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Abstract: For increased penetration of energy production from renewable energy sources at a utility 

scale, battery storage systems (BSSs) are a must. Their levelized cost of electricity (LCOE) has dras-

tically decreased over the last decade. Residential battery storage, mostly combined with photovol-

taic (PV) panels, also follow this falling prices trend. The combined effect of the COVID-19 pandemic 

and the war in Ukraine has caused such a dramatic increase in electricity prices that many consum-

ers have adjusted their strategies to become prosumers and self-sufficient as feed-in subsidies con-

tinue to drop. In this study, an investigation is conducted to determine how profitable it is to install 

BSSs in homes with regards to battery health and the levelized cost of total managed energy. This is 

performed using mixed-integer linear programming (MILP) in MATLAB, along with its embedded 

solver Intlinprog. The results show that a reasonable optimized yearly cycling rate of the BSS can be 

reached by simply considering a non-zero cost for energy cycling through the batteries. This cost is 

simply added to the electricity cost equation of standard optimization problems and ensures a very 

good usage rate of the batteries. The proposed control does not overreact to small electricity price 

variations until it is financially worth it. The trio composed of feed-in tariffs (FITs), electricity costs, 

and the LCOE of BSSs represents the most significant factors. Ancillary grid service provision can 

represent a substantial source of revenue for BSSs, besides FITs and avoided costs. 
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1. Introduction 

Over the past 10 years, from 2011 to 2021, total electricity production from photovol-

taic (PV) plants has multiplied by 25 [1]. Boosted by the hugely reduced cost of PV mod-

ules, whose price has decreased by more than 90% since 2009 [2], the worldwide total of 

installed power in residential PV plants reached 145.4 GW in 2021, which is about nine 

times the installed capacity 10 years prior [1,3]. This trend has emphasized the energy 

management challenges faced by grid operators, especially when power is generated from 

intermittent sources. Battery storage systems (BSSs) are becoming more and more useful 

as their prices have considerably decreased [4]. A widely adopted strategy to alleviate this 

power management issue is to prioritize PV power self-consumption [5–8]. In all major 

world regions, especially in developed countries, feed-in tariffs (FIT) for residential solar 

power are reduced, on average, to a quarter of their value 10 years ago [9–12]. The shortest 

path to achieving electrical self-consumption of PV power requires an intermediate BSS 

to match the home electricity demand and power supply. 

There has been a prolific number of research works that have presented different 

methods and techniques to maximize the energy self-sufficiency rate [13–17]. Some have 

reviewed the different ranges of services BSSs can offer in a power system [18]. Others 

have studied the potential revenue achievable by BSSs or home energy management sys-

tems [19,20]. On the battery’s hardware side, there are continuous studies focusing on 
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improving the reliability and, more intensively, the robustness of rechargeable batteries 

[21,22]. However, the battery-charging power profile, its health degradation, limited life-

time expressed as number of cycles, and the self-consumption of the battery management 

system are somehow overseen, especially in advanced predictive models of BSS power 

control strategies that exploit the volatility of electricity prices to generate profit [23–25]. 

In this paper, a simplified analysis of the profitability of residential BSSs coupled with 

PV power is presented. The method relies on a model predictive control approach to esti-

mate yearly potential income, considering the cost of storing and using energy from the 

batteries. The levelized cost of this energy flow through the battery is the determining key 

indicator. The revenues are composed of the FITs and the avoided costs from the energy 

sold to the grid and the avoided energy consumption provided by the PV unit. The con-

sumed energy costs are derived from the historical day-ahead market prices from the pre-

vious 12 months (from November 2021 to October 2022). 

2. Previous Related Works 

The authors of [18] presented a very detailed analysis of the profitability of a com-

bined plant of PV power and battery storage, including the provision of negative reserve 

service to the grid. They found that battery costs are still high and have a higher impact 

on system profitability for homeowners. It is also stated that discovering the precise break-

even battery price is a multivariable problem specific to the local weather and economy. 

The major missing point is that the analysis was conducted using average electricity 

prices. Considering the volatile prices experienced recently can double the projected BSS 

cycling rate. 

In [13–17], which are mainly studies on commercial size power systems, the focus is 

on the self-sufficiency rate with little regard for BSS usage cost. In [13], for example, the 

BSS was so oversized that the state of charge (SOC) remained quite low (below 30%) for 

up to three days despite the power cycling. The study carried out in [23] considered a too-

ideal battery unit. BSS self-consumption, as well as self-discharge, are not included. 

