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Abstract: The lithium iron phosphate (LiFePO4) blade battery is a long, rectangular-shaped cell
that can be directly integrated into battery pack systems. It enhances volumetric power density,
significantly reduces costs, and is widely utilized in electric vehicles. However, the flat open circuit
voltage and significant polarization differences under wide operational temperatures are challenging
for accurate voltage modeling of battery management systems (BMSs). In particular, inaccurate state
of charge (SOC) estimation may cause overcharging and over-discharging risks. To accurately perceive
the SOC of LiFePO4 blade batteries, a SOC estimation method based on the backpropagation neural
network-extended Kalman filter (BPNN-EKF) algorithm is proposed. BPNN is a neural network
model that utilizes the backpropagation algorithm to update model parameters, while EKF is an
optimal estimation algorithm. Firstly, dynamic working condition tests, including the New European
Driving Cycle (NEDC) and high-speed working (HSW) condition tests, are conducted under a wide
temperature range (−25–43 ◦C). HSW conditions refer to a simulated operating condition that mimics
the driving of an electric vehicle on a highway. The minimum voltage of the battery system is used
as the output for training the BPNN model. We derive the Kalman gain by combining the BPNN
output voltage. Additionally, the EKF algorithm is employed to correct the SOC value using voltage
error information. Concerning long SOC calculation intervals, capacity errors, initial SOC errors, and
current and voltage sampling errors, the maximum SOC estimation RMSE is 3.98% at −20 ◦C NEDC,
3.62% at 10 ◦C NEDC, and 1.68% at 35 ◦C HSW. The proposed algorithm can be applied to different
temperatures and operations, demonstrating high robustness. This BPNN-EKF algorithm has the
potential to be embedded in electric vehicle BMS systems for practical applications.

Keywords: LiFePO4 blade batteries; state of charge; backpropagation neural network; extended
Kalman filter

1. Introduction

Promoting the development of new energy vehicles is a crucial way to achieve carbon
neutrality in the transportation industry [1,2]. In recent years, the energy density of lithium
iron phosphate (LiFePO4) batteries has continuously improved. Due to the LiFePO4
battery’s low cost and high safety characteristics, it has been widely used in pure and
plug-in hybrid electric vehicles. Blade batteries are a structural innovation form of LiFePO4
batteries, which directly integrate the elongated battery cells into the battery system, further
improving the specific energy and continuously increasing their market share in the global
market. Battery management system (BMS) is the core of ensuring the safe and efficient
performance of battery systems [3,4], and state of charge (SOC) is the basis for other battery
management strategies [5]. Accurate SOC estimation can enable drivers to use battery
power reasonably, avoid overcharging or over-discharging the battery system, and mitigate
safety risks [6]. On the other hand, accurate SOC estimation can fully utilize the capacity
performance of batteries, reducing user anxiety for drivers [7,8]. Therefore, accurate SOC
estimation is crucial for the performance of the battery system.
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SOC is the battery system’s state, which the BMS cannot directly measure. Researchers
have proposed many SOC estimation methods, mainly including the ampere-hour inte-
gration method, the open circuit voltage (OCV) lookup table method, methods based on
modern control theory, and neural network methods.

The ampere-hour integration method calculates the change of SOC by integrating
current over time, which has a low time cost [9,10]. The OCV lookup method estimates the
SOC value by interpolating the OCV on the OCV-SOC curve [11–13]. However, SOC esti-
mation based on the ampere-hour integration method is an open-loop estimation approach,
and its accuracy is influenced by continuous current sampling errors and inaccurate initial
SOC value. OCV is a thermodynamic state of the battery [14] and requires a long resting
time to obtain it accurately. Therefore, SOC estimation methods based on the OCV lookup
method have limitations in real vehicle applications.

The modern control-theory-based method uses the error information between the
simulated and measured voltage model values to provide feedback and correct the SOC
value [15]. Battery voltage models can be divided into electrochemical mechanism models,
simplified electrochemical models, and equivalent circuit models (ECMs). Doyle et al. [16]
started from first principles, utilized partial differential equations to describe processes
such as solid-phase diffusion and liquid-phase diffusion of lithium ions, and established
a complex electrochemical mechanism model, the parameter identification and solution
process of which is very complicated. Han et al. [17] simplified the solid-state diffusion
process based on the electrochemical mechanism model, and the authors established
the single particle (SP) model. However, the computational complexity of the model
remains high, which is unsuitable for practical applications. The ECM simulates the voltage
using resistors and capacitors, which have moderate accuracy and low computational
time cost. It has been widely used in practical applications on vehicles [18,19]. The SOC
estimation algorithm varies depending on the method used to determine the SOC feedback
coefficient. Plett et al. [20] applied the extended Kalman filter (EKF) algorithm to battery
SOC estimation for the first time, achieving good results. Xiao et al. [8] employed the
unscented Kalman filter (UKF) algorithm to estimate SOC, which uses the unscented
transform to capture the nonlinearity of the voltage and further improve the accuracy of
SOC estimation. Wang et al. [21] employed the cubature Kalman filter (CKF) algorithm to
approximate the Bayesian probability distribution using a set of even-weighted volume
points, demonstrating higher robustness and filtering accuracy than the UKF algorithm.
However, the accuracy of the EKF method is limited, as it only considers the first-order
Taylor expansion of the OCV and other nonlinear terms, neglecting higher-order terms.
Further, the Kalman filter series algorithms assume that the model and measurement noise
is the Gaussian distribution, which may not be the case in practice, thereby limiting the
application of the EKF algorithm. Anton et al. [22] used the particle filter algorithm, and
Yao et al. [23] used the H-infinity algorithm for SOC estimation. Both algorithms do not
require assuming the Gaussian noise distribution, further improving the accuracy of SOC
estimation. In summary, the ECM combined with the EKF algorithm is currently the most
widely used method for SOC estimation.

