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Abstract: This article presents an evaluation of the performance of a membrane-less organic-based
flow battery using low-cost active materials, zinc and benzoquinone, which was scaled up to 1600 cm2,
resulting in one of the largest of its type reported in the literature. The charge–discharge cycling of
the battery was compared at different sizes and current densities, and its performance was evaluated
under various mass transport and operating conditions. The results showed that the round-trip
coulombic and voltage efficiencies were over 90% and 85%, respectively, for the laboratory-scale
(1 cm2 electrode) cell, but these performances tended to deteriorate with the scaled-up (1600 cm2

electrode) cell due to inadequate mass transfer and sediment coverage of quinone, as well as the
formation of a passivation film on the zinc anode. Despite this, the scaled-up batteries exhibited
high coulombic and voltage efficiencies of up to 99% and 68.5%, respectively, at a current density of
10 mA cm−2. The capital cost of this system is also estimated to be several times lower than those
of commercially available all-vanadium flow batteries and zinc bromide flow batteries for demand
charge management applications.

Keywords: hybrid flow battery; laboratory-scale cell; scaled-up cell; performance evaluation; capital
cost analysis

1. Introduction

With the implementation of the Paris Agreement, carbon neutrality have become the
global objectives for both public and private sectors [1,2]. More countries have strengthened
their commitments and set out ambitious targets in reducing greenhouse gas emissions
and promoting renewable energies for sustainable developments [3–5]. In particular,
deployments of renewable energy sources (i.e., wind and solar powers) have been effective
in reducing the consumption of fossil fuels but also lead to volatile power generations due
to their intermittent and unpredictable natures [6,7]. In addition to storing excess electricity,
energy storage systems are a promising technology that improves the resilience of the grid
for load leveling and power stabilization [8,9]. Among various energy storage technologies
(e.g., mechanical and thermal), electrochemical energy storage systems, i.e., batteries, have
been used extensively for a wide range of applications because of their operational and
geographical flexibility [10,11].

Redox flow batteries have emerged as a promising technology for storing energies at
grid scale (i.e., up to MW scale), providing superior flexibility, safety and scalability for long-
duration applications [12]. Instead of storing energies in the electrodes as in most batteries,
redox flow batteries store all or part of its energy in liquid electrolyte(s) that is recirculated
through the cells/stacks and stored in separate reservoirs [13]. The storage capacities are
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mainly dependent on the amount of the soluble active species (as in true flow batteries),
despite limitations due to the electrodeposition processes involved in some hybrid flow
batteries [14]. This unique architecture enables a high degree of decoupling between power
and energy ratings that can be adjusted readily with the suitable volume/concentration of
electrolytes, ratio active surface, active surface and the number of cells/stacks, respectively.

Various redox flow batteries have been proposed, but only a few based on aqueous
electrolytes have been commercialized at an industrial scale [15]. For true flow batteries, the
most studied systems are all-vanadium, hydrogen–bromine and iron–chromium redox flow
batteries [16,17]. These systems store energies entirely based on liquid-phase electrode reac-
tions, while a number of hybrid flow batteries, such as zinc–bromine and zinc–ferricyanide,
have been commercialized and offered higher cell voltages (>1.5 V) by involving at least
one electrode reaction based on metal electrodeposition [18]. These commercialized sys-
tems have been successfully scaled-up to MW scale with costs estimated between USD
350 and 600 (kW h)−1, which are still well beyond the cost targets of major economies
(i.e., <USD 100 (kW h)−1) for board market penetration in the long-term [19]. With the
objectives of further reducing the capital costs, new systems of using inexpensive active
materials (i.e., inorganic and organic active species) and cell components (e.g., membranes
and electrodes) have been introduced using aqueous and non-aqueous electrolytes [20];
however, in the foreseeable future, non-aqueous flow batteries will still be prohibitively
expensive (>USD 800 (kW h)−1) due to the uses of high-cost solvents (USD ca. 3 L−1) and
low current densities (<5 mA cm−2) [21]. For aqueous flow batteries, it is known that
the cost fractions of membranes are among the largest (up to 40% for low-current density
systems) compared with other cell components, including electrolytes and electrodes [22].

