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Abstract: To ensure the safety and reliability of an echelon-use lithium-ion battery (EULIB), the
performance of a EULIB is accurately reflected. This paper presents a method of estimating the
combined state of energy (SOE) and state of charge (SOC). First, aiming to improve the accuracy
of the SOE and SOC estimation, a third-order resistor-capacitance equivalent model (TRCEM) of
a EULIB is established. Second, long short-term memory (LSTM) is introduced to optimize the
Ohmic internal resistance (OIR), actual energy (AE), and actual capacity (AC) parameters in real
time to improve the accuracy of the model. Third, in the process of the SOE and SOC estimation,
the observation noise equation and process noise equation are updated iteratively to make adaptive
corrections and enhance the adaptive ability. Finally, an SOE and SOC estimation method based on
LSTM optimization and an adaptive extended Kalman filter (AEKF) is established. In simulation
experiments, when the capacity decays to 90%, 60% and 30% of the rated capacity, regardless of
whether the initial value is consistent with the actual value, the values of the SOE and SOC estimation
can track the actual value with strong adaptive ability, and the estimated error is less than 1.19%,
indicating that the algorithm has a high level of accuracy. The method presented in this paper
provides a new perspective for estimating the SOE and SOC of a EULIB.

Keywords: echelon-use lithium-ion battery (EULIB); third-order resistor-capacitance equivalent
model (TRCEM); state of energy (SOE); adaptive extended Kalman filter (AEKF); state of charge
(SOC); long short-term memory (LSTM)

1. Introduction

Owing to the energy crisis and environmental pollution, new energy has attracted an
increasing amount of attention. Lithium-ion batteries (LIBs) are widely used in electric
vehicles and energy storage systems due to the advantages of having high energies, high
power densities and environmental protection properties [1–3].

With the wide application of LIBs, echelon utilization has become a key method for
resolving the problem of retired batteries. An echelon-use lithium-ion battery (EULIB)
refers to a power LIB with a capacity of less than 80%, and EULIBs were shown to still have
high discharge abilities which can be used for backup power supply and other occasions [4].

State of energy (SOE) and state of charge (SOC) are important parameters of a EULIB
which ensure the safe, reliable, and efficient operation of a EULIB. Due to the degradation
of EULIB performance and the poor consistency of the working voltage (WV) of lithium
batteries, it is difficult to accurately characterize the state of a EULIB via its SOC only.
Therefore, SOE estimation is introduced, and the combined parameters of SOC and SOE
are used to characterize the state of the EULIB.
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To improve a EULIB’s performance, an algorithm for a high-accuracy estimation of the
SOE and SOC is needed [3]. The SOE and SOC estimation methods for EULIBs are shown
in Figure 1: integral, data-driven and model-based methods [5].
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A common method for estimating the SOE and SOC is the integral method [6,7]. On
one hand, the integral method needs to provide an accurate initial value; otherwise, it is
easy to introduce an initial error. On the other hand, this method is an open loop which
lacks the ability for feedback correction. With an increase in time, the cumulative error will
become larger and larger.

The equivalent circuit model is adopted in the model-based method, which mainly
includes the electrochemical model, first-order resistor-capacitance equivalent model
(FRCEM), second-order resistor-capacitance equivalent model (SRCEM), third-order resistor-
capacitance equivalent model (TRCEM), and so on. In Refs. [8,9], an electrochemical model
was used which achieved a good balance between accuracy and computational cost. Ref. [3]
proposed a joint method based on a dual H infinity filter. In dynamic operation, estimators
with different time scales were used based on an FRCEM, and the SOE and SOC estimation
errors were less than 2%. In Ref. [10], two FRCEMs were established online via an extended
Kalman filter (EKF). The prediction accuracy was verified through a complex driving simu-
lation. The SRCEM has the advantages of a simple model and small computational costs,
but its estimation accuracy is not high. To further improve the estimation accuracy, the
SRCEM has been widely investigated. Ref. [11] proposed a joint method and estimated a
LIB’s state under dynamic working conditions. In Ref. [12], a method was proposed based
on an SRCEM which could estimate a battery’s SOC, SOE, state of power (SOP) and state
of health (SOH) simultaneously. The results of dynamic load experiments indicated that
it has a high level of precision and better robustness. The SRCEM, based on the FRCEM,
improves the accuracy of SOE estimations but does not fully characterize the charging and
discharging performance of an LIB. The TRCEM is widely used to estimate the SOC, SOP,
SOH, SOE and other parameters and can not only improve the accuracies of the parameters
but also can characterize the performance of the LIB well.