Estimating SOC using neural network (NN) methods involves constructing a dataset
by selecting input features such as current, voltage, and temperature, and training the NN
node parameters for a nonlinear mapping from input features to SOC. This approach is
effective for SOC estimation [24]. Fu et al. [25] developed a radial basis function neural
network for SOC estimation, achieving high accuracy by designing a well-structured neural
network. Chen et al. [26] developed a new long short term memory (LSTM)—a recurrent
neural network (RNN)-based SOC estimation neural network structure—by expanding
the network’s input and constraining the network’s output. Ren et al. [27] conducted a
comprehensive review of various neural network models suitable for SOC estimation,
among which the BP neural network is a simple and efficient model. However, due to the
solid nonlinear current, voltage, and temperature characteristics, directly estimating SOC
based on NN can lead to significant oscillatory errors [28–32].
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However, for LiFePO4 batteries, the coexistence of FePO4 and LiyFeO4 (0 < y < 1)
during charge and discharge processes results in a flat OCV plateau [33]. In addition, the
internal polarization of the battery is exacerbated at low temperatures, and the nonlinear
characteristics of internal resistance are significant, making it very difficult to accurately
model LiFePO4 batteries over a wide temperature range using ECMs. Moreover, in the
ECM-based EKF algorithm, the Kalman gain is the derivative of OCV to SOC. The Kalman
gain matrix within the OCV platform region is unstable, leading to poor SOC estimation
accuracy. Additionally, in real-world scenarios, SOC estimation can be affected by initial
SOC, capacity, voltage, and current sampling errors. Therefore, the robustness of SOC
estimation algorithms under different error conditions must be further validated.

In this research, we first constructed a dataset of operating conditions covering a
wide temperature range (−25 ◦C to 43 ◦C). Then, we trained a backpropagation neural
network (BPNN) model using feature engineering to select input features. The BPNN
can capture the intense nonlinear relationship between current, temperature, and voltage.
It demonstrates high accuracy in simulating voltage on the test set, thereby solving the
problem of inaccurate voltage modeling over a wide temperature range. The BPNN output
is the minimum terminal voltage of the series-connected battery cells in the battery pack.
Furthermore, we derived the Kalman gain expression, incorporating the BPNN output
based on the EKF algorithm. This approach avoids the problem of unstable SOC estimation
caused by the derivative of OCV within the OCV platform region. Considering voltage
and current sampling errors, capacity errors, initial SOC errors, and long SOC calculation
intervals, the proposed algorithm demonstrated high accuracy and robustness in SOC
estimation. The maximum SOC estimation RMSE is 3.98% at −20 ◦C NEDC, 3.62% at
10 ◦C NEDC, and 1.68% at 35 ◦C HSW. Compared to other SOC estimation methods, the
BPNN-EKF SOC estimation algorithm demonstrates stronger robustness and better appli-
cability under different temperatures and operating conditions.

2. BPNN-EKF Algorithm
2.1. Training of the BPNN Model

BPNN is a widely used neural network model that maps non-linear relationships
between input and output using activation functions, and updates node parameters in
different layers using a backpropagation algorithm. The voltage characteristics of LiFePO4
batteries change significantly at different temperatures, especially at low temperatures,
where the internal polarization of the battery increases and voltage changes sharply. Tradi-
tional ECM often lacks accuracy. To accurately capture the complex relationship between
SOC, current, temperature, and terminal voltage, the LiFePO4 battery system is tested
under −25 ◦C to 43 ◦C using the New European Driving Cycle (NEDC) and high-speed
working (HSW) conditions to construct a neural network training dataset. The minimum
terminal voltage of the battery system is used as the output target, and feature selection
is performed using the Pearson correlation coefficient (PCC). The simulation accuracy of
the BPNN test set is evaluated under different hyperparameters to determine the optimal
neural network structure.

