the ratio of the deposition temperature to
the melting point of the substrate becomes an important factor describing the possibility of
achieving a coherent interface between two contacting surfaces.

Surprisingly, using the film thickness as the individual descriptor parameter was
insufficient. This result should be considered as an artifact related to the experimental
data available. Based on the available misfit data, one can infer a positive impact from the
presence of compressive strain. In the context of this study, it is notable that the majority
of the experimental data regarding garnet films are situated within the region of coherent
stable interfaces.

Figure 5. Li-ion conductivity values in garnet films as a function of (a) the difference in coefficients
of thermal expansion, (b) shear modulus G of the substrate, GPa, (c) the ratio of the deposition
temperature and the melting point, (d) diagram film thickness vs. T (◦C) of deposition

Based on the experimental data, one can identify the c-LLZO garnet film deposited on
Pt substrates using LA-CVD deposition. Despite the misfit value of 8%, the conductivity is
not as high as anticipated from other experimental data for c-LLZO. Thus, the compound
with a tetragonal structure and a close misfit value (9% misfit) exhibits superior kinetic
characteristics. This discrepancy can be explained by the film thickness of c-LLZO exceeding
1 µm.

For the c-LLZO film deposited on the STO substrate, one can assume the substantial
contribution of Ti redox processes leading to the formation of a space charge layer due
to the interaction of the redox center with the oxygen vacancies formed as a result of the
high-energy sputtering process. This assumption is supported by the findings in [93]. It was
demonstrated that the binding of Li becomes less energetically favorable with an increase
in oxygen vacancies at the surface, which can have a negative impact on the film-surface
contact and, consequently, on Li-ion conductivity.

When analyzing the effect of substrate composition, one can highlight the following
observations. The c-LLZO film deposited on SrRuO3 is characterized by a film thickness
in the micrometer range (4.3 µm) along with enhanced ionic conductivity. Possible ex-
planations for this behavior are associated with the substrate composition, which might
assist in stabilizing lattice oxygen at the film surface, thereby preventing the formation of
oxygen vacancies and subsequent space charge formation. In Li-rich layered oxide cathode
materials, Ru is known to play a stabilizing role in oxygen redox processes [94,95].

Figure 5a represents the difference in the coefficient of thermal expansion that reflects
the thermally induced contribution to the macrostrain of the films. The smaller difference
corresponds to higher Li-ion conductivity values.
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Analyzing the elastic characteristics of the substrate and the film compounds, it
is possible to suggest the existence of a certain range of elastic modulus values for the
substrate (shear modulus, Young’s modulus, or Pugh’s ratio) that are close but not identical
to those of the film, resulting in enhanced conductivity (Pugh’s ratio for the considered
garnet compounds is approximately 1.72). However, these obtained values differ from
the widely accepted recommendations for similar elastic properties of film and substrate
materials [96].

For two LLZO films, high ionic conductivity values could be attributed to tin segrega-
tion. The positive effect of Sn on Li-ion conductivity might be related to the functionaliza-
tion of grain boundaries (GBs) through intermediate phase formation. Several studies have
revealed Sn segregation in ITO films at high temperatures. In [97], it was demonstrated that
SnO2 films interact with the LLZTO garnet structure at 200 ◦C, leading to the formation of
LixSn and Li2O. This interaction significantly enhances the contact between the two phases,
reducing interfacial resistance (from 1100 to 25 Ω cm2) and transforming the interface from
lithiophobic to lithiophilic. Similar processes can be assumed in the case of Sn segregation.

Conversely, the opposite trend, presumably for the same reasons, is observed with Si
contribution. Si can easily interact with substrate materials, forming secondary insulating
SiO2 phases.

It is noteworthy that for the Gd3Ga5O12 (GGG) substrate, the high conductivity values
can be explained by the substrate adopting the same structure type as the garnet cubic
polymorphs of the films (affected by microstructure and texture), nanosize effects [98], as
well as the dominant contribution of interface conductivity due to the film thickness of
approximately 30 nm.

3.4. Machine Learning Modeling and Data Analysis

In recent years, machine learning (ML) has actively integrated into the fields of chem-
istry and materials science, opening fundamentally new opportunities for designing new
compounds/materials or functionalities. Thus, materials informatics methodologies have
been successfully applied for the rational screening of compounds with tailored character-
istics [99–103], predicting crystal structures [104], designing experiments [105–107], using
natural language processing for experimental data acquisition and analysis [108,109], ana-
lyzing data from physicochemical characterization methods [110,111], and microstructural
informatics [112–114].

Machine learning processes input data (quantitative characteristics or images) to derive
information based on predefined goals. In this study, ML is applied for supervised learning
in a regression task, where methods uncover relationships between input parameters and
the final target characteristics by presenting input parameters in line with the corresponding
values of the target property.

Quantitative models for predicting ionic conductivity values were obtained using
LSTM [53] and probabilistic backpropagation (PBP) [58] neural networks. Figure 6 repre-
sents the results of leave-one-out cross-validation of the models for predicting the ionic
conductivity values in garnet films for the available experimental data using both ML
methods. The determination coefficient R2 of 0.69, 0.76 and 0.83, root mean square error
RMSE value of 0.584, 0.496 and 0.414 and mean average percentage error MAPE value
of 0.074, 0.063 and 0.054, for LSTM, PBP and their averaged prediction, respectively. The
right part of this figure represents the results of assessing the uncertainty of the predic-
tions for individual compounds, obtained as the standard deviation for the corresponding
average value. All compounds are predicted within a range of three σ. The final model,
which is used as the reference, predicts certain compounds with significant discrepancies
between the experimental and predicted conductivity values. One such example is the
Ta-LLZO deposited on Si3N4 at 500 ◦C, where the conductivity values are overestimated,
and the discrepancy can be assessed as 0.73 in log(σtot). Other outliers are the LLZO films
deposited on the Gd3Ga5O12 substrate. The possible reasons for this discrepancy may be
the substantially different thickness of the deposited films compared to other experimental
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data, which does not exceed 50 nm. The discrepancy values are −0.765 and 0.805 log(σtot),
respectively. The puzzling observation regarding the absence of film thickness in the final
set of parameters chosen for modeling may be related to the presence of several outly-
ing observations. All three of these compounds are predicted with the largest standard
deviation of the predicted value based on the averaging over 100 models.