With the continuous development of machine learning, an increasing number of people
pay attention to data-driven methods [13]. Generally, data-driven methods, for example,
genetic algorithms [14], the gated recurrent unit (GRU), convolutional neural networks
(CNNs), and long short-term memory (LSTM) [15–17], are widely used to estimate the SOE
and SOC. In Ref. [18], a soft sensor was built based on a feedforward neural network. The
proposed method attained a higher prediction accuracy. In Refs. [19,20], researchers used
the GRU method and improved method and achieved good results. Ref. [21] proposed a
data-driven method based on LSTM to jointly estimate the SOC and SOE. The dynamic cycle
experiment showed that the method is accurate. In Refs. [22,23], an LSTM combined with
an adaptive unscented Kalman filter (AUKF) method was proposed. Experimental results
indicate that it has a high level of precision and low complexity. Ref. [24] proposed a novel
recursive neural network for SOC estimation. The validity and superiority were validated.
In Refs. [25,26], the LSTM algorithms were improved and applied to the estimation of
the SOHs of LIBs, and a high degree of estimation accuracy was obtained, which had a
certain practical value. A joint LSTM and EKF method with wide temperature adaptation
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was proposed in Ref. [27] which not only reduced the training time but also improved the
estimation accuracy. As can be seen from the above, LSTM has become a popular method
for parameter estimations of LIBs.

With the aging of a LIB, not only should the accuracy of parameter estimation be im-
proved but the adaptability of the parameter estimation should also be enhanced. Ref. [28]
proposed an adaptive estimation method which can realize the estimations of the SOC,
SOH and SOE. The adaptability and precision were verified via BMS. Ref. [29] proposed a
method for a hybrid model of GRU and AUKF, which had a good SOC effect and improved
the efficiency and convergence rate. There are more independent adaptive estimation meth-
ods for the SOE and SOC [2,30,31], while there are fewer adaptive algorithms for combined
estimations and even fewer for the SOEs and SOCs for EULIBs. Since the Ohmic internal
resistance (OIR), actual energy (AE) and actual capacity (AC) parameters of a LIB are all
changed to varying degrees in the step, a real-time estimation is needed in the algorithm
estimation process to improve model parameters. In addition, due to the stepwise use of
batteries, the initial values of the SOE or SOC have different degrees of error compared
with the real values, so the model must have self-adaptation characteristics.

To ensure safety and reliability, the performance of a EULIB must be accurately
reflected. This article presents a method of a combined estimation of the SOE and SOC
which not only has a high level of precision but is also has adaptability.

A combined estimation method for the SOE and SOC values of echelon-use lithium-ion
battery is established. The original contributions are as follows.

(1) Aimed at EULIBs, a TRCEM is established for a combined estimation of the SOE
and SOC which provides reference for the promotion of the EULIB.

(2) In the process of estimating the parameters of the EULIB, LSTM is used to optimize
the OIR, AE and AC and further improve the accuracy of the model.

(3) With the degradation of the EULIB, initial values of the SOE and SOC are not clear,
so estimations of the EULIB parameters are discussed.

2. SOE Estimation
2.1. SOE

The EULIB’s SOE is defined as the ratio of the remaining energy to the maximum
available energy, as shown in the following equation:

Sek+1 = Sek −
Uk∆t

E
ik (1)

where Sek and Sek+1 are the EULIB’s SOE at times k and k + 1; E is the EULIB’s energy; ik is
the EULIB’s current at time k; Uk is the EULIB’s WV at time k; and ∆t is the sampling time.

2.2. SOC

The EULIB’s SOC is defined as the ratio of the remaining capacity to the maximum
available capacity, as shown in equation [32]:

Sck+1 = Sck −
∆t
C

ik (2)

where Sck and Sck+1 are EULIB’s SOC at times k and k + 1; and C is the EULIB’s capacity.

2.3. SOE and SOC Estimation Model Based on TRCEM

Due to the complex, nonlinear system of a EULIB, to simulate the characteristics of a
EULIB more accurately, a higher-order model must be selected. After considering accuracy,
complexity and practical value, the TRCEM was adopted.