2.1.1. Dataset Construction

The typical parameters of the blade LiFePO4 battery are shown in Tables 1 and 2. The
battery cell is rectangular, with LiFePO4 as the positive electrode material and graphite
as the negative electrode. The rated capacity is 135 Ah, the charge cut-off voltage is 3.8 V,
and the discharge cut-off voltage is 2.0 V. The blade battery system consists of a 178S1P
configuration with a rated voltage of 570 V and a system energy of 76.9 kWh. This battery
pack is installed in the BYD Auto Industry Company Limited Han electric vehicle.
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Table 1. Typical parameters of the LiFePO4 blade battery cell.

Battery Cell Specification

Cathode material LiFePO4
Anode material Graphite

Nominal capacity 135 Ah
Nominal voltage 3.2 V

Charging cutoff voltage 3.8 V
Discharging cutoff voltage 2.0 V

Table 2. Typical parameters of the LiFePO4 blade battery system.

Battery System Specification

Configuration 178S1P
Nominal voltage 570 V
Nominal capacity 135 Ah

Nominal energy capacity 76.9 kWh

As shown in Figure 1, the experiment is conducted on a blade battery system and
divided into laboratory and field tests. The laboratory test placed the battery system in a
programmable temperature box, simulated working conditions using a charge-discharge
machine to input current excitation, and collected voltage and temperature signals. The
sampling time is 0.1 s, and the voltage sampling system contains the highest and lowest
voltage of the battery system’s single cells with a voltage sampling resolution of 0.001 mV
and a current sampling resolution of 0.001 mA. Multiple temperature sampling points
are distributed throughout the battery system, and the temperature monitoring system
provides the system’s average temperature, and the highest and lowest temperatures
recorded, with a temperature sampling resolution of 1 ◦C. Before testing, the battery system
is fully charged at 25 ◦C.
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To obtain battery characteristics at different temperatures, NEDC working condition
tests are conducted at −25 ◦C, −20 ◦C, −5 ◦C, 0 ◦C, 10 ◦C, 25 ◦C, and 45 ◦C. For field tests,
the driver simulates the NEDC working conditions during on-road driving tests conducted
at −7 ◦C and −20 ◦C. In addition, field driving tests are performed on a Chinese highway
at a speed of 120 km/h, with testing ambient temperatures of 35 ◦C and 30 ◦C, namely
35 ◦C HSW and 30 ◦C HSW. During the field driving tests, time, voltage, current, and
temperature signals are sampled using an onboard sampling chip with the same sampling
time and accuracy as in the laboratory. Therefore, this experiment data set consists of eleven
working condition tests, seven laboratory tests, and four field driving tests.

To train the BPNN model, the above working conditions need to be divided into
training, validation, and testing sets. The division of the experimental data set is shown in
Figure 2. In this research, the −25 ◦C NEDC, −5 ◦C NEDC, 0 ◦C NEDC, 25 ◦C NEDC, 43 ◦C
NEDC, and 30 ◦C HSW are assigned to the training set, and the field tests of −20 ◦C NEDC
and −7 ◦C NEDC are assigned to the validation set. The testing set includes 10 ◦C NEDC,
−20 ◦C NEDC, and 35 ◦C HSW working conditions. The testing set includes three working
conditions: a low-temperature condition of −20 ◦C to verify the model’s applicability in
low-temperature environments, and 10 ◦C NEDC and 35 ◦C HSW working conditions to
test the model’s accuracy under different working conditions and temperatures.
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Figure 2. The experimental dataset and the current-voltage curves for different working condi-
tions. The training set: (a) −25 ◦C NEDC, (b) −5 ◦C NEDC, (c) 0 ◦C NEDC, (d) 25 ◦C NEDC,
(e) 43 ◦C NEDC, (f) 30 ◦C HSW. The validation set: (g) the field test of −20 ◦C NEDC (h) the field test
of−7 ◦C NEDC. The testing set: (i) −20 ◦C NEDC, (j) 10 ◦C NEDC, (k) 35 ◦C HSW.
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2.1.2. Feature Selection

After constructing the dataset, it is necessary to determine the input features and out-
put targets of the BPNN model. As this study aims to estimate the SOC of the entire battery
system during the discharge process, the main focus is on the minimum discharge voltage
of the series-connected battery system. The target output of the BPNN is the minimum
discharge voltage of the battery system. In terms of input features, the initial selection
included maximum voltage difference (MVD), maximum temperature difference (MTD),
current (I), average temperature (Tave), current change rate (CCR), average temperature
change rate (ATCR), and SOC as input features. A detailed description of the selected
features is shown in Table 3.

Table 3. Neural network feature meanings.

Feature Name Description

Maximum voltage difference (MVD)
The difference between the highest and lowest

voltage of individual cells within the
series-connected blade battery system.

Maximum temperature difference (MTD)

The difference between the highest temperature
sampling data and the lowest temperature

sampling data within the series-connected blade
battery pack.