Figure 6. Experimental vs. predicted Li-ion -log conductivity values for LSTM (a), PBP (b) models
and their averaged prediction values (c) using leave-one-out cross-validation procedure in line with
(right part of the figure) standard deviation of the predictions averaged over 100 models. The numbers
at X axis correspond to the following published studies in list of references: 1—[65], 2—[66], 3—[68],
4—[68], 5—[65], 6—[61], 7—[70], 8—[61], 9—[75], 10—[61], 11—[62], 12—[69], 13—[61], 14—[73],
15—[74], 16—[5], 17—[64], 18—[5], 19—[5].
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The analysis of the impact of individual descriptors on Li-ion conductivity using
Shapley explainability theory is shown in Figure 7. This figure illustrates the averaged
contribution of each parameter for the analyzed data, as well as the marginal impact of
each parameter across a range of values.

From these figures, one can observe the dominant contribution of the parameters ratio
mp/Tdepos, shear modulus G, and misfit to the value of the modeled property. The second
plot demonstrates the range of Shapley values for each considered parameter for the entire
dataset. The Shapley value corresponding to the film-substrate misfit is very focused, while
the importance of the ratio Tm/Tdepos and shear modulus varies across a wide range of
values.

Figure 7. Results of Shapley explainability analysis of the descriptors involved in this study: the
summary of marginalized and averaged impact of model’s descriptors.

4. Conclusions

In this study, experimental data on Li-ion conductivities in the films of garnet solid
electrolytes have been analyzed and modeled. Among the parameters that emerged as
the most important for the ionic conductivity in garnet thin films, one can distinguish the
deposition temperature, the melting point of the substrate material, the shear modulus of
the substrate, the elastic properties of the film (including information on Young’s modulus,
Poisson’s ratio, and film thickness), as well as the parameter introduced in this study
representing the product of three parameters: elastic characteristics, deposition temperature,
and the difference in the thermal expansion coefficient for the film and the substrate
materials. This parameter combines both the elastic and temperature contributions to stress.
The role of a substrate composition in processes observed at film-substrate interfaces was
discussed in the context of cation segregation, formation of secondary phases, and space
charge affecting the functional characteristics of the films.

Possible ways to optimize Li-ion transport characteristics include amorphization
processes and the use of sacrificed Li source compounds.

The developed models exhibit good predictivity, with the largest determination co-
efficient R2 = 0.83 and RMSE = 0.414. The introduced dielectric constant of the substrate
was found to improve the model predictivity. The impact of the descriptors on the model’s
predictivity has been assessed, prioritizing the role of the ratio of the substrate’s melting
temperature to the deposition temperature, the elastic characteristics of the substrate, and
the film-substrate misfit.

Author Contributions: Conceptualization, N.K. and V.S.P.; methodology, N.K.; validation, N.K.; data
curation, N.K.; writing—original draft preparation, N.K.; writing—review and editing, N.K., V.S.P.
and A.Y.T.; supervision, V.S.P. and A.Y.T.; project administration, V.S.P.; funding acquisition, V.S.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research (Project No. 17-03-
00835).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.



Batteries 2023, 9, 430 16 of 19

Acknowledgments: Authors acknowledge the Russian Foundation for Basic Research (Project No.
17-03-00835) for the support. For the visualization of the structures VESTA software has been used.
Keras, SHAP and Seaborn packages were used.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodenough, J.B.; Singh, P. Review—Solid Electrolytes in Rechargeable Electrochemical Cells. J. Electrochem. Soc. 2015, 162, A2387.

[CrossRef]
2. Lotsch, B.V.; Maier, J. Relevance of solid electrolytes for lithium-based batteries: A realistic view. J. Electroceramics 2017,

38, 128–141. [CrossRef]
3. Bachman, J.C.; Muy, S.; Grimaud, A.; Chang, H.H.; Pour, N.; Lux, S.F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; et al.

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2016,
116, 140–162. [CrossRef]

4. Oudenhoven, J.F.M.; Baggetto, L.; Notten, P.H.L. All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-
Dimensional Concepts. Adv. Energy Mater. 2011, 1, 10–33. [CrossRef]

5. Garbayo, I.; Struzik, M.; Bowman, W.J.; Pfenninger, R.; Stilp, E.; Rupp, J.L.M. Glass-Type Polyamorphism in Li-Garnet Thin Film
Solid State Battery Conductors. Adv. Energy Mater. 2018, 8, 1702265. [CrossRef]

6. Huang, K.J.; Ceder, G.; Olivetti, E.A. Manufacturing scalability implications of materials choice in inorganic solid-state batteries.
Joule 2021, 5, 564–580. [CrossRef]

7. Thangadurai, V.; Kaack, H.; Weppner, W.J.F. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta).
J. Am. Ceram. Soc. 2003, 86, 437–440. [CrossRef]

8. Thangadurai, V.; Weppner, W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and
K-doped Li5La3Nb2O12. J. Solid State Chem. 2006, 179, 974–984. [CrossRef]