According to Figure 2, Uoc is the EULIB’s open circuit voltage (OCV); UL is the EULIB’s
WV; R0 is the EULIB’s OIR; R1 and C1 are the ohmic polarization resistance and capacitance;
R2 and C2 are the electrochemical polarization internal resistance and capacitance; R3 and
C3 are the internal resistance and capacitance of concentration difference polarization; U1,
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U2 and U3 are the voltages at both ends of capacitors C1, C2 and C3 respectively; iL is the
charge/discharge current; and τ1 = R1C1, τ2 = R2C2, and τ3 = R3C3 are time constants.
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So
f (xk, uk) = Akxk + Bkuk (5)

g(xk, uk) = Ckxk − R0,kuk (6)
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where UR1C1
k UR2C2

k and UR3C3
k are the estimated voltage values of R1, R2 and R3 at time

k; qk and γk are independent system noises; and Uoc(Se) and Uoc(Sc) are the OCV values
corresponding to the value of the EULIB’s SOE and SOC.

2.4. Model Parameter Identification

A EULIB’s parameters, such as UL, iL, UOC and R0, are identified via the least square
method, which will not be repeated in this article. For specific methods, please refer to Ref. [33].

2.5. SOE and SOC Estimation Based on AEKF

From Formulas (4) and (5), the state and observation formulas are as follows:

xk+1,E = f (xk,E, uk,E, θk,E) + qk,E (7)

yk+1,E = g(xk,E, uk,E, θk,E) + γk,E (8)

where θk,E is the state variable’s OIR, AE and AC, θk,E = [R0,k,E, Ek,E, Ck,E]
T ; uk,E is the

current of the EULIB, which is the input variable of the system; yk,E is the WV of the EULIB,
which is the observation variable of the system. qk,E and γk,E are zero-mean Gaussian white
noises, and their error covariance matrices are Qk,E and Rk,E, respectively.

The adaptive extended Kalman filter (AEKF) algorithm flows as follows:

• Step 1: Initialize xk,E:

x̂0,E = E(x0,E) (9)

P̂0,E = E(x0,E − x̂0,E)(x0,E − x̂0,E)
T (10)

• Step 2: Time update xk,E:

Estimation of the state variable:

xk,E = f (x̂k−1,E, uk−1,E) (11)

• Estimation of the error covariance:

Pk,E = Ak−1,E P̂k−1,E AT
k−1,E + Qk,E (12)

• Step 3: Status update xk,E:

Kalman gain:
Kk.E = Pk,ECT

k,E (Ck,EPk,EC T
k,E + Rk,E )

−1 (13)

Optimal estimation of the state variable:

x̂k,E = xk,E + Kk,E[yk,E − g(x̂k−1,E, uk−1,E)] (14)

Optimal estimation of the covariance:

P̂k,E = (E− Kk,ECk,E)Pk,E (15)

• Step 4: Process noise covariance:

Qk,E = (1− dk,E)Qk−1,E + dk,E [Kk,E(ŷ k,E − yk,E ) (ŷ k,E − yk,E )
TKT

k,E + Pk,E − Ak−1,E P̂k−1,E AT
k−1,E ] (16)

• Step 5: Observation noise covariance:

Rk,E = (1− dk,E)Rk−1,E + dk,E [(ŷ k,E − yk,E ) (ŷ k,E − yk,E )
T − Ck,EPk,ECT

k,E ] (17)
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where dk,E = 1−bE
1−bk

E
, k = 1, 2, · · · , n, bE is forgetting factor, 0 < bE < 1; yk,E is the estimated

value at k time; and ŷk,E is the actual observation value at time k.
According to Formulas (3), (4) and (14):

x̂k,E =



Ŝek,E
Ŝck,E

ÛR1C1
k,E

ÛR2C2
k,E

ÛR3C3
k,E


(18)

where Ŝek,E and Ŝck,E are the optimal values of the SOE and SOC, identified via the AEKF.