Current (I)
The current flowing through the series-connected

blade battery pack, with positive value
indicating charging.

Average temperature (Tave) The average value of temperature sampling data
within the series-connected blade battery pack.

Current change rate (CCR) The difference in current between two
sampling intervals.

Average temperature change rate (ATCR) The difference in average temperature between
two sampling intervals.

State of charge (SOC) The available capacity of the battery divided by
its nominal capacity (135 Ah).

To explore the relationship between input features and output voltage, PCC is used to
screen the main features. PCC is a way to measure the correlation between input and output
features, with an output range from −1 to +1, where 0 represents no correlation, negative
values represent negative correlation, and positive values represent positive correlation.
The calculation of the PCC is shown in Equations (1)–(3), and the results are shown in
Figure 3. The correlation coefficient between the same features is 1, and if two different
features are positively correlated, they are represented by light green, while negative
correlation is represented by white. Based on the results of the PCC, the four features with
the highest absolute correlation are selected as input features of the BPNN, including MVD,
I, SOC, and Tave, which are found to be most relevant to the output. The PCC for these four
features is highlighted in red in Figure 3.

r f =
∑k

i=1 ( fi − f )(vmin,i − vmin)√
∑k

i=1 ( fi − f )
2
√

∑k
i=1 (vmin,i − vmin)

2
(1)

f =
1
k∑k

i=1 fi (2)

vmin =
1
k∑k

i=1vmin (3)

where r f represents the PCC between the input features and the output, and fi and vmin,i
are the feature variable value and the minimum voltage of the battery system at index
sequence i in the dataset, respectively. f and vmin are the mean value, and k is the length of
the dataset.
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2.1.3. BPNN Training

The network structure of the BPNN model mainly consists of an input layer, a hidden
layer, and an output layer. After feature selection, the input layer selected four features,
including MVD, I, SOC, and Tave, and the output layer’s output value is the minimum
terminal voltage of the battery system. The structure of the hidden layer also needs to be
determined.

To reduce the complexity of the entire model, a single hidden layer is chosen. The
nonlinear activation function of the BPNN is the hyperbolic tangent function, as shown
in Equation (4). The Levenberg–Marquardt algorithm is adopted for the training algo-
rithm. The Levenberg–Marquardt algorithm is a variation of Newton’s method, used to
minimize the sum of squares of the nonlinear loss function in a BPNN model. The core
idea is to use the Jacobian matrix (which is easier to compute) as a replacement for the
computation of the Hessian matrix, thereby improving the efficiency of optimization. The
Levenberg–Marquardt algorithm is a standard numerical optimization method that acceler-
ates the training of BPNN model.

tansig(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x (4)

where tansig is the hyperbolic tangent function, sinh is the hyperbolic sine function, cosh
is the hyperbolic cosine function, e is the Euler number.

To ensure the generalization of the BPNN model, the training ends when the training
error on the validation set does not decrease for six consecutive times. Before model
training, feature normalization is required to eliminate the influence of differences in
units and scales between features, and each feature is treated equally. The normalization
calculation formula is shown in Equation (5). The mathematical expression of the neural
network is shown in Equation (6).

z =
(zmax − zmin)(p − pmin)

pmax − pmin
+ zmin (5)

where z is the normalized value of the feature, pmax and pmin are the upper and lower limits
of the normalization interval, respectively, which are +1 and −1, zmax is the maximum
value of the feature, and zmin is the minimum value of the feature.
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vmin = W2 × tansig(W1 × z + b1) + b2 (6)

where vmin represents the neural network output, z represents the input feature vector, W1
and W2 are the weight matrices between the input layer and the hidden layer, and between
the hidden layer and the output layer, respectively. b1 and b2 are bias vectors, and tansig is
the nonlinear activation function used in the hidden and output layers.