9. Murugan, R.; Thangadurai, V.; Weppner, W. Effect of lithium ion content on the lithium ion conductivity of the garnet-like
structure Li5 + xBaLa2Ta2O11.5 + 0.5x (x = 0–2). Appl. Phys. A 2008, 91, 615–620. [CrossRef]

10. Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed.
2007, 46, 7778–7781. [CrossRef]

11. Chen, Y.; Rangasamy, E.; Liang, C.; An, K. Origin of High Li+ Conduction in Doped Li7La3Zr2O12 Garnets. Chem. Mater. 2015,
27, 5491–5494. [CrossRef]

12. Li, J.; Liu, Z.; Ma, W.; Dong, H.; Zhang, K.; Wang, R. Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball
milling induced phase transition. J. Power Sources 2019, 412, 189–196. [CrossRef]

13. Orera, A.; Larraz, G.; Rodriguez-Velamazan, J.A.; Campo, J.; Sanjuan, M.L. Influence of Li and H Distribution on the Crystal Structure
of Li7–xHxLa3Zr2O12 (0 =< x =<5) Garnets. Inorg. Chem. 2016, 55, 1324–1332. [CrossRef]

14. Bernstein, N.; Johannes, M.D.; Hoang, K. Origin of the Structural Phase Transition in Li7La3Zr2O12. Phys. Rev. Lett. 2012,
109, 205702. [CrossRef]

15. Wagner, R.; Redhammer, G.J.; Rettenwander, D.; Senyshyn, A.; Schmidt, W.; Wilkening, M.; Amthauer, G. Crystal Structure of
Garnet-Related Li-Ion Conductor Li7–3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification? Chem.
Mater. 2016, 28, 1861–1871. [CrossRef]

16. Rondinelli, J.M.; Spaldin, N.A. Structure and Properties of Functional Oxide Thin Films: Insights From Electronic-Structure
Calculations. Adv. Mater. 2011, 23, 3363–3381. [CrossRef]

17. Schlom, D.G.; Chen, L.Q.; Fennie, C.J.; Gopalan, V.; Muller, D.A.; Pan, X.; Ramesh, R.; Uecker, R. Elastic strain engineering of
ferroic oxides. MRS Bull. 2014, 39, 118–130. [CrossRef]

18. Keppner, J.; Schubert, J.; Ziegner, M.; Mogwitz, B.; Janek, J.; Korte, C. Influence of texture and grain misorientation on the ionic
conduction in multilayered solid electrolytes—Interface strain effects in competition with blocking grain boundaries. Phys. Chem.
Chem. Phys. 2018, 20, 9269–9280. [CrossRef]

19. Hwang, H.Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater.
2012, 11, 103–113. [CrossRef]

20. Aslan, O.B.; Datye, I.M.; Mleczko, M.J.; Sze Cheung, K.; Krylyuk, S.; Bruma, A.; Kalish, I.; Davydov, A.V.; Pop, E.; Heinz, T.F.
Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1-xWxTe2. Nano Lett. 2018, 18, 2485–2491. [CrossRef]

21. Choi, S.Y.; Kim, S.D.; Choi, M.; Lee, H.S.; Ryu, J.; Shibata, N.; Mizoguchi, T.; Tochigi, E.; Yamamoto, T.; Kang, S.J.L.; et al.
Assessment of Strain-Generated Oxygen Vacancies Using SrTiO3 Bicrystals. Nano Lett. 2015, 15, 4129–4134. [CrossRef] [PubMed]

22. Sohier, T.; Gibertini, M.; Campi, D.; Pizzi, G.; Marzari, N. Valley-Engineering Mobilities in Two-Dimensional Materials. Nano Lett.
2019, 19, 3723–3729. [CrossRef] [PubMed]

23. Martin, L.W.; Rappe, A.M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2016, 2, 16087. [CrossRef]
24. Schlom, D.G.; Chen, L.Q.; Eom, C.B.; Rabe, K.M.; Streiffer, S.K.; Triscone, J.M. Strain Tuning of Ferroelectric Thin Films. Annu.

Rev. Mater. Res. 2007, 37, 589–626. [CrossRef]
25. Xu, Y.; Park, J.H.; Yao, Z.; Wolverton, C.; Razeghi, M.; Wu, J.; Dravid, V.P. Strain-Induced Metastable Phase Stabilization in Ga2O3

Thin Films. ACS Appl. Mater. Interfaces 2019, 11, 5536–5543. [CrossRef] [PubMed]

http://doi.org/10.1149/2.0021514jes
http://dx.doi.org/10.1007/s10832-017-0091-0
http://dx.doi.org/10.1021/acs.chemrev.5b00563
http://dx.doi.org/10.1002/aenm.201000002
http://dx.doi.org/10.1002/aenm.201702265
http://dx.doi.org/10.1016/j.joule.2020.12.001
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03318.x
http://dx.doi.org/10.1016/j.jssc.2005.12.025
http://dx.doi.org/10.1007/s00339-008-4494-2
http://dx.doi.org/10.1002/anie.200701144
http://dx.doi.org/10.1021/acs.chemmater.5b02521
http://dx.doi.org/10.1016/j.jpowsour.2018.11.040
http://dx.doi.org/10.1021/acs.inorgchem.5b02708
http://dx.doi.org/10.1103/PhysRevLett.109.205702
http://dx.doi.org/10.1021/acs.chemmater.6b00038
http://dx.doi.org/10.1002/adma.201101152
http://dx.doi.org/10.1557/mrs.2014.1
http://dx.doi.org/10.1039/C7CP06951K
http://dx.doi.org/10.1038/nmat3223
http://dx.doi.org/10.1021/acs.nanolett.8b00049
http://dx.doi.org/10.1021/acs.nanolett.5b01245
http://www.ncbi.nlm.nih.gov/pubmed/26000901
http://dx.doi.org/10.1021/acs.nanolett.9b00865
http://www.ncbi.nlm.nih.gov/pubmed/31083949
http://dx.doi.org/10.1038/natrevmats.2016.87
http://dx.doi.org/10.1146/annurev.matsci.37.061206.113016
http://dx.doi.org/10.1021/acsami.8b17731
http://www.ncbi.nlm.nih.gov/pubmed/30628429