Aqueous hybrid flow batteries based on metal electrodepositions have gained pop-
ularity, especially those with membraneless architectures that minimize direct reactions
between charged species [18]. In particular, zinc has been widely used as an anodes due
to its high volumetric capacity (5.85 Ah cm−3) and negative electrode potential (acidic:
−0.76 V vs. SHE; alkaline: −1.29 V vs. SHE) in aqueous electrolytes [23]. At present,
mainstream zinc-based flow batteries are based on membrane structures and have achieved
good battery performance; however, due to the use of ion exchange membranes, they
are expensive [24–26]. Several membraneless zinc-based hybrid flow batteries have been
introduced, such as zinc–nickel [27], zinc–bromine [28] and zinc–manganese [29], which
were coupled with positive electrode reactions involving solid-phase transformation, liquid-
phase reaction and metal oxide electrodeposition, respectively. Meanwhile, organic active
materials have received significant attention due to their abundance and availability from
various sources [30]. Their properties can be tailored to improve the reaction kinetics,
solubilities, and cell voltages [31]; therefore, combining membraneless architecture and or-
ganic active materials in aqueous electrolytes has been considered as a promising approach
to meet the cost target of <USD 100 (kW h)−1. One example of this approach was the
cadmium–chloranil flow battery proposed by Xu et al. [32] in 2009, which demonstrated a
high energy density of 20 Wh L−1 and a cycle life of over 150 cycles; however, the storage
capacity was limited by the positive chlorobenzoquinone electrode that relied on pure
solid-phase transformation. In order to address this, Leung et al. [22] proposed an alterna-
tive system based on a zinc anode and soluble benzoquinone active species, obtaining a
relatively high cell voltage of approximately 1.4 V. The operating concept was attributed to
the efficient electrode reactions and the slow dissolution of zinc anodes at low acid and
benzoquinone concentrations.

Although metal–organic flow batteries have shown promise, they have remained
largely confined to laboratory scales with electrode areas no larger than 4 cm2 [33]. To
the best of the authors’ knowledge, few studies have focused on scaling up membraneless
flow batteries to demonstrate practical cell performance and share technical experiences
on a significant scale; however, the positive electrode reactions of these scaled-up systems
were either metal electrodeposition or solid-phase transformation, potentially resulting
in storage capacities that were less expandable compared to those using soluble active
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species. For instance, Wills et al. [34] increased the electrode area to 100 cm2 and reported
on the failure modes encountered during the scale-up process of soluble lead-acid flow
batteries. It should be noted that the electrode size remained too small for industrial use.
Similarly, Turney et al. [35] reported on the scale-up processes of zinc–nickel flow batteries,
in which a prototype was constructed at kW scale by connecting thirty batteries (each
with eight to nine electrodes; each electrode was 90 cm2) in a series. The study found that
anode passivation and zinc particulate clogging were the primary reasons for deterioration
in cell performance and failure. Additionally, the absence of a membrane did not offset
the high cost of the positive nickel hydroxide electrode, which resulted in a cost of over
USD 400 (kW h)−1, well above the competitive target of $100 (kW h)−1.

This study aimed to scale up a membraneless metal–organic flow battery (1600 cm2)
using low-cost active materials (zinc and benzoquinone) and to evaluate its performance
under various mass transport and operating conditions. Experimental and numerical
studies were conducted to compare the charge–discharge cycling of this battery at different
sizes, and current densities. The scaled-up batteries demonstrated high coulombic and volt-
age efficiencies of up to 99% and 68.5%, respectively, at a current density of 10 mA cm−2;
however, insufficient mass transfer and sediment coverage resulted in performance deterio-
ration. Nonetheless, this study successfully scaled up the laboratory-scale cell to one of
the largest scales of existing membraneless flow batteries, providing technical insights for
improving battery performance and promoting practical applications. These findings are
of significant interest for advancing the development of membraneless flow batteries based
on low-cost and sustainable active materials.

2. Experimental Details
2.1. Experimental Materials

Chemical reagents, including hydrochloric acid (HCl, 98% AR, Chengdu Colon Chem-
ical Company, Chengdu, China), zinc chloride (ZnCl2, 98% AR, Shanghai Yien Chemical
Technology Company, Shanghai, China), hydroquinone (HQ, >99% AR, Beijing Jinming
Biotechnology Co., Beijing, China), and sodium chloride (NaCl, 99.8% GR, Shanghai Boer
Chemical Reagents Co., Shanghai, China) were purchased and used as received without
further purification. A high-purity zinc plate (99.9% purity, Ainin Company, Chongqing,
China) and carbon felt (GFD 4.6EA-TA, with a thickness of 0.6 cm, SGL Carbon, Wies-
baden, Germany) were used as the negative and positive electrodes of the hybrid flow
battery, respectively.