To explore the optimal number of nodes in the hidden layer, single-hidden-layer
BPNN models with 28, 36, and 48 nodes are trained, and the simulation errors of the
test set and training time are compared for different node numbers. Matlab R2020b, the
computational platform used for BPNN training, is run on the Intel (R) Xeon (R) Gold
62486R CPU @ 3.00 Ghz @ 2.99 Ghz (two processors) with 16 GB RAM. As shown in
Figure 4a, with the increase in the number of nodes, the model training time increases, but
the root mean square error (RMSE) and mean absolute error (MAE) of the model on the
test set do not decrease. Increasing the number of nodes brings difficulties to the model
training. A total of 36 nodes are chosen as the optimal number of nodes in the hidden
layer. The actual data sampling time is 0.1 s. When training the neural network model
with 0.1 s sampling data, the training time is 249 s, voltage simulation RMSE is 22.6 mV,
and MAE is 14.1 mV. When training the BPNN model with 1 s interval sampling data, the
training time can be significantly reduced to 12 s, 4.8% of the original training time. The
RMSE and MAE of the terminal voltage simulation only increased by 2.21% and 6.38%,
respectively. When selecting data with a 10 s interval for training the model, the terminal
voltage simulation error increases significantly, with RMSE increasing to 28.8 mV and MAE
to 20.4 mV. Considering the trade-off between model training time cost and accuracy, 1 s
sampling data is chosen for model training. The final neural network model is shown in
Figure 4c.
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Figure 4. BPNN training: (a) model training time and test set voltage RMSE under different hidden
layer node numbers; (b) model training time and test set voltage RMSE error under 0.1 s, 1 s, and
10 s sampling data; (c) BPNN model architecture; (d) BPNN model training results on the test set;
(e) voltage, current, and average temperature curves of −20 ◦C NEDC working condition.
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The performance of the BPNN model on the test set is shown in Figure 4d. The BPNN
model shows good voltage simulation accuracy for the 10 ◦C NEDC, −20 ◦C NEDC, and
35 ◦C HSW working conditions, with an overall RMSE of 23.1 mV. It is worth noting that at
−20 ◦C, the voltage fluctuation is severe in the initial stage, as shown in Figure 4e. This
is due to the higher internal resistance of the battery at low temperatures, which results
in a higher polarization voltage. After a certain amount of charge and discharge, the
heat generated by the battery’s internal resistance increases the temperature, reducing the
resistance value and narrowing the voltage fluctuation range. Under these conditions, with
apparent changes in internal resistance, the BPNN model can still follow the voltage change
trend very well, verifying the accuracy of the BPNN model.

2.2. BPNN-EKF Algorithm

The fundamental value for battery system SOC estimation is obtained through ampere-
hour integration, as shown in Equation (7). However, since ampere-hour integration is an
open-loop calculation method, it is susceptible to various noises, thus requiring calibration
during real-world applications. Based on the BPNN voltage model, this research calibrates
the SOC value obtained from the ampere-hour integration calculation using voltage error
information. The calibration algorithm adopts the EKF algorithm, which can achieve
optimal estimation in the least squares sense. Firstly, a state equation is established for
the battery system, and EKF iterative calculation is performed. The input vector of the
state equation is the current value, the state vector is the SOC value, and the observation
value is the minimum voltage of the battery system. The transition matrices in the state
Equation (11) are shown respectively in Equations (12) and (13). The key to the BPNN-EKF
fusion is to determine the expression of the Kalman gain, which is obtained by taking the
derivative of the SOC concerning the output voltage value from the BPNN model. The
derivative result is shown in Equations (14) and (15), and mathematical operations are
performed using the trained neural network model matrix. This Kalman gain term avoids
the traditional OCV differentiation with respect to SOC in the ECM model, and can achieve
a more stable calibration effect for SOC. The BPNN-EKF algorithm framework is shown in
Figure 5. The covariance matrix P takes a value of 1, Q takes a value of 10−9, and R takes a
value of 0.5.

SOCt = SOC0 +
∫ t

t0

η I
Qsystem

dτ (7)

where SOCt represents the SOC value at time t, SOC0 is the initial value of SOC, t0 is
the initial calculation time, η is the Coulomb efficiency with a value of 1, I is the current
value, positive for charging and negative for discharging, and Qsystem is the battery system
capacity with a nominal value of 135 Ah.

ut = It (8)

xt = SOCt (9)

yt = Vmin,t + νt (10)

xt = Axt−1 + But−1 + ωt−1 (11)

A = 1 (12)

B = − ∆t
3600 × Qsystem

(13)
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Htt =
∂Vmin

∂xt
= W2 × (W1 × [0, 0, 1, 0]T)× ([1; . . . ; 1]36×1 − tansig(b1)

2) (14)

Kt = P−
t HT

t (HtP−
t HT

t + R)
−1

(15)

where ut represents the input variable, xt represents the state variable, and yt represents
the observed variable. A and B are state transition matrices, and ω represents the model
noise, while ν represents the observation noise. It is assumed that both ω and ν variables
follow a Gaussian distribution, Ht is the Jacobian matrix, Kt is the Kalman gain, P−

t and R
are covariance matrix.
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Figure 5. BPNN-EKF algorithm framework diagram.

In this section, NEDC and HSW tests are conducted on a series-connected battery
pack of LiFePO4 blade batteries under different temperatures in both laboratory and field
scenarios. The test results are divided into training, validation, and testing sets to train
a BPNN model with the minimum terminal voltage as the output. By calculating the
PCC between different physical features and the minimum terminal voltage of the series-
connected battery system, the most correlated features, namely MVD, I, SOC and Tave, are
selected as input features for the BPNN. By comparing the training results, the number of
nodes in the hidden layer of the neural network is determined to be 36, and the sampling
interval for training the network is set to 1 s. The constructed neural network model
achieved a low RMSE of only 23.6 mV in simulating the terminal voltage under −20 ◦C
NEDC, 10 ◦C NEDC, and 35 ◦C HSW validation working conditions, indicating high
simulation accuracy. Furthermore, the expression for the Kalman gain, which integrates
the output terminal voltage of the BPNN, is derived and used for deep fusion with the EKF
algorithm. The BPNN-EKF algorithm utilizes the error between simulated voltage and
measured voltage to correct the initial value of SOC based on ampere-hour integration. The
algorithm is not only applicable to the LiFePO4 battery system but also suitable for nickel-
cobalt-manganese (NCM) lithium ion batteries and lithium manganese iron phosphate
batteries. It only requires training the BPNN model with experimental data from different
battery systems. The fusion of EKF and BPNN models remains the same. However,
considering the limited types of test conditions currently available, to apply this algorithm
in the real world, it is necessary to increase the amount of training data in the training set
to improve the model’s universality.
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3. SOC Estimation Results
3.1. Ideal Situation