2.6. OIR, AE, and AC Estimation Based on AEKF

The state and observation equations of the system with the newly added state parame-
ters are as follows:

θk+1,E = θk,E + qθ,k,E (19)

Dk+1,E = g(xk,E, uk,E, θk,E) + γθ,k,E (20)

where qθ,k,E and γθ,k,E are zero-mean Gaussian white noises and their error covariance
matrices are Qθ,k,E and Rθ,k,E, respectively. By optimizing the error between the actual and
the estimated values of the WV, the estimation accuracy is further improved.

The AEKF algorithm flow:

• Step 1: Initialize θk,E:

θ̂0,E = E(θ0,E) (21)

Pθ,0,E = E
[
(x0,E − x̂0,E)(x0,E − x̂0,E)

T
]

(22)

• Step 2: Time update θk,E:

Estimation of the state variable:

θk.E = θ̂k−1,E + qθ,k,E (23)

• Estimation of the error covariance:

Pθ,k,E = P̂θ,k−1,E + Qθ,k,E (24)

• Step 3: Status update θk,E:

Kalman gain:

Kθ,k,E = Pθ,k,E CT
θ,k,E(Ck,EPθ,k,EC

T
k,E + Rθ,k,E )

−1 (25)

Optimal estimation of the state variable:

θ̂k,E = θk,E + Kθ,k,E[yk,E − ŷk,E] (26)

Optimal estimation of the covariance:

P̂θ,k,E = Pθ,k,E − Kθ,k,EPθ,k,EKT
θ,k,E (27)

• Step 4: Process noise mean and covariance:

qθ,k,E = (1− dθ,k,E)qθ,k−1,E + dθ,k,E
[
θ̂k,E − θk,E

]
(28)
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Qθ,k,E = (1− dθ,k,E)Qθ,k−1,E + dθ,k,E [Kθ,k,E(ŷ k,E − yk,E ) (ŷ k,E − yk,E )
TKT

θ,k,E + Pθ,k,E − Ak−1,E P̂θ,k−1,E AT
k−1,E ] (29)

• Step 5: Observation noise covariance:

Rθ,k,E = (1− dθ,k,E)Rθ,k−1,E + dθ,k,E [(ŷ k,E − yk,E ) (ŷ k,E − yk,E )
T − Ck,EPθ,k,ECT

k,E ] (30)

where dθ,k,E =
1−bθ,E
1−bk

θ,E
,bθ is the forgetting factor of θ, 0 < bθ,E < 1.

2.7. Optimize the OIR, AE, and AC Based on LSTM

To further improve the precision of the SOE and SOC estimation, this article adopts
LSTM to optimize the OIR, AE, and AC in the Kalman filter process. The LSTM algorithm
is a special type of recursive neural network which has been widely used. LSTM algorithm
includes forget, input and output gates to ensure long-term time dependence [34], as shown
in Figure 3.

fk = σ (b f + ω f ,θ̂ θ̂k−1,E + ω f ,θθk,E ) (31)

ik = σ (bi + ωi,θ̂ θ̂k−1,E + ωi,θθk,E ) (32)

∼
c k = tanh (ωc,θθk,E + ωc,θ̂θ̂k−1,E + bc ) (33)

ck = ck−1 ∗ fk + ik ∗
∼
c k (34)

ok = σ (bo + ωo,θ̂ θ̂k−1,E + ωo,θθk,E ) (35)

θ̂k,E = ok ∗ tanh(ck) (36)

where θk,E and θ̂k,E are the input and output data at time k, and ck is the status of the
memory cell at time k. fk, ik, and ok are the forget, input and output gates. Additionally, σ
is the sigmoid function, and ∗ is the element-wise product. ω and b are the weight matrices
and the bias vectors, respectively.
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In this article, the main parameters of the LSTM model are as follows: 3 input layer
variables; 3 output layer variables; 150 hidden layer units; 1 hidden layer; 100 epochs; and
an adjustable parameter, batch_size, of 128.

2.8. SOE Estimation Based on AEKF and LSTM

An SOE and SOC estimation flow chart of a EULIB via AEKF and LSTM is shown in
Figure 3.

3. Simulation
3.1. Experiment

A charge and discharge experiment of an LIB was carried out at room temperature
using the test equipment (BTS20), as shown in Figure 4 and Table 1 [35].
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Table 1. LIB parameters.