2.2. Electrode Pretreatment

For the positive electrodes, a carbon polyvinyl–ester composite plate with high-purity
carbon (Senjiu Graphite Company, Xinxiang, China) was used as a current collector. The
negative electrode were high-purity zinc plates (99.9% purity, Ainin Company, China).
Prior to conducting the experiments, both electrodes were polished with silicon carbide and
degreased with detergent, followed by cleaning in an ultrasonic bath for over 20 min. In
order to remove the surface oxides, the electrodes were immersed in diluted hydrochloric
acid (0.1 M) for 1 h. The porous carbon felt electrode was thoroughly rinsed with copious
amounts of water after being treated with detergent and subjected to an ultrasonic bath.
It was subsequently affixed to the carbon plate current collector by either compression
or plastic screws. Chemically resistant polyester tapes were used to cover the electrodes,
thereby ensuring that the required active areas were exposed to the electrolyte for effective
electrode reactions.

2.3. Flow Battery Experiment

The feasibility of membraneless metal-organic hybrid flow batteries were evaluated un-
der scale-up by using two batteries with electrode areas of 1 cm2 and 1600 cm2 in this study.
The primary electrode reactions for storing energies were zinc electrodeposition on the
planar substrate surface at the negative electrode, while the oxidation of 1,4-hydroquinone
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took place through the porous carbon-felt electrode at the positive electrode, as reported in
previous work [36].

At negative electrode:

Zn2+ + 2e− 
 Zn E0 = −0.76 V vs. SHE (1)

At positive electrode:

Batteries 2023, 9, x FOR PEER REVIEW 4 of 16 
 

2.3. Flow Battery Experiment 
The feasibility of membraneless metal-organic hybrid flow batteries were evaluated 

under scale-up by using two batteries with electrode areas of 1 cm2 and 1600 cm2 in this 
study. The primary electrode reactions for storing energies were zinc electrodeposition on 
the planar substrate surface at the negative electrode, while the oxidation of 1,4-hydroqui-
none took place through the porous carbon-felt electrode at the positive electrode, as re-
ported in previous work [36]. 

At negative electrode: 

       
2 2Zn e Zn+ −+              E0= −0.76 V vs. SHE (1) 

At positive electrode: 

              Eo = +0.64 V vs. SHE 
(2) 

Both electrode reactions were reversible and underwent two electron-transfer pro-
cesses, resulting in an overall cell voltage of ca. 1.4 V in acidic electrolytes. The membrane-
less configuration enabled single electrolytes to be recirculated through the batteries by 
pumps to improve the mass transport of active species. The electrical and electrolytic cir-
cuits utilized were identical to those employed in previous cells that operated on the same 
principles [37]. Unless otherwise stated, a single electrolyte of 1 M zinc chloride (ZnCl2), 
0.1 M 1,4-hydroquinone (HQ) in 2.5 M sodium chloride (NaCl), and 0.1 M hydrochloric 
acid (HCl) was used as the starting electrolyte (i.e., 0% State-of-charge), which was pre-
pared using deionized water with a resistivity of 18 MΩ cm. The applied current densities 
always referred to the negative zinc anodes based on the exposed areas of the plate surface 
to the electrolytes. 

(i) Laboratory-scale battery (1 cm2 electrode): 
The charge–discharge performance of a small-scale hybrid flow battery with 1 × 1 cm 

(1 cm2) areas of the electrode exposed to the electrolyte was evaluated using a commercial 
cell (Changsha Spring Company, Changsha, China) that was modified into a membrane-
less configuration. The experimental setup is illustrated in Figure 1a, with an expanded 
view of the small-scale flow battery shown in Figure 1b. The battery comprised two stain-
less-steel end-plates, acrylic supporting plates, acrylic flow channels, a PTFE compressing 
plate with perforations, a zinc anode, a porous carbon-felt cathode, and a carbon-plate 
current collector. The flow battery was equipped with an inlet and an outlet situated at 
the lower and upper sides, respectively. During the experiments, a single electrolyte of 
100 mL was circulated to and from the flow battery by a peristaltic pump (Lead Fluid Co., 
China) from 0.05 to 0.07 cm s−1. Galvanostatic charge–discharge cycling was carried out at 
constant current densities between 10 and 30 mA cm−2 (10 and 30 mA) under a 15 min 
charge–15 min discharge regime using a potentiostat (BP-300, Biologic SAS, France). The 
cut-off voltages were set between 0 and 1.6 V to prevent overcharging or over-discharging. 