The SOC estimation algorithm is validated on test conditions of −20 ◦C NEDC,
10 ◦C NEDC, and 35 ◦C HSW, with SOC reference values obtained by accurate initial
SOC values and ampere-hour integration. The SOC estimation results for the three test
working conditions without considering other errors are shown in Figure 6a–c, with RMSE
errors of 1.81%, 2.26%, and 1.36%, respectively. The BPNN-EKF algorithm has a SOC
estimation error of less than 2% in the −20 ◦C low-temperature and has desirable estima-
tion results in the 10 ◦C NEDC and 35 ◦C HSW, demonstrating the effectiveness of the
algorithm for wide temperature range and different working conditions SOC estimation.
The absolute error of SOC exhibited a fluctuating pattern, with the EKF algorithm correcting
the SOC error.
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sampling error: (g) −20 ◦C NEDC, (h) 10 ◦C NEDC, (i) 35 ◦C HSW.

3.2. Algorithm Robustness Verification

In practical situations, the performance of a battery system is affected by various
sources of noise and interference, and real-time computation is required for onboard
applications. To better fit real-world scenarios, the capacity of a battery may have errors,
the sampling of current and voltage may have random noise, and the initial SOC may have
errors. Moreover, the SOC calculation intervals also affect the accuracy of SOC estimation.
Therefore, evaluating the robustness and accuracy of the SOC estimation algorithm under
different scenarios is necessary.
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3.2.1. Capacity Error

During the use of electric vehicle batteries, their capacity gradually decays; therefore,
the battery capacity needs to be estimated. However, capacity estimation is subject to
errors. The error in capacity directly affects the accuracy of SOC estimation. When there is
a negative bias in capacity, SOC estimation methods based on ampere-hour integration can
result in an overestimation of SOC, and this bias persists over time. This can potentially
lead to over-discharging of the battery, posing safety risks. Overestimated SOC values can
cause voltage discrepancies between model predictions and actual measurements during
the discharge process. The BPNN-EKF algorithm can be employed to correct the SOC based
on this voltage error information.

This research evaluates the accuracy of SOC estimation using the BPNN-EKF algorithm
under the assumption of a 5% capacity negative error. The results of SOC estimation under
test working conditions of −20 ◦C NEDC, 10 ◦C NEDC, and 35 ◦C HSW are presented in
Figure 6d–f, with RMSE of 3.98%, 2.16%, and 1.37%, respectively. Compared to the scenario
without capacity error, the errors are virtually unchanged at 10 ◦C NEDC and 35 ◦C HSW,
and increased by only 2% at −20 ◦C NEDC, indicating that the BPNN-EKF algorithm is
robust to the errors caused by capacity estimation in these three working conditions. The
fact that the RMSE of SOC remains essentially unchanged implies that the BPNN-EKF
algorithm is not significantly affected by capacity errors.

3.2.2. Current and Voltage Sampling Error

The current and voltage sampling devices have a certain sampling accuracy, and
produce random noise during sampling. The noise in current sampling also affects the
SOC calculation method based on ampere-hour integration in the BPNN-EKF algorithm,
while voltage sampling errors introduce disturbances to the model-based SOC feedback
correction algorithm. The robustness and accuracy of the BPNN-EKF algorithm in this
scenario need further validation.

To verify the accuracy and robustness of the BPNN-EKF algorithm in SOC estimation
under current and voltage sampling errors, we introduced a random noise of −10% to
+10% to the original voltage sampling data and a random noise of −20% to +20% to the
original current sampling data. The process of applying current and voltage noise to the
original data is illustrated in Figure 7. Figure 7a depicts the flowchart of the random
noise injection process. Figure 7b shows the random noise added to the original voltage
sampling data. Figure 7c compares the original voltage sampling data with the voltage
noise data. Figure 7d displays the random noise added to the original current sampling
data. Lastly, Figure 7e compares the original current sampling data with the current noise
data. The SOC estimation algorithm is validated under the combined effect of current and
voltage sampling errors, and the SOC estimation results are shown in Figure 6g–i. The SOC
estimation RMSE is 1.54% under the −20 ◦C NEDC working condition, 2.51% under the
10 ◦C NEDC working condition, and 1.55% under the 35 ◦C HSW working condition. Even
with the superimposed sampling errors, the SOC estimation can still maintain high accuracy,
indicating that the BPNN-EKF algorithm is not sensitive to sampling noise because voltage
error information is the core source of SOC correction, and random voltage noise can
increase error information and enhance the correction effect of SOC. The SOC estimation
accuracy of the BPNN-EKF algorithm can still be maintained at a high level even when
there are sampling errors in voltage and current.