Batteries 2023, 9, 430 17 of 19

26. Sagotra, A.K.; Cazorla, C. Stress-Mediated Enhancement of Ionic Conductivity in Fast-Ion Conductors. ACS Appl. Mater. Interfaces
2017, 9, 38773–38783. [CrossRef] [PubMed]

27. Li, F.; Li, J.; Zhu, F.; Liu, T.; Xu, B.; Kim, T.H.; Kramer, M.J.; Ma, C.; Zhou, L.; Nan, C.W. Atomically Intimate Contact between
Solid Electrolytes and Electrodes for Li Batteries. Matter 2019, 1, 1001–1016. [CrossRef]

28. Aidhy, D.S.; Rawat, K. Coupling between interfacial strain and oxygen vacancies at complex-oxides interfaces. J. Appl. Phys.
2021, 129, 171102. [CrossRef]

29. Gupta, S.; Sachan, R.; Narayan, J. Nanometer-Thick Hexagonal Boron Nitride Films for 2D Field-Effect Transistors. ACS Appl.
Nano Mater. 2020, 3, 7930–7941. [CrossRef]

30. Chen, B.; Ju, J.; Ma, J.; Du, H.; Xiao, R.; Cui, G.; Chen, L. Strain tunable ionic transport properties and electrochemical window of
Li10GeP2S12 superionic conductor. Comput. Mater. Sci. 2018, 153, 170–175. [CrossRef]

31. Jia, M.; Wang, H.; Sun, Z.; Chen, Y.; Guo, C.; Gan, L. Exploring ion migration in Li2MnSiO4 for Li-ion batteries through strain
effects. RSC Adv. 2017, 7, 26089–26096. [CrossRef]

32. O’Rourke, C.; Morgan, B.J. Interfacial strain effects on lithium diffusion pathways in the spinel solid electrolyte Li-doped
MgAl2O4. Phys. Rev. Mater. 2018, 2, 045403. [CrossRef]

33. Wei, J.; Ogawa, D.; Fukumura, T.; Hirose, Y.; Hasegawa, T. Epitaxial Strain-Controlled Ionic Conductivity in Li-Ion Solid
Electrolyte Li0.33La0.56TiO3 Thin Films. Cryst. Growth Des. 2015, 15, 2187–2191. [CrossRef]

34. Korte, C.; Keppner, J.; Peters, A.; Schichtel, N.; Aydin, H.; Janek, J. Coherency strain and its effect on ionic conductivity and
diffusion in solid electrolytes—An improved model for nanocrystalline thin films and a review of experimental data. Phys. Chem.
Chem. Phys. 2014, 16, 24575–24591. [CrossRef] [PubMed]

35. Harrington, G.F.; Cavallaro, A.; McComb, D.W.; Skinner, S.J.; Kilner, J.A. The effects of lattice strain, dislocations, and microstructure
on the transport properties of YSZ films. Phys. Chem. Chem. Phys. 2017, 19, 14319–14336. [CrossRef] [PubMed]

36. Wen, K.; Lv, W.; He, W. Interfacial lattice-strain effects on improving the overall performance of micro-solid oxide fuel cells.
J. Mater. Chem. A 2015, 3, 20031–20050. [CrossRef]

37. Rupp, J.L.M.; Fabbri, E.; Marrocchelli, D.; Han, J.W.; Chen, D.; Traversa, E.; Tuller, H.L.; Yildiz, B. Scalable Oxygen-Ion Transport
Kinetics in Metal-Oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped Ceria Films. Adv. Funct.
Mater. 2014, 24, 1562–1574. [CrossRef]

38. Jamnik, J.; Maier, J.; Pejovnik, S. Interfaces in solid ionic conductors: Equilibrium and small signal picture. Solid State Ionics 1995,
75, 51–58. [CrossRef]

39. Maier, J. Space Charge Regions in Solid Two Phase Systems and Their Conduction Contribution—II Contact Equilibrium at
the Interface of Two Ionic Conductors and the Related Conductivity Effect. Berichte Bunsenges. Phys. Chem. 1985, 89, 355–362.
[CrossRef]

40. Maier, J. Ionic conduction in space charge regions. Prog. Solid State Chem. 1995, 23, 171–263. [CrossRef]
41. Li, C.; Maier, J. Ionic space charge effects in lithium fluoride thin films. Solid State Ionics 2012, 225, 408–411. [CrossRef]
42. Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: New York, NY, USA, 1946.
43. Wang, S.H.; Yue, J.; Dong, W.; Zuo, T.T.; Li, J.Y.; Liu, X.; Zhang, X.D.; Liu, L.; Shi, J.L.; Yin, Y.X.; et al. Tuning wettability of molten

lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 2019, 10, 4930. [CrossRef] [PubMed]
44. Cha, E.; Yun, J.H.; Ponraj, R.; Kim, D.K. A mechanistic review of lithiophilic materials: Resolving lithium dendrites and advancing

lithium metal-based batteries. Mater. Chem. Front. 2021, 5, 6294–6314. [CrossRef]
45. Chen, Y.T.; Jena, A.; Pang, W.K.; Peterson, V.K.; Sheu, H.S.; Chang, H.; Liu, R.S. Voltammetric Enhancement of Li-Ion Conduction

in Al-Doped Li7–xLa3Zr2O12 Solid Electrolyte. J. Phys. Chem. C 2017, 121, 15565–15573. [CrossRef]
46. Reichert, S.; Flemming, J.; An, Q.; Vaynzof, Y.; Pietschmann, J.F.; Deibel, C. Improved evaluation of deep-level transient

spectroscopy on perovskite solar cells reveals ionic defect distribution. arXiv 2019, arXiv:1910.04583.
47. Zhu, Y.; Wu, S.; Pan, Y.; Zhang, X.; Yan, Z.; Xiang, Y. Reduced Energy Barrier for Li+ Transport Across Grain Boundaries with