(ii) Scaled-up battery (1600 cm2 electrode): 
A membraneless hybrid flow battery with exposed electrode areas of 40 cm × 40 cm 

(1600 cm2) to the electrolyte was constructed, utilizing a scaled-up cell design similar to 
that of Turney et al. [35]. The battery was fabricated from chemically resistant acrylic to 
ensure durability and stability in slightly acidic electrolytes (see Figure 1c). Unlike the 1 
cm2 electrode battery using compression, the positive carbon felt electrodes were mounted 
to the carbon plate current collector through plastic screws. The electrode plates of nega-
tive zinc anode and positive carbon plate cathode stood upright and parallel to each other. 
An inter-electrode gap of 15 mm was used to prevent electrical shorting caused by poten-
tial dendritic formation at the negative zinc electrode. The inlet and outlet of the flow 
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Both electrode reactions were reversible and underwent two electron-transfer pro-
cesses, resulting in an overall cell voltage of ca. 1.4 V in acidic electrolytes. The mem-
braneless configuration enabled single electrolytes to be recirculated through the batteries
by pumps to improve the mass transport of active species. The electrical and electrolytic
circuits utilized were identical to those employed in previous cells that operated on the
same principles [37]. Unless otherwise stated, a single electrolyte of 1 M zinc chloride
(ZnCl2), 0.1 M 1,4-hydroquinone (HQ) in 2.5 M sodium chloride (NaCl), and 0.1 M hy-
drochloric acid (HCl) was used as the starting electrolyte (i.e., 0% State-of-charge), which
was prepared using deionized water with a resistivity of 18 MΩ cm. The applied current
densities always referred to the negative zinc anodes based on the exposed areas of the
plate surface to the electrolytes.

(i) Laboratory-scale battery (1 cm2 electrode):

The charge–discharge performance of a small-scale hybrid flow battery with 1 × 1 cm
(1 cm2) areas of the electrode exposed to the electrolyte was evaluated using a commercial
cell (Changsha Spring Company, Changsha, China) that was modified into a membraneless
configuration. The experimental setup is illustrated in Figure 1a, with an expanded view of
the small-scale flow battery shown in Figure 1b. The battery comprised two stainless-steel
end-plates, acrylic supporting plates, acrylic flow channels, a PTFE compressing plate
with perforations, a zinc anode, a porous carbon-felt cathode, and a carbon-plate current
collector. The flow battery was equipped with an inlet and an outlet situated at the lower
and upper sides, respectively. During the experiments, a single electrolyte of 100 mL was
circulated to and from the flow battery by a peristaltic pump (Lead Fluid Co., China) from
0.05 to 0.07 cm s−1. Galvanostatic charge–discharge cycling was carried out at constant
current densities between 10 and 30 mA cm−2 (10 and 30 mA) under a 15 min charge–
15 min discharge regime using a potentiostat (BP-300, Biologic SAS, France). The cut-off
voltages were set between 0 and 1.6 V to prevent overcharging or over-discharging.

(ii) Scaled-up battery (1600 cm2 electrode):

A membraneless hybrid flow battery with exposed electrode areas of 40 cm × 40 cm
(1600 cm2) to the electrolyte was constructed, utilizing a scaled-up cell design similar to that
of Turney et al. [35]. The battery was fabricated from chemically resistant acrylic to ensure
durability and stability in slightly acidic electrolytes (see Figure 1c). Unlike the 1 cm2

electrode battery using compression, the positive carbon felt electrodes were mounted to
the carbon plate current collector through plastic screws. The electrode plates of negative
zinc anode and positive carbon plate cathode stood upright and parallel to each other. An
inter-electrode gap of 15 mm was used to prevent electrical shorting caused by potential
dendritic formation at the negative zinc electrode. The inlet and outlet of the flow battery
were located at the lower and upper sides, respectively, to enable proper recirculation
of electrolyte through the cell. A plastic centrifugal pump (ZKSJ Company, Hangzhou,
China) was used to circulate the electrolyte at various flow velocities, ranging from 100 to
250 cm s−1. A large current battery testing system (Shenzhen Xinqingyuan Ltd., Shenzhen,
China) was used to carry out galvanostatic charge–discharge cycling at a constant current
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density of 10 mA cm−2 (16 A), utilizing 15 min charge–15 min discharge regime. The cut-off
voltages were set between 0 and 2.8 V to prevent overcharging or over-discharging.
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components; (c) a scaled-up 1600 cm2 electrode battery; (d) a large-current battery testing system;
(e) a plastic centrifugal pump.

2.4. Electrochemical Impedance Spectroscopy

The pristine and used carbon felts of the cycled batteries were measured by elec-
trochemical impedance spectroscopy. The measurements were acquired using a BP-300
potentiostat (Biologic SAS, France) in a potentiostatic mode, with a voltage amplitude of
10 mV applied at the open circuit voltage. The measurements were performed within a
frequency range of 1 MHz to 10 mHz, and each measurement required up to 20 min.