Items Parameter Remarks

Rated capacity 60 Ah 60 A
Rated voltage 3.2 V

Cut-off voltage 2.5 V
Rated energy 192 Wh Watt-Hour

Maximum charging voltage 3.65 V
Maximum continuous charge current 20 A 0.3 C
Charging/discharging temperature 25 ◦C

In this paper, a 1C current was used to charge and discharge the LIB attenuation
cycle experiment. In the process of battery decay from a “new battery” to a “EULIB”, the
estimation of the SOC and SOE of the LIB was studied, and the comparison was made to
verify and analyze the battery parameters that reflected the state and actual performance of
the battery.

To simulate the working conditions better, discharge experiments on a fully charged EULIB
were carried out with different currents. MATLAB R2022a was used for simulation verification.

The data when the LIB degradation reached 90%, 60%, and 30% were selected, and
the combined estimation method based on MATLAB was verified. When 90% was selected,
the battery was in a normal service state for verifying the combined estimation method,
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which represented the accuracy and convergence of the normal service period estimation
method. When 60% was selected, the battery was in the step echelon-use state, and the
combined estimation method was further verified, which represented the estimation of the
step echelon-use period. When 30% was selected, the battery was at the critical value of
scrap, which was representative to a certain extent.

In this article, the initial values of the SOE and SOC are changed to100%, 60% and 20%
separately, and the results are discussed. During simulation, the estimated values were
calculated via the AEKF and LSTM algorithm, and the actual values were acquired based
on the BTS20.

From Equation (18), the SOE error of the AEKF and LSTM formula is as follows:

SOE error o f AEKF = Ŝek,E − Sactual (37)

where Sactual is the value acquired by the BTS20, and energy is used for representation in
this paper.

The SOC error of the AEKF and LSTM formula is as follows:

SOC error o f AEKF = Ŝck,E − Sactual (38)

3.2. Decayed to 90%

When the capacity decayed to 90%, the SOE and SOC values starting at 100%, 60%
and 20% are shown in Figure 5.

As shown in Figure 5(a2–c2), the top and bottom graphs are observation noise covari-
ance (ONC) and process noise covariance (PNC) curves, respectively. During the first 1500 s
period, the curves fluctuate greatly, which is an adaptive adjustment. After the second
1500S period, the fluctuation tends to be stable, and the error gradually approaches zero.
The curves show that the method is convergent. With the increase in the error between the
initial and true values of the SOE or SOC, the covariance of both the observed value and
the process noise increases. Even if the initial value is different, the actual value can be
tracked eventually through the adjustment of the algorithm.

As shown in Figure 5(a1–c1), the top and bottom graphs are adaptive and error curves,
respectively. According to Table 2 and Figure 5, the SOE error ranges from−0.85% to 0.96%,
and the SOC error ranges from −0.88% to 0.93%. There is little difference in the estimated
error between the SOC and SOE no matter how much difference exists between the initial
and real values, which can reflect the state performance of a lithium battery.
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Table 2. Estimation errors of a LIB’s SOE and SOC.

Initial Value SOE Error SOC Error

Decayed to 90%
100% 0% to 0.84% 0% to 0.81%
60% −0.82% to 0.90% −0.81% to 0.92%
20% −0.88% to 0.93% −0.85% to 0.96%

Decayed to 60%
100% 0% to 0.85% 0% to 0.87%
60% −0.87% to 0.96% −0.86% to 0.98%
20% −0.92% to 0.97% −0.89% to 1.00%

Decayed to 30%
100% 0% to 0.92% 0% to 0.94%
60% −1.01% to 1.11% −1.00% to 1.14%
20% −1.09% to 1.16% −1.06% to 1.19%

3.3. Decayed to 60%

When the capacity decayed to 60%, the SOE and SOC values starting at 100%, 60%
and 20% are shown in Figure 6.
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Figure 6. The validation curves when capacity decayed to 60%, with SOE and SOC values starting at
100%, 60% and 20%. (a1–c1) Are curves of estimation and error; (a2–c2) are curves of ONC (R) and
PNC (Q).
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As shown in Figure 6(a1–c1), the top and bottom graphs are adaptive and error curves,
respectively. According to Table 2 and Figure 6, the SOE error ranges from −0.92% to
0.97%, and the SOC error ranges from −0.89% to 1.00%. As the LIB enters the stage of
step echelon use, the estimation errors of the SOC and SOE begin to increase. When there
is no degradation, the errors of the SOC and SOE are not much different, and the error
accuracy of the SOC is higher. When the degradation began, the error accuracy of the SOE
was even higher.