The authors of [24] presented a very advanced control strategy, like this work, based 

on model predictive control (MPC). The considered time-of-use (TOU) electricity prices 

were constant values during three periods of the day. With such low volatility, the pre-

sented controlled BSS depicted up to two cycles per day, which is considerably high for 

lead–acid batteries. This would be much more frequent with the highly volatile prices 

nowadays. The BSS charging power is constant throughout the whole charging period. 

Such ideal behavior does not reflect the reality of available industrial battery management 

systems. The authors of [26] had to constrain the discharge of the battery only after the 

SOC reached a given threshold. This is a clear limitation of any financial optimization trial. 

This paper is a combination of the strengths of previous studies and a trial to over-

come their weaknesses. The present work used mixed-integer linear programming (MILP) 

optimization and the MPC strategy. The considered electricity prices are the 15 min day-

ahead electricity spot prices, instead of the averaged daily prices of the TOU prices’ pro-

file. Most importantly, a financial cost for storing power into the BSS was directly inte-

grated into the optimization problem. This aims to avoid non-profitable cycling of the BSS, 

especially with volatile electricity prices. 

3. MPC Models and Constraints Definition 

The profitability optimization problem is solved using the MILP technique as de-

tailed in [27]. The mathematical formulation of the problem and the objective function are 

defined in the next lines. (The abbreviations in the following equations are defined in Ab-

breviations part.) 
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3.1. Electrical Power Balance 

The electrical power balance at the point of connection of the BSS, the PV plant, the 

loads, and the grid must be respected and is represented by Equation (1) as follows: 

𝑷𝑏𝑢𝑦 + 𝑷𝐵𝑆𝑆− + 𝑷𝑝𝑣 = 𝑷𝑠𝑒𝑙𝑙 + 𝑷𝐵𝑆𝑆+ + 𝑷𝑙𝑜𝑎𝑑  (1) 

In this studied case, there is a single bi-directional power counter. Thus, the possibil-

ity to buy and sell power simultaneously is excluded, and the sum of both simultaneous 

values are limited to a maximum value. It is expressed as follows: 

0 ≤ 𝑷𝑏𝑢𝑦 ≤ 𝑷𝑏𝑢𝑦,𝑚𝑎𝑥 . 𝑩𝑰𝑵𝑏𝑢𝑦 (2) 

0 ≤ 𝑷𝑠𝑒𝑙𝑙 ≤ 𝑷𝑠𝑒𝑙𝑙,𝑚𝑎𝑥 . 𝑩𝑰𝑵𝑠𝑒𝑙𝑙   (3) 

𝑩𝑰𝑵𝑏𝑢𝑦 + 𝑩𝑰𝑵𝑠𝑒𝑙𝑙 ≤ 1 (4) 

3.2. Battery Storage System 

The BSS is the most sensitive and complex unit to model. Without investigating every 

single electrochemical and thermal interaction, the model employed considers the observ-

able electrical behavior. The self-discharge rate of batteries themselves is very low. When 

kept in a proper environment with a constant 20 °C ambient temperature, lead–acid bat-

teries lose as little as 4% of the stored energy in one month. Lithium-ion batteries perform 

better and lose about 2%/month. With a non-linear self-discharge rate, they lose 4% in 3 

months [28,29]. However, the inverters belonging to the BSS require minimum power to 

supply the electricity and ensure the proper and safe use of the batteries. This leads to a 

self-discharge rate of the BSS that is much higher than that of the batteries themselves. 

Several small-scale BSS manufacturers (not all) indicate zero-load, standby, overnight, idle 

state, or nighttime consumption or power ranging from 3 to 18 W, depending on the state 

of the inverter. The smaller the installed battery capacity, the bigger the impact of the in-

verter standby consumption on the SOC. For a 5 kWh lead–acid BSS capacity, an idle con-

sumption as low as 3 W by the BSS inverter leads to 2.16 kWh energy being consumed in 

one month. This is 43% of the total battery capacity being used. The apparent self-dis-

charge rate (43% in a month) is then ten times the intrinsic self-discharge rate of the battery 

bank. The same inverter, handling 20 kWh storage, would use 11% of the total energy 

stored. 