2.5. Physicochemical Characterizations

The membraneless hybrid flow batteries based on low-cost active materials were the
subject of investigation. Physicochemical characterizations of the electrolyte and electrode
materials were conducted to elucidate the reaction and mass transfer mechanisms in the
charge–discharge cycling processes.

The following three aspects were analyzed:

(i) Electrolyte characterizations: X-ray diffraction (XRD, D8 Advance, Brucke Corp.,
Germany) analysis was conducted on the dried products, i.e., sediment and floating
foam, obtained from the electrolytes after prolonged charge–discharge cycling, and
finely powdered using an agate mortar.

(ii) The aim of this analysis was to investigate the crystal structure and phase compo-
sition of the dried substances under test conditions of 5–90◦ 2θ and a scan rate of
10◦ min−1. X-ray diffraction profiles were matched with standard Powder Diffraction
FileTM (PDF) cards using analysis software (Jade6.5). Fourier Transform Infrared
Spectroscopy (FTIR, Nicolet IS 10, Thermo Scientific, Waltham, MA, USA) was used to
characterize the functional groups present in the organic dried substances, which were
subsequently analyzed to determine the molecular structures of organic compounds.
The sample to be tested was thoroughly crushed by mixing it with potassium bromide
at a mass ratio of 10:1 and then pressed into a specific mold to form nearly transparent
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circular pellets. Finally, the resulting pellets were placed in the infrared sample tank
for testing, and the wave number range was set to 400–4000 cm−1.

(iii) Nuclear Magnetic Resonance Spectroscopy (NMR, JNM-ECZ600R, Japan) was uti-
lized to qualitatively analyze the composition and structure of the dissolved organic
compounds, thereby providing insights into the underlying reaction mechanisms.
The solvent for nuclear magnetic resonance spectroscopy is methyl sulfoxide (DMSO).

(iv) Positive electrode characterizations: scanning electron microscopy-energy disper-
sive spectroscopy (SEM-EDS) was used to analyze the surface morphology, element
composition, and organics adhesion of the carbon felt electrode before and after
charge–discharge cycling. Scanning electron microscopy (SEM, TM4000Plus, Hitachi,
Japan) was performed to observe the morphology and microstructure, operated at
20 kV and 10 mA, and analysed the adhesion and distribution of the sediments in
the carbon felt. Energy dispersive spectroscopy (EDS, Hitachi, Japan) was performed
to analyse the sediments, and the samples were irradiated with an electron gun to
obtain the compositions and content of precipitates on carbon felt.

(v) Negative electrode characterizations: three-dimensional contour scanner (Contoure
GT-X, Bruker Corp., Germany) and scanning electron microscopy (SEM) were em-
ployed to investigate the crystal structure and phase composition of the zinc anode
surface after prolonged charge–discharge cycling. The three-dimensional contour
scanner was used to provide a high-resolution topographic map of the zinc anode
surface by providing the precise measurements of surface roughness. These two
techniques provided direct microscopic information on the morphologies of the zinc
anode.

3. Results and Discussions
3.1. Performance Comparison with the Scaled-Up Hybrid Flow Batteries

Membraneless hybrid flow batteries based on low-cost elements have emerged as a
promising solution for achieving a cost target of less than USD 100 (kW h)−1 and enabling
widespread market penetration; however, the scale-up to a significant size is essential for
enabling practical applications. The scalability of these batteries is of significant interest,
particularly with regard to their performance at larger scales. This study is the first to
scale-up a membraneless hybrid flow battery from a laboratory-scale cell featuring a 1 cm2

electrode to a 1600 cm2 cell, resulting in one of the largest of its type reported in the
literature. The objective of this work was to evaluate the influences of this scale-up process
on the battery performances in terms of charge–discharge cycling efficiencies and profiles
under identical operating conditions.

Figure 2a,b show the charge–discharge cycling performances of the laboratory-scale
(1 cm2 electrode) and scaled-up (1600 cm2 electrode) hybrid flow batteries, respectively, at
10 mA cm−2 for 50 cycles (Figures S2 and S3), while their inset shows the corresponding
charge–discharge profiles at 10, 20 and 30 mA cm−2. It can be seen that the laboratory-
scale (1 cm2 electrode) cell showed relatively flat and stable charge–discharge profiles,
while the potential differences between the charge and discharge voltages were only
170–490 mV for these current densities (10–30 mA cm−2) (Figures 2a and S4). The round-
trip coulombic and voltage efficiencies were over 90% and 85%, respectively, leading to
stable energy efficiencies of ca. 77% at 10 mA cm−2 however, these performances tended
to deteriorate with the scaled-up (1600 cm2 electrode) cell, indicating the importance of
further investigation into mass transport phenomena within these larger batteries, which
will be investigated in the next section using multiphysics software.
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3.2. Mass Transport Analyses Based on Multiphysics Models