Amorphous Domains in LLZO Thin Films. Nanoscale Res. Lett. 2020, 15, 153. [CrossRef] [PubMed]
48. Koresh, I.; Tang, Z.; Troczynski, T. A novel approach to prepare Li-La-Zr-O solid state electrolyte films by suspension plasma

spray. Solid State Ionics 2021, 368, 115679. [CrossRef]
49. Koresh, I.; Klein, B.A.; Tang, Z.; Michaelis, V.K.; Troczynski, T. Li ion transport properties of amorphous/crystalline Li-La-Zr-Nb-O

solid electrolyte thick films prepared by suspension plasma spraying. Solid State Ionics 2022, 380, 115938. [CrossRef]
50. Pervov, V.S.; Zotova, A.E. On Some Problems of Inorganic Supramolecular Chemistry. ChemPhysChem 2013, 14, 3865–3867.

[CrossRef]
51. Anosov, V.; Pogodin, S. Fundamental Principles of Physical-Chemical Analysis; AS: Moskow, Russia, 1947; pp. 269–309.
52. Hassabis, D.; Kumaran, D.; Summerfield, C.; Botvinick, M. Neuroscience-Inspired Artificial Intelligence. Neuron 2017, 95, 245–258.

[CrossRef]
53. Hochreiter, S. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
54. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks Supervised Sequence Labelling with Recurrent

Neural Networks. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2008.
55. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian

Optimization. Proc. IEEE 2016, 104, 148–175. [CrossRef]
56. Kushner, H.J.; Yin, G. Stochastic Approximation Algorithms and Applications; Springer: New York, NY, USA, 1997.

http://dx.doi.org/10.1021/acsami.7b11687
http://www.ncbi.nlm.nih.gov/pubmed/29035028
http://dx.doi.org/10.1016/j.matt.2019.05.004
http://dx.doi.org/10.1063/5.0049001
http://dx.doi.org/10.1021/acsanm.0c01416
http://dx.doi.org/10.1016/j.commatsci.2018.06.041
http://dx.doi.org/10.1039/C7RA03528D
http://dx.doi.org/10.1103/PhysRevMaterials.2.045403
http://dx.doi.org/10.1021/cg501834s
http://dx.doi.org/10.1039/C4CP03055A
http://www.ncbi.nlm.nih.gov/pubmed/25309994
http://dx.doi.org/10.1039/C7CP02017A
http://www.ncbi.nlm.nih.gov/pubmed/28537623
http://dx.doi.org/10.1039/C5TA03009A
http://dx.doi.org/10.1002/adfm.201302117
http://dx.doi.org/10.1016/0167-2738(94)00184-T
http://dx.doi.org/10.1002/bbpc.19850890402
http://dx.doi.org/10.1016/0079-6786(95)00004-E
http://dx.doi.org/10.1016/j.ssi.2012.02.036
http://dx.doi.org/10.1038/s41467-019-12938-4
http://www.ncbi.nlm.nih.gov/pubmed/31666514
http://dx.doi.org/10.1039/D1QM00579K
http://dx.doi.org/10.1021/acs.jpcc.7b04004
http://dx.doi.org/10.1186/s11671-020-03378-x
http://www.ncbi.nlm.nih.gov/pubmed/32712882
http://dx.doi.org/10.1016/j.ssi.2021.115679
http://dx.doi.org/10.1016/j.ssi.2022.115938
http://dx.doi.org/10.1002/cphc.201300724
http://dx.doi.org/10.1016/j.neuron.2017.06.011
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/JPROC.2015.2494218


Batteries 2023, 9, 430 18 of 19

57. Mockus, J.; Tiesis, V.Z.A. Toward Global Optimization: Chapter The Application of Bayesian Methods for Seeking the Extremum; Elsevier:
Amsterdam, The Netherlands, 1978; Volume 2.

58. Hernandez-Lobato, J.; Adams, R. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. In Proceed-
ings of the Machine Learning Research, Lille, France, 7–9 July 2015; Volume 37.

59. Frye, C.; Mijolla, D.; Begley, T.; Cowton, L.; Stanley, M.; Feige, I. Shapley Explainability on the Data Manifold. arXiv 2021,
arXiv:2006.01272.