The state of charge of the BSS can then be expressed as follows (5): 

𝑑𝑺𝑶𝑪𝑡 =
1

𝑬𝐵𝑆𝑆,𝑚𝑎𝑥
(𝜼𝐵𝑆𝑆+𝑷𝐵𝑆𝑆+,𝑡 −

1

𝜼𝐵𝑆𝑆−
𝑷𝐵𝑆𝑆−,𝑡 − 𝑷𝐵𝑆𝑆,𝑙𝑜𝑠𝑠,𝑡) 𝑑𝑡  (5) 

To achieve a defined usage time with proper usage of the BSS, especially the battery 

bank of the BSS, the SOC is constrained to clear the lower and upper SOC values, i.e., 

SOCmin and SOCmax. 

𝑺𝑶𝑪𝑚𝑖𝑛 ≤ 𝑺𝑶𝑪𝑡 ≤ 𝑺𝑶𝑪𝑚𝑎𝑥   (6) 

BSS manufacturers, as well as battery manufacturers, indicate the maximum charg-

ing current permitted for the battery bank. However, based on up-to-date battery-charg-

ing techniques, the charging power does not remain constant during a complete charging 

cycle. As depicted in Figure 1 [30], the charging cycle can be divided into two steps. The 

first is the constant current phase, where the battery is charged by a controlled constant 

current. The battery voltage increases to a specific threshold along with the charging 

power. This phase is followed by the constant voltage (CV) charging phase. The voltage 

is held constant; the current continues to flow, although at a decreasing rate until it reaches 

0; and the battery is then fully charged. The power during the CV phase decreases and is 

therefore proportional to the inverse on the SOC of the battery bank. 
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Figure 1. Typical charging voltage and current profile of a battery and operation modes of a bat-

tery charger. 

This maximum charging power profile of the BSS can be modeled as depicted in Fig-

ure 2a and expressed as follows: 

𝑷𝐵𝑆𝑆+,𝑚𝑎𝑥 = 𝑓(𝑺𝑶𝑪𝑡) (7) 

Depending on the targeted accuracy, the function 𝑓 can be a polynomial function of 

high order. In this work, the following simplification was made: during the CC phase, the 

charging power is constant and then decreases linearly with the SOC after the SOC thresh-

old is reached (see Figure 2b). 

 

 

 

 

 

 

(a) (b) 

Figure 2. (a) Typical charging power profile of a battery; (b) Simplified charging profile of a bat-

tery. 

The computing 𝑷𝐵𝑆𝑆+,𝑚𝑎𝑥 within the optimization process would add another un-

necessary complexity to the problem. Hence, to keep the problem linear, the maximum 

charging power is recalculated once between each optimization step. This creates a small 

bias in the model but with little impact because only the charging power is limited to that 

contact value during one optimization step. 

Like the power balance at the main supply point of the house, the power balance of 

the BSS is also bi-directional but not simultaneous. The power can flow in one direction at 

a time and is limited by the maximum charging and discharging power of the batteries. 

The BSS inverters are considered optimally sized for the battery pack. 
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0 ≤ 𝑷𝐵𝑆𝑆+ ≤ 𝑷𝐵𝑆𝑆+,𝑚𝑎𝑥 . 𝑩𝑰𝑵𝐵𝑆𝑆+  (8) 

0 ≤ 𝑷𝐵𝑆𝑆− ≤ 𝑷𝐵𝑆𝑆−,𝑚𝑎𝑥 . 𝑩𝑰𝑵𝐵𝑆𝑆−  (9) 

𝑩𝑰𝑵𝐵𝑆𝑆+ + 𝑩𝑰𝑵𝐵𝑆𝑆− ≤ 1 (10) 

3.3. Objective Function 

Some studies that focused on a similar optimization problem in the past considered 

that FITs are equal to the price of electricity bought. In this case, the objective function is 

simplified as shown in (11). Minimizing the energy consumption from the grid directly 

automatically leads to the cost minimization. 

𝑀𝑖𝑛. (∑ (𝑷𝑏𝑢𝑦,𝑖 − 𝑷𝑠𝑒𝑙𝑙,𝑖)𝒑𝑏𝑢𝑦,𝑖. ∆𝑇𝑛
𝑖 )  (11) 

However, incentives for supplying the grid with solar power are now drastically re-

duced and are far below that of electricity prices. Taking that into consideration, the ob-

jective function in (12) can be changed and expressed as follows: 

𝑀𝑖𝑛. (∑ (𝑷𝑏𝑢𝑦,𝑖 . 𝒑𝑏𝑢𝑦,𝑖 − 𝑷𝑠𝑒𝑙𝑙,𝑖 . 𝑭𝑰𝑻𝑖)∆𝑇𝑛
𝑖 )  (12) 

To integrate the LCOE of the BSS, it is assumed that the energy generated by PV 

power is given because the investigation focuses on the profitability of the BSS and not 

that of the system PV-BSS. The final objective function is therefore given in (13). It mini-

mizes the total cost of the consumed electrical power, taking into consideration that the 

power flow through the battery to be charged is not 100% efficient. 