In order to enhance the comprehension of the movement of active species and elec-
trolytes within a scaled-up hybrid flow battery, the electrochemical reactions and mass
transport phenomena were simulated through the use of multiphysics software (COM-
SOL Multiphysics®), and the model assumptions are shown in detail in the Supporting
Materials. By visualizing the distributions and flow velocities of the soluble active species,
numerical simulations based on experimental conditions offer insight into the underlying
transport phenomena of these scaled-up batteries. During the charging process, the active
zinc(II) and hydroquinone species were reduced and oxidized at the negative and positive
electrodes, respectively.

After the model is validated (Figure S5), the flow velocities (Figure 3a) and concentra-
tion distributions of these active species (Figure 3b–d: hydroquinone; Figure 4: zinc ion)
within the scaled-up batteries were simulated at 10 mA cm−2 during charging at t = 890 s
(other simulation data can be found in Figures S6–S9). The results revealed that the flow
velocities were higher along the negative zinc electrode than within the porous positive
electrodes, significantly hindering the electrolyte flow. The slower flow velocities within
the positive electrode tended to result in poorer uniformity and mass transport of the active
species, as observed in the case of the hydroquinone species. The concentration of the
hydroquinone active species decreased rapidly at the positive electrode when the single
electrolyte was flowing upward to the outlet at the end of the charge cycle (Figure 3b,d).
This was attributed to the large consumption of hydroquinone at the positive electrode;
however, the mass-transfer resistance remained high, and the active cannot be replenished
readily. Furthermore, the lower concentration of hydroquinone species (0.1 M) prepared in
the starting electrolytes was used to minimize direct reactions between the charged species
and ensure the membraneless configuration. Consequently, the concentration polarizations
of the positive quinone electrode reaction were particularly challenging, leading to lower
performance at higher charge–discharge rates (Figures 2b and S10). On the other hand,
the zinc(II) ion concentration remained high (e.g., >0.945 M) in all parts of the scaled-up
battery (Figure 4), while flow velocities and concentration distributions of both active
species were superior in the laboratory-scaled batteries (Figures S11 and S12), indicating
that mass-transport limitations were not an issue in such scenarios.

Furthermore, after charge–discharge cycling, the electrodes and electrolytes were
characterized in terms of morphological and chemical changes to gain further insights into
the behavior and performance of the scaled-up hybrid flow battery, providing information
regarding the degradation mechanisms and the stability of the battery components.
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3.3. Characterization Analyses of Cell Components after Charge–Discharge Cycling

After completing the charge–discharge cycling, the electrolyte used in the scaled-up
battery was observed to change from transparent (Figure 5a) to red (Figure 5b). This was
hypothesized to be due to the oxidation of hydroquinone to benzoquinone, resulting in
coloration. Subsequently, cycling tests revealed the presence of a layer of black-colored
particles floating on the electrolyte (Figure 5b), possibly resulting from the detachment of
organic substances and carbon materials from the battery components during prolonged
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cycling. Upon dismantling the batteries, yellow-brown and black-colored substances were
observed on the surfaces of the zinc electrode deposits (Figure 5c), which were likely the
result of corrosion after removal from the chloride electrolyte. Significant amounts of
branch- or rod-like structures were also observed at the edges of the zinc anodes, consistent
with the previously reported dendritic formations in zinc-based hybrid flow batteries. Zinc
dendrites are not easily attached to the negative electrode, and the detached zinc dendrites
can cause a decrease in battery discharge capacity. The uneven distribution of zinc dendrite
deposition also leads to its inability to be completely consumed during discharge, which
seriously affects battery performance, especially for high-current batteries.
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As for the positive electrodes, layers of a light-yellow-colored substance (3–5 mm)
were observed on the surfaces of the carbon-felt electrode (Figure 5d). These substances
that were not present in 1 cm2 electrode cell were found to have spread or penetrated
into the porous structure of the electrode and accumulated on the back of the carbon felt
near the carbon current collector (Figure 5e). It was hypothesized that these layers of
yellow substance were benzoquinone formed during the electrochemical reactions, which
precipitated due to its low solubility in water. Consequently, detailed characterization tests
were conducted to analyze the compositions of these materials.