60. Shapley, L. A value for n-person games. Contribution to the Theory of Games; Princeton University Press: Princeton, NJ, USA, 1953.
61. Hernandez-Lobato, J.M., Hoffman, M.W.; Ghahramani, Z. Predictive entropy search for efficient global optimization of black-box

functions. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2014; pp. 918–926.
62. Chen, R.J.; Huang, M.; Huang, W.Z.; Shen, Y.; Lin, Y.H.; Nan, C.W. Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for

lithium-ion batteries. J. Mater. Chem. A 2014, 2, 13277–13282. [CrossRef]
63. Kalita, D.; Lee, S.; Lee, K.; Ko, D.; Yoon, Y. Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film

batteries. Solid State Ionics 2012, 229, 14–19. [CrossRef]
64. Katsui, H.; Goto, T. Impedance of Cubic Li7La3Zr2O12 Film Deposited on Strontium Ruthenate Substrate by Chemical Vapor

Deposition. Mater. Today Proc. 2017, 4, 11445–11448. [CrossRef]
65. Kazyak, E.; Chen, K.H.; Wood, K.N.; Davis, A.L.; Thompson, T.; Bielinski, A.R.; Sanchez, A.J.; Wang, X.; Wang, C.;

Sakamoto, J.; et al. Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12. Chem. Mater. 2017, 29, 3785–3792.
[CrossRef]

66. Kim, S.; Hirayama, M.; Taminato, S.; Kanno, R. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all
solid-state battery electrolyte. Dalton Trans. 2013, 42, 13112–13117. [CrossRef]

67. Loho, C.; Djenadic, R.; Bruns, M.; Clemens, O.; Hahn, H. Garnet-Type Li7La3Zr2O12Solid Electrolyte Thin Films Grown by CO2-Laser
Assisted CVD for All-Solid-State Batteries. J. Electrochem. Soc. 2016, 164, A6131–A6139. [CrossRef]

68. Loho, C.; Djenadic, R.; Mundt, P.; Clemens, O.; Hahn, H. On processing-structure-property relations and high ionic conductivity
in garnet-type Li5La3Ta2O12 solid electrolyte thin films grown by CO2-laser assisted CVD. Solid State Ionics 2017, 313, 32–44.
[CrossRef]

69. Nong, J.; Xu, H.; Yu, Z.; Zhu, G.; Yu, A. Properties and preparation of Li–La–Ti–Zr–O thin film electrolyte. Mater. Lett. 2015,
154, 167–169. [CrossRef]

70. Song, S.; Xu, Y.; Ruan, Y.; Wang, H.; Zhang, D.; Thokchom, J.; Mei, D. Isomeric Li-La-Zr-O Amorphous-Crystalline Composite
Thin-Film Electrolytes for All-Solid-State Lithium Batteries. ACS Appl. Energy Mater. 2021, 4, 8517–8528. [CrossRef]

71. Park, J.S.; Cheng, L.; Zorba, V.; Mehta, A.; Cabana, J.; Chen, G.; Doeff, M.M.; Richardson, T.J.; Park, J.H.; Son, J.W.; et al. Effects of
crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films. Thin Solid Film. 2015, 576, 55–60. [CrossRef]

72. Rawlence, M.; Filippin, A.N.; Wäckerlin, A.; Lin, T.Y.; Cuervo-Reyes, E.; Remhof, A.; Battaglia, C.; Rupp, J.L.M.; Buecheler, S.
Effect of Gallium Substitution on Lithium-Ion Conductivity and Phase Evolution in Sputtered Li7–3xGaxLa3Zr2O12 Thin Films.
ACS Appl. Mater. Interfaces 2018, 10, 13720–13728. [CrossRef] [PubMed]

73. Reinacher, J.; Berendts, S.; Janek, J. Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte
thin films prepared by pulsed laser deposition. Solid State Ionics 2014, 258, 1–7. [CrossRef]

74. Tadanaga, K.; Egawa, H.; Hayashi, A.; Tatsumisago, M.; Mosa, J.; Aparicio, M.; Duran, A. Preparation of lithium ion conductive
Al-doped Li7La3Zr2O12 thin films by a sol–gel process. J. Power Sources 2015, 273, 844–847. [CrossRef]

75. Tan, J.; Tiwari, A. Fabrication and Characterization of Li7La3Zr2O12 Thin Films for Lithium Ion Battery. ECS Solid State Lett. 2012,
1, Q57–Q60. [CrossRef]

76. Zarabian, M.; Bartolini, M.; Pereira-Almao, P.; Thangadurai, V. X-ray Photoelectron Spectroscopy and AC Impedance Spectroscopy
Studies of Li-La-Zr-O Solid Electrolyte Thin Film/LiCoO2 Cathode Interface for All-Solid-State Li Batteries. J. Electrochem. Soc.
2017, 164, A1133–A1139. [CrossRef]

77. Jiang, J.; Zhang, L.; Hu, Y.; Guo, Y.; Chen, Z.; Jia, R.; Pendse, S.; Xiang, Y.; Wang, G.C.; Shi, Y.; et al. Metal–Insulator Transition of
Single-Crystal V2O3 through van der Waals Interface Engineering. ACS Nano 2023, 17, 11783–11793. [CrossRef]

78. Fluri, A.; Pergolesi, D.; Wokaun, A.; Lippert, T. Stress generation and evolution in oxide heteroepitaxy. Phys. Rev. B 2018,
97, 125412. [CrossRef]

79. Matthews, J.; Blakeslee, A. Defects in epitaxial multilayers. J. Cryst. Growth 1974, 27, 118–125. [CrossRef]
80. Matthews, J.W.; Mader, S.; Light, T.B. Accommodation of Misfit Across the Interface between Crystals of Semiconducting

Elements or Compounds. J. Appl. Phys. 1970, 41, 3800–3804. [CrossRef]
81. Van Der Merwe, J.H. Crystal Interfaces. Part I. Semi-Infinite Crystals. J. Appl. Phys. 1963, 34, 117–122. [CrossRef]
82. Cammarata, R.C.; Sieradzki, K. Effects of surface stress on the elastic moduli of thin films and superlattices. Phys. Rev. Lett. 1989,