3.2.3. Initial SOC Error

In practical situations, the initial SOC value may not be accurate. Correcting the initial
SOC during operation helps drivers obtain accurate battery state information, and enables
them to engage in appropriate driving behavior. The initial SOC error also generates
voltage error information, which can be captured by BPNN-EKF to correct the initial SOC
error.
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A simulation scenario with a relatively severe 20% initial error is set up to verify the
algorithm’s estimation accuracy. The simulation results of SOC are shown in Figure 8a,d,g.
The RMSE errors are 1.81%, 3.62%, and 1.52% under −20 ◦C NEDC, 10 ◦C NEDC, and
35 ◦C HSW, respectively. The process of correcting the initial SOC error gradually reduces
the SOC error. If the correction is done too quickly, the RMSE of SOC estimation remains
essentially unchanged, for example, under the −20 ◦C NEDC working condition. If the
correction speed is slightly slower, it can increase the RMSE of SOC estimation, for example,
under the 10 ◦C NEDC and 35 ◦C HSW working conditions. This indicates that the accuracy
of the battery model is crucial in the early stages of operation. Due to the large initial SOC
error, the voltage error information is significantly increased, thereby enhancing the SOC
correction effect and making the SOC error quickly converge. The Kalman gain curve and
its early amplification are shown in Figure 8b,c,e,f,h,i. The equation shown in Equation
(16) represents the correction of the SOC feedforward value using the Kalman gain and
voltage error. When the SOC error is large, the voltage error increases. With the assistance
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of a stable Kalman gain, this leads to a larger correction effect, allowing the SOC to rapidly
approach the true value. Under the −20 ◦C NEDC working condition, with a 20% initial
error in the early stage, the Kalman gain rapidly increased to about 0.6, forming a strong
SOC correction effect, making the quick SOC approach the true value. Under 10 ◦C NEDC
and 35 ◦C HSW working conditions, the Kalman gain is also large and showed a fluctuating
feature and the absolute SOC error continued to decrease.

x+t = x−t + Kt(yt − vmin) (16)

where x+t represents the SOC after correction by the EKF algorithm, x−t represents the SOC
calculated through ampere-hour integration method, Kt represents the Kalman gain, yt
represents the measured minimum voltage value in the series-connected battery pack, and
vmin represents the predicted minimum voltage value in the series-connected battery pack
by the BPNN model.
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Figure 8. SOC estimation results with an initial SOC error of 20%. −20 ◦C NEDC: (a) SOC estimation
results, (b) Kalman gain, and (c) magnified view of the Kalman gain at the initial stage; 10 ◦C NEDC:
(d) SOC estimation results, (e) Kalman gain, and (f) magnified view of the Kalman gain at the initial
stage; 35 ◦C HSW: (g) SOC estimation results, (h) Kalman gain, and (i) magnified view of the Kalman
gain at the initial stage.

3.2.4. Interval Calculation of SOC

Considering the limitation of computing power in actual vehicles, calculating SOC
every 1 s may burden the BMS management system significantly. When the hardware of the
battery management system is constrained by computational power, it may be necessary
to calculate SOC at intervals of multiple seconds. Within adjacent calculation intervals,
the SOC value remains constant and cannot reflect the true SOC value. However, the
voltage error caused by SOC errors also generates a Kalman gain, which can be used to
correct it through the BPNN-EKF algorithm. We utilize this scenario to further validate the
robustness of the BPNN-EKF algorithm.
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The SOC estimation results at intervals of 5 s, 10 s, and 30 s are shown in Figure 9. As
the calculation time interval increases, the SOC estimation error increases, and the error
fluctuation shows an increasing trend because the calculated SOC value does not change
during the interval, causing the difference between the calculated SOC and the accurate
SOC to increase. When the calculation is resumed, the continuous SOC difference brings
voltage error information, corrected by the EKF algorithm, and the SOC error is further
reduced. Therefore, the absolute SOC error fluctuates continuously. Overall, the SOC still
has good accuracy and robustness at different calculation time intervals. Under a 30 s
interval, the BPNN-EKF algorithm has an RMSE error of 3.04% at −20 ◦C NEDC, 2.85% at
10 ◦C NEDC, and 1.68% at 35 ◦C HSW working conditions.
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(h) 10 ◦C NEDC, (i) 35 ◦C HSW.