As shown in Figure 6(a2–c2), the top and bottom graphs are ONC and PNC curves,
respectively. During the first 1500S period, the curves fluctuate greatly and are adjusted
adaptively. After the second 1500S period, the fluctuation tends to be stable, and the error
gradually approaches zero. The curves show that the method is convergent. In the absence
of degradation, the combined estimation method is less adjusted. When degradation
begins, the adjustment of the combined estimation method increases. Even if the initial
value is different, the actual value can be tracked eventually through an adjustment of
the algorithm.

3.4. Decayed to 30%

When the capacity decayed to 30%, the SOE and SOC values starting at 100%, 60%
and 20% are shown in Figure 7. In this state, lithium batteries are at the end of the stage of
echelon use, and the next step is to scrap the batteries and recycle their materials.

As shown in Figure 7(a1–c1), the top and bottom graphs are adaptive and error curves,
respectively. According to Table 2 and Figure 7, the SOE error ranges from−1.09% to 1.16%,
and the SOC error ranges from −1.06% to 1.19%. As the EULIB enters the end of the stage
of step echelon use, the estimation errors of the SOC and SOE increase further.

As shown in Figure 7(a1–c1), the top and bottom graphs are ONC and PNC curves,
respectively. During the first 1500S period, the curves fluctuate greatly and are adjusted
adaptively. After the second 1500S period, the fluctuation tends to be stable, and the error
gradually approaches zero, indicating that the method is convergent. With the continuous
expansion of a EULIB’s degradation, the adjustment of the combined estimation method
is further intensified. Even if the initial value is different, the actual value can be tracked
eventually through an adjustment of the algorithm.

3.5. Discussion

According to the above, the estimation errors of an SOE and SOC are less than 1.19%
when using LSTM optimization and an AEKF. According to Table 3, compared with the
accuracies of 2.34% in Ref. [2], 2% in refs. [23,28], 1.93% in ref. [36] and 1.8% in Ref. [37], the
method has a high level of precision. In addition, the combination method is self-adaptive.

Table 3. Comparison of optimization methods.

Reference Accuracy of
Estimation Adaptability Method

Method in this paper 1.19% Yes LSTM optimization AEKF
[2] 2.34% Yes AUKF

[23] 2% Yes Adaptive double fractional-order
extended Kalman filter

[28] 2% No Interacting multiple model

[36] 1.93% Yes Fuzzy adaptive cubature Kalman
filtering

[37] 1.8% No Unscented particle filter
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Figure 7. The validation curves when capacity decayed to 30%, with SOE and SOC starting at 100%,
60% and 20%. (a1–c1) Are curves of estimation and error; (a2–c2) are curves of ONC (R) and PNC (Q).
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As lithium-ion batteries degrade, the errors in SOE and SOC estimates increase,
according to Table 4. Taking the initial value of 60% as an example, when the lithium-ion
battery degenerates to 90%, 60% and 30%, the maximum errors of the SOE estimation were
0.90%, 0.96% and 1.11% respectively. The maximum estimated errors of the SOC were
0.92%, 0.98% and 1.14%, respectively.

Table 4. Estimation error when starting at 60%.

Initial Value SOE Error SOC Error

Decayed to 90% 60% −0.82% to 0.90% −0.81% to 0.92%
Decayed to 60% 60% −0.87% to 0.96% −0.86% to 0.98%
Decayed to 30% 60% −1.01% to 1.11% −1.00% to 1.14%

4. Conclusions

In this article, a combined SOE and SOC estimation method based on LSTM optimiza-
tion and an AEKF is established. LSTM is introduced to optimize the OIR, AE and AC
parameters to improve the accuracy of the SOE and SOC estimation, and a TRCEM of a
EULIB is established. Then, during the estimation of the SOE and SOC, the observation
noise and process noise equations are updated iteratively to make adaptive corrections and
enhance the adaptive ability. Through simulation, the EULIB capacity was decayed to 90%,
60% and 30% of its rated capacity, and even with a large initial error, the method can track
the actual value. The estimation error is less than 1.19% when using LSTM optimization
with an AEKF, and the method has a high level of precision.
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