62, 2005–2008. [CrossRef] [PubMed]
83. Cammarata, R.C.; Sieradzki, K.; Spaepen, F. Simple model for interface stresses with application to misfit dislocation generation

in epitaxial thin films. J. Appl. Phys. 2000, 87, 1227–1234. [CrossRef]
84. Prandtl, L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 1928, 8, 85–106. [CrossRef]
85. Frenkel, Y.I.; Kontorova, T.A. To the Theory of Plastic Deformation and Twinning. Zh. Eksp. Teor. Fiz. 1938, 8, 89.
86. Frenkel, Y.; Kontorova, T. On the Theory of Plastic Deformation and Twinning. Zh. Eksp. Teor. Fiz. 1938, 8, 1340.
87. Braun, O.; Yuri, S.K. The Frenkel-Kontorova Model: Concepts, Methods, and Applications; Springer: Berlin/Heidelberg, Germany, 2004.

http://dx.doi.org/10.1039/C4TA02289K
http://dx.doi.org/10.1016/j.ssi.2012.09.011
http://dx.doi.org/10.1016/j.matpr.2017.09.025
http://dx.doi.org/10.1021/acs.chemmater.7b00944
http://dx.doi.org/10.1039/c3dt51795k
http://dx.doi.org/10.1149/2.0201701jes
http://dx.doi.org/10.1016/j.ssi.2017.11.005
http://dx.doi.org/10.1016/j.matlet.2015.04.088
http://dx.doi.org/10.1021/acsaem.1c01710
http://dx.doi.org/10.1016/j.tsf.2014.11.019
http://dx.doi.org/10.1021/acsami.8b03163
http://www.ncbi.nlm.nih.gov/pubmed/29608054
http://dx.doi.org/10.1016/j.ssi.2014.01.046
http://dx.doi.org/10.1016/j.jpowsour.2014.09.164
http://dx.doi.org/10.1149/2.013206ssl
http://dx.doi.org/10.1149/2.0621706jes
http://dx.doi.org/10.1021/acsnano.3c02649
http://dx.doi.org/10.1103/PhysRevB.97.125412
http://dx.doi.org/10.1016/S0022-0248(74)80055-2
http://dx.doi.org/10.1063/1.1659510
http://dx.doi.org/10.1063/1.1729050
http://dx.doi.org/10.1103/PhysRevLett.62.2005
http://www.ncbi.nlm.nih.gov/pubmed/10039832
http://dx.doi.org/10.1063/1.372001
http://dx.doi.org/10.1002/zamm.19280080202


Batteries 2023, 9, 430 19 of 19

88. Pervov, V.S.; Makhonina, E.V. Incommensurate suprastructures: New problems of inorganic solid-state chemistry Russ. Chem.
Rev. 2000, 69, 481. [CrossRef]

89. Pervov, V.S.; Mikheikin, I.D.; Makhonina, E.V.; Butskii, V.D. Supramolecular ensembles in eutectic alloys. Russ. Chem. Rev. 2003,
72, 759–768. [CrossRef]

90. Mikheikin, I.D.; Kuznetsov, M.Y.; Makhonina, E.V.; Pervov, V.S. Defects in Inorganic Suprastructures with Incommensurate
Structural Elements: The Static Frenkel–Kontorova Model for Finite Systems. Dokl. Phys. Chem. 2001, 376, 52–55. [CrossRef]

91. Bruinsma, R.; Zangwill, A. Structural transitions in epitaxial overlayers. J. Physique 1986, 47, 2055–2073. [CrossRef]
92. Sills, R.B.; Bertin, N.; Aghaei, A.; Cai, W. Dislocation Networks and the Microstructural Origin of Strain Hardening. Phys. Rev.

Lett. 2018, 121, 085501. [CrossRef] [PubMed]
93. Connell, J.G.; Zhu, Y.; Zapol, P.; Tepavcevic, S.; Sharafi, A.; Sakamoto, J.; Curtiss, L.A.; Fong, D.D.; Freeland, J.W.; Markovic, N.M.

Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal. ACS Appl. Mater. Interfaces 2018,
10, 17471–17479. [CrossRef]

94. Assat, G.; Tarascon, J.M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat.
Energy 2018, 3, 373–386. [CrossRef]

95. Saubanère, M.; McCalla, E.; Tarascon, J.M.; Doublet, M.L. The intriguing question of anionic redox in high-energy density
cathodes for Li-ion batteries. Energy Environ. Sci. 2016, 9, 984–991. [CrossRef]

96. Thouless, M.D. Modeling the Development and Relaxation of Stresses in Films. Annu. Rev. Mater. Sci. 1995, 25, 69–96. [CrossRef]
97. Chen, Y.; He, M.; Zhao, N.; Fu, J.; Huo, H.; Zhang, T.; Li, Y.; Xu, F.; Guo, X. Nanocomposite intermediate layers formed by

conversion reaction of SnO2 for Li/garnet/Li cycle stability. J. Power Sources 2019, 420, 15–21. [CrossRef]
98. Maier, J. Defect chemistry at interfaces. Solid State Ionics 1994, 70/71, 43. [CrossRef]
99. Lee, D.; You, D.; Lee, D.; Li, X.; Kim, S. Machine-Learning-Guided Prediction Models of Critical Temperature of Cuprates. J. Phys.