As shown in the Figure 10, the BPNN-EKF algorithm demonstrated high accuracy in
estimating SOC under four different scenarios: capacity error, errors in current and voltage
sampling, error in initial SOC, and interval SOC calculation. The algorithm showed good
resistance to various errors attributed to the fusion of the Kalman gain calculation and
the output voltage of the BPNN. The stability of SOC estimation is improved by using
voltage information to correct SOC errors. The algorithm is suitable for various operating
conditions. Under the low-temperature NEDC working condition of −20 ◦C, the BPNN
model can track the tremendous nonlinear changes in voltage well, and the maximum SOC
estimation error is 3.98%. Under the 10 ◦C NEDC working condition, the maximum RMSE
of SOC estimation is 3.62%; under the 35 ◦C HSW working condition, the maximum RMSE
of SOC estimation is 1.49%. The BPNN-EKF algorithm, with its strong robustness and high
accuracy, holds great potential for application in real-world electric vehicle management
systems. It can significantly enhance the precision of SOC estimation in battery systems,
enabling drivers to have a better awareness of the battery’s state. By improving SOC
estimation accuracy, potential safety risks can be effectively mitigated. This algorithm
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has the capability to contribute to the overall safety and performance of electric vehicles,
providing reliable information about the battery’s status for optimal driving and preventing
any potential safety hazards.
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4. Conclusions

The LiFePO4 batteries, known for their flat open-circuit voltage and significant po-
larization at different temperatures, pose challenges in accurately modeling their voltage
behavior. This difficulty in voltage modeling presents a challenge for model-based SOC
estimation algorithms. Additionally, the current state of SOC estimation algorithms shows
poor robustness and accuracy under different operating conditions and temperatures,
further contributing to potential safety risks in electric vehicles. This research focuses on
the LiFePO4 blade battery system and proposes a BPNN-EKF algorithm for accurate SOC
estimation, which addresses the inaccurate voltage model simulation issues under a wide
temperature range, approximate SOC estimation at low temperatures, and the insufficient
robustness in the SOC estimation algorithm for LiFePO4 batteries.

The main contributions are summarized as follows:
(1) A BPNN model is constructed to simulate the minimum terminal voltage of the

blade battery system with high accuracy under a wide temperature range (25–43 ◦C)
through feature selection and hyperparameter tuning. The maximum RMSE of the terminal
voltage under −20 ◦C NEDC, 10 ◦C NEDC, and 35 ◦C HSW test working conditions is only
23.1 mV. An accurate voltage model can generate stable voltage error information in the
presence of SOC errors, thereby correcting SOC estimation errors. This is particularly crucial
in blade battery systems, where our developed BPNN-EKF algorithm utilizes voltage to
differentiate SOC. As a result, an accurate voltage model will generate stable Kalman gains,
enhancing the robustness and accuracy of SOC estimation.

(2) Based on the BPNN model for terminal voltage output, we derive the expression
for calculating the Kalman gain and achieve deep fusion of BPNN and EKF algorithms.
We then utilize the BPNN-EKF algorithm to accurately estimate the blade battery system’s
SOC. The BPNN-EKF algorithm demonstrated high SOC simulation accuracy under dif-
ferent scenarios, with low capacity, current, voltage sampling, initial SOC, and interval
SOC calculation errors. The maximum SOC estimation RMSE is 3.98% at −20 ◦C NEDC,
3.62% at 10 ◦C NEDC, and 1.68% at 35 ◦C HSW. The BPNN-EKF algorithm has the potential
to be applied in BMS to achieve high accuracy and robustness in SOC estimation, especially
under wide temperature ranges and various operating conditions. This method aims to
provide more accurate battery status information to drivers, resulting in an improved
driving experience and mitigating potential safety risks.
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The BPNN-EKF SOC estimation algorithm is not only applicable to LiFePO4 batteries
but also exhibits its versatility to be applied to batteries of other chemistries. The accuracy
of SOC estimation across different battery systems is worth further validation in the future.
Additionally, the consideration of NEDC and HSW operating conditions alone is insufficient.
To enhance the accuracy of the BPNN model, it is necessary to incorporate a broader range
of real-world operating conditions during model training to improve its applicability.
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Abbreviation

LiFePO4 Lithium iron phosphate
BMS Battery management system
SOC State of charge
OCV Open circuit voltage
ECMs Equivalent circuit models
SP Single particle
EKF Extended Kalman filter
UKF Unscented Kalman filter
CKF Cubature Kalman filter
NN Neural network
LSTM Long short term memory
RNN Recurrent neural network
BPNN backpropagation neural network
NEDC New European driving cycle
HSW High-speed working
PCC Pearson correlation coefficient
MVD Maximum voltage difference
MTD Maximum temperature difference
I Current
Tave Average temperature
CCR Current change rate
ATCR Average temperature change rate
RMSE Root mean square error
MAE Mean absolute error
NCM Nickel-cobalt-manganese
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