The floating suspension of the electrolyte was collected and dried in a vacuum drying
oven at 60 ◦C for 720 min. It was then analyzed through XRD (Figure 6a), which showed
peaks corresponding to metallic and carbon substances, such as sodium chloride (PDF#01-
072-1668), zinc oxide (PDF#01-075-1526), zinc (PDF#04-0831), zinc chloride (PDF#16-0850),
and chloride (PDF#50-0926). The sodium and zinc chloride likely refer to the supporting
salts in the electrolyte, while the metallic zinc may have detached from the anode in
the form of zinc dendrites, and the zinc oxide may have formed due to the oxidation
of zinc upon contact with air; however, no relevant spectral information related to the
metal substances was found for peaks at 50.3◦ and 41.7◦, which were presumed to be
related to carbon or organic substances and were further characterized. For instance,
1H NMR (Figure 6b) detected the hydrogen atoms of phenol (HPH-00-23) at chemical
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shifts of 8.6 ppm and 6.5 ppm, while FTIR spectroscopy (Figure S13) identified absorption
peaks corresponding to C-C bonds (1500 cm−1, 1632 cm−1) and C-H bonds (2712 cm−1,
2833 cm−1) [38], suggesting the presence of hydroquinone in this suspension. Moreover,
some traces of carbon fibers detached from positive carbon felt electrodes were observed
in this floating suspension through SEM (Figure S14); therefore, the floating suspension,
consisting of various inorganic substances and organic components, not only impeded the
electrolyte flow but also caused short circuits when connected to the negative and positive
electrodes, resulting in a deterioration in battery performance.
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(b) 1H NMR.

Regarding the negative zinc electrode, the morphologies of the electrodeposits was
analyzed using a three-dimensional contour scanner (Figures 7a and S16) after prolonged
cycling. The results revealed a rough surface with irregularities of up to 100 µm, indicating
that the zinc electrodeposition–dissolution processes were uneven and had caused some
degree of shape change. These grooves were visible as corrosion marks at the macroscopic
level. The XRD analysis of the electrodeposit on the zinc anode (Figure 7b) showed peaks
similar to the standard pattern of simonkolleite (Zn5(OH)8Cl2(H2O)), with traces of sodium
chloride (PDF#01-072-1668) also present. This was because the initial proton concentration
(0.1 M) decreased due to continuous hydrogen evolution, leading to less acidic electrolytes
(higher pH). In such a case, Zn2+, OH−, Cl− in the electrolytes reacted with water to form
Zn5(OH)8Cl2(H2O) [39]. It was a passivation film that not only exhibited low activity but
also affected the direct contact of the electrolyte with the zinc anode.
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For the positive electrode, the carbon-felt electrode may contain solid substances
that have accumulated and penetrated into its porous structure. The SEM images of the
pristine and used carbon-felt electrodes (Figure 8a–c) reveal the presence of more solid
substances in the scaled-up battery compared to its laboratory-scale counterpart. These
solid substances can hinder battery performance by reducing porosity in specific areas. The
electrochemically active specific surface areas (ECSA) of the active sites with the electrolytes
were estimated using the double-layer capacity (Cdl) measured in the non-Faraday reaction
region using cyclic voltammetry (Figure S17) [40–42]. The pristine carbon felt exhibited
a Cdl of 89 mF cm−2, whereas the laboratory-scaled and scaled-up battery carbon felts
showed Cdl values of 36 and 19 mF cm−2, respectively (Figure 8d). This confirms that
the solid substances formed during prolonged cycling can clog or cover the carbon felt,
leading to reduced active areas. The Nyquist plots of various carbon felts are depicted in
Figure S18, where the carbon felt employed in the 1600 cm2 electrode battery demonstrates
the highest charge transfer resistance, providing further evidence that the formation of
solid substances during prolonged cycling has a significant negative impact.
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The XRD analysis was performed on the solid substances that had accumulated on the
carbon-felt electrode surfaces and were dried at 60 ◦C for 720 min. Figure 9a illustrates the
XRD peaks that correspond to metallic zinc (PDF#04-0831), sodium chloride (PDF#05-0628),
and zinc chloride (PDF#39-0887), while some peaks at 32.8◦ and 21.8◦ may indicate the
presence of certain organic compounds that were subsequently analyzed. Figure 9b displays
adsorption peaks at 3426 cm−1, which correspond to hydroxyl groups, and two adsorption
peaks near 2825 cm−1 that may indicate C-H bonds. The peaks at approximately 1596 cm−1

and 1384 cm−1 were likely to be C-C bonds on the benzene ring [39]. Absorption peaks at
around 1077 cm−1 and 766 cm−1 may be attributed to the hydroxyl groups, which were
possibly phenolic substances. Analysis of 1H NMR (Figure S19) indicated hydrogen atoms
of hydroquinone (HPH-00-23) at chemical shifts of 8.6 ppm and 6.5 ppm, and hydrogen
atoms of p-benzoquinone (HPH-00-69) at 6.88 ppm. The solid substances on the surfaces of
the carbon felt electrodes have been identified as a mixture of metallic zinc, quinone, and
electrolyte salts based on the characterizations performed. The formation or precipitation of
these solids may potentially lead to a decrease in the concentrations of the active materials
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in the electrolytes. Future work may explore improved electrolyte compositions to address
this issue.
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3.4. Capital Cost Analysis of Membraneless Hybrid Flow Batteries