Chem. Lett. 2021, 12, 6211–6217. [CrossRef]
100. Yang, G.; Wu, K. Two-dimensional nonlinear optical materials predicted by network visualization. Mol. Syst. Des. Eng. 2019,

4, 586–596. [CrossRef]
101. Patel, A.G.; Johnson, L.; Arroyave, R.; Lutkenhaus, J.L. Design of multifunctional supercapacitor electrodes using an informatics

approach. Mol. Syst. Des. Eng. 2019, 4, 654–663. [CrossRef]
102. Kireeva, N.V.; Tsivadze, A.Y.; Pervov, V.S. Modeling ionic conductivity and activation energy in garnet-structured solid electrolytes:

The role of composition, grain boundaries and processing. Solid State Ionics 2023, 399, 116293. [CrossRef]
103. Kireeva, N.; Solov’ev, V.P. Machine learning analysis of microwave dielectric properties for seven structure types: The role of the

processing and composition. J. Phys. Chem. Solids 2021, 156, 110178. [CrossRef]
104. Graser, J.; Kauwe, S.K.; Sparks, T.D. Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions:

A Review and New Horizons. Chem. Mater. 2018, 30, 3601–3612. [CrossRef]
105. Young, S.R.; Maksov, A.; Ziatdinov, M.; Cao, Y.; Burch, M.; Balachandran, J.; Li, L.; Somnath, S.; Patton, R.M.; Kalinin, S.V.; et al.

Data mining for better material synthesis: The case of pulsed laser deposition of complex oxides. J. Appl. Phys. 2018, 123, 115303.
[CrossRef]

106. Borvick, E.; Anderson, A.Y.; Barad, H.N.; Priel, M.; Keller, D.A.; Ginsburg, A.; Rietwyk, K.J.; Meir, S.; Zaban, A. Process-Function
Data Mining for the Discovery of Solid-State Iron-Oxide PV. ACS Comb. Sci. 2017, 19, 755–762. [CrossRef] [PubMed]

107. Takeda, H.; Fukuda, H.; Nakano, K.; Hashimura, S.; Tanibata, N.; Nakayama, M.; Ono, Y.; Natori, T. Process optimisation for
NASICON-type solid electrolyte synthesis using a combination of experiments and bayesian optimisation. Mater. Adv. 2022,
3, 8141–8148. [CrossRef]

108. Olivetti, E.A.; Cole, J.M.; Kim, E.; Kononova, O.; Ceder, G.; Han, T.Y.J.; Hiszpanski, A.M. Data-driven materials research enabled
by natural language processing and information extraction. Appl. Phys. Rev. 2020, 7, 041317. [CrossRef]

109. He, T.; Huo, H.; Bartel, C.J.; Wang, Z.; Cruse, K.; Ceder, G. Precursor recommendation for inorganic synthesis by machine learning
materials similarity from scientific literature. Sci. Adv. 2023, 9, eadg8180. [CrossRef]

110. Torrisi, S.B.; Carbone, M.R.; Rohr, B.A.; Montoya, J.H.; Ha, Y.; Yano, J.; Suram, S.K.; Hung, L. Random forest machine learning
models for interpretable X-ray absorption near-edge structure spectrum-property relationships. NPJ Comput. Mater. 2020, 6, 109.
[CrossRef]

111. Tiong, L.C.O.; Kim, J.; Han, S.S.; Kim, D. Identification of crystal symmetry from noisy diffraction patterns by a shape analysis
and deep learning. NPJ Comput. Mater. 2020, 6, 196. [CrossRef]

112. Xu, L.; Hoffman, N.; Wang, Z.; Xu, H. Harnessing structural stochasticity in the computational discovery and design of
microstructures. Mater. Des. 2022, 223, 111223. [CrossRef]

113. Wodo, O.; Broderick, S.; Rajan, K. Microstructural informatics for accelerating the discovery of processing-microstructure-property
relationships. MRS Bull. 2016, 41, 603–609. [CrossRef]

114. Aquistapace, F.; Amigo, N.; Troncoso, J.F.; Deluigi, O.; Bringa, E.M. MultiSOM: Multi-layer Self Organizing Maps for local
structure identification in crystalline structures. Comput. Mater. Sci. 2023, 227, 112263. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1070/RC2000v069n06ABEH000573
http://dx.doi.org/10.1070/RC2003v072n09ABEH000786
http://dx.doi.org/10.1023/A:1018807217179
http://dx.doi.org/10.1051/jphys:0198600470120205500
http://dx.doi.org/10.1103/PhysRevLett.121.085501
http://www.ncbi.nlm.nih.gov/pubmed/30192605
http://dx.doi.org/10.1021/acsami.8b03078
http://dx.doi.org/10.1038/s41560-018-0097-0
http://dx.doi.org/10.1039/C5EE03048J
http://dx.doi.org/10.1146/annurev.ms.25.080195.000441
http://dx.doi.org/10.1016/j.jpowsour.2019.02.085
http://dx.doi.org/10.1016/0167-2738(94)90285-2
http://dx.doi.org/10.1021/acs.jpclett.1c01442
http://dx.doi.org/10.1039/C8ME00108A
http://dx.doi.org/10.1039/C8ME00060C
http://dx.doi.org/10.1016/j.ssi.2023.116293
http://dx.doi.org/10.1016/j.jpcs.2021.110178
http://dx.doi.org/10.1021/acs.chemmater.7b05304
http://dx.doi.org/10.1063/1.5009942
http://dx.doi.org/10.1021/acscombsci.7b00121
http://www.ncbi.nlm.nih.gov/pubmed/29120164
http://dx.doi.org/10.1039/D2MA00731B
http://dx.doi.org/10.1063/5.0021106
http://dx.doi.org/10.1126/sciadv.adg8180
http://dx.doi.org/10.1038/s41524-020-00376-6
http://dx.doi.org/10.1038/s41524-020-00466-5
http://dx.doi.org/10.1016/j.matdes.2022.111223
http://dx.doi.org/10.1557/mrs.2016.161
http://dx.doi.org/10.1016/j.commatsci.2023.112263

	Introduction
	Materials and Methods
	Methodology
	Computational Procedures

	Results and Discussion
	Analysis of Experimental Data on Ionic Conductivity Values in Garnet Thin Films
	Models of Strain
	Descriptors Refinement
	Machine Learning Modeling and Data Analysis

	Conclusions
	References