The influences of membranes on the capital costs of the zinc–organic hybrid flow
battery provides important insights into the economic feasibility of this chemistry for
large-scale energy storage applications. As shown in Figure 10, the analysis assumed a
current density of 30 mA cm−2 for four energy storage applications, namely, solar energy
integration, industrial load shifting, rural micro-grid households, and demand charge
management. The maximum and minimum costs of a membrane-based battery, which
shares the same chemistry as a non-membrane-based battery, were determined to be USD
515.1 (kW h)−1 and USD 206 (kW h)−1, respectively. A significant reduction in the capital
cost can be achieved by eliminating the ion exchange membrane. Specifically, the cost
of the membraneless hybrid flow battery was found to be 60% lower than that of the
membrane-based battery. This reduction is mainly attributed to the elimination of the
cost associated with the membrane, which accounts for the majority of the capital cost of
the battery. Moreover, the cost of the membraneless hybrid flow battery for the demand
charge management application (10 MW × 11 h) was only USD 98 (kW h)−1, which is lower
than the long-term market competitiveness target of <USD 100 (kW h)−1. This cost is also
lower than that of commercially available all-vanadium flow batteries (>USD 300 (kW h)−1)
and zinc bromide flow batteries (>USD 300 (kW h)−1). In the event that mass transport
limitations and the stability of the cell components are addressed, and the current density
becomes comparable to that of other commercial flow batteries (e.g., >50 mA cm−2), the
capital cost of the membraneless hybrid flow battery may be further reduced, resulting
in additional cost advantages over other energy storage technologies. Overall, these
findings suggest that the membraneless hybrid flow battery holds potential as a competitive
energy storage technology for large-scale applications. Nonetheless, additional research is
necessary to enhance the battery’s performance and reduce its capital cost to render it a
more economically viable alternative.
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4. Conclusions

This study evaluated the performance of a membraneless organic-based flow battery
using low-cost active materials, namely zinc and benzoquinone, by scaling it up to 1600 cm2.
The charge–discharge cycling of the battery was compared at different sizes, current den-
sities, and its performance was evaluated under various mass transport and operating
conditions. The results indicated that while the round-trip coulombic and voltage efficien-
cies were over 90% and 85%, respectively, for the laboratory-scale (1 cm2 electrode) cell,
these performances tended to deteriorate with the scaled-up (1600 cm2 electrode) cell. The
slower flow velocities within the positive electrode resulted in poorer uniformity and mass
transport of the active species, leading to lower performance at higher charge–discharge
rates. Despite this, the scaled-up batteries exhibited high coulombic and voltage efficiencies
of up to 99% and 68.5%, respectively, at a current density of 10 mA cm−2, showcasing the
potential of this low-cost battery technology; however, inadequate mass transfer and sedi-
ment coverage of quinone, as well as the formation of a passivation film on the zinc anode,
led to performance deterioration. The zinc(II) ion concentration remained high throughout
the scaled-up battery, while flow velocities and concentration distributions of both active
species were superior in the laboratory-scale batteries, indicating that mass transport lim-
itations were not an issue in such scenarios. The study also conducted characterization
analyses of the cell components after charge–discharge cycling to gain further insights into
the degraded performance of the scaled-up hybrid flow battery, providing information on
the stability of the battery components (i.e., electrolytes and electrodes). These findings
are significant for advancing the development of membraneless flow batteries based on
low-cost and sustainable active materials and providing valuable technical insights for
improving battery performances and promoting practical applications. It is noteworthy that
the capital cost of this system is several times lower than those of commercially available
all-vanadium flow batteries (>USD 300 (kWh)−1) and zinc bromide flow batteries (>USD
300 (kW h)−1) for demand charge management application (10 MW × 11 h). Furthermore,
this study is the first to scale-up a membraneless hybrid flow battery from a laboratory-scale
cell featuring a 1 cm2 electrode to a 1600 cm2 cell, resulting in one of the largest of its type
reported in the literature.
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