𝑀𝑖𝑛. (∑ (𝑷𝑏𝑢𝑦,𝑖 . 𝒑𝑏𝑢𝑦,𝑖 − 𝑷𝑠𝑒𝑙𝑙,𝑖 . 𝑭𝑰𝑻𝑖 + (𝜼𝐵𝑆𝑆+𝑷𝐵𝑆𝑆+ +
1

𝜼𝐵𝑆𝑆−
𝑷𝐵𝑆𝑆−) 𝒑𝐵𝑆𝑆) ∆𝑇𝑛

𝑖 )  (13) 

Basically, this means that the power saved into the battery should be used at periods 

where electricity prices are so high that they compensate the total cost of storage (primary 

energy cost + cost for storing). 

4. Lab Experiment 

Some tests on the BSS’s self-discharge could be performed at the University of Lux-

embourg. In a three-phase power system, SMA Sunny Island battery inverters, working 

as full batteries management systems, manage the charge and discharge rate of the in-

stalled 21.6 kWh lead–acid batteries from Hoppecke (see Table 1). The minimum SOC is 

set at 50% with a max discharge power of 4 kW. The inverters remain in the “no-load” 

state and need up to 55 W when the SOC value is between 100% and 55%. Below this low 

threshold, the inverters jump into the idle state and minimize consumption to a total of 18 

W. The inverters automatically monitor and keep the batteries’ SOC in the range of 50–

53% with very short charging phases once the SOC reaches 50%. In this state, the inverters 

are fully decoupled from the grid. The typical profile of the apparent self-discharge of the 

BSS is depicted in Figure 3. The batteries are charged with constant power until the SOC 

reaches about 80%, then the constant voltage phase starts, and the charging power de-

creases with the increase in SOC. Once fully charged, the BSS stays in the “no load” state 

and uses up to 56 W to power the electronics and remain coupled to the grid. In about 5 

days, the SOC reaches 55%, and the battery inverters reduce their consumption to 20 W 

as they switch to the standby state. The SOC drops from 55% to 52% in 12 h. This power 

consumption by the BSS itself causes an apparent self-discharge rate of about 8% a day. 

This apparent self-discharge rate is extremely high compared to the intrinsic self-dis-

charge rate of the batteries only (estimated 4% in a month for lead–acid batteries). 
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Table 1. Main characteristics of the test bench equipment. 

3-phase DC–AC converters SMA, Sunny 

Island SI6.0H-11 

3 × 4.6 kW 

No load consumption: 3 × 18 W 

Standby consumption: 3 × 6.8 W 

Efficiency: 95.5% 

Lead–acid batteries’ Hoppecke sun 

power VR L 2-520 

1.80 V, 470 Ah C10  

1.85 V, 574 Ah, C100 

24 cells installed 

21.6 kWh total capacity 

2500 cycles at 50% DOD 

 

Figure 3. SOC and power profile during a cycle with no load. 

5. Simulation and Results 

5.1. System Configuration 

The energy system considered in this work is a near-zero energy building as de-

scribed in [31]. It is a residential building located in Luxembourg. The total electricity con-

sumption is 6640 kWh a year. The following analysis discusses the optimal sizing of the 

BSS added to the given PV plant. The PV plant production of 7700 kWh a year is dimen-

sioned based on yearly electricity consumption and system losses. The FITs for both the 

PV power and the BSS, are set at EUR 0.08/kWh. The reference system for profit compar-

ison is the building with the grid-tied PV plant. The analysis focuses on the number of 

cycles undergone by the BSS. Then, calculation of the revenues the BSS can generate (in-

cluding avoided expenses) is performed depending on battery capacity and its leverage 

cost. A comparison of these values is carried out between three cases: 

Case 1: there is no MPC control, i.e., the simplest energy management strategy. The 

batteries are charged only by PV power and provide power back whenever demand ex-

ceeds the PV power (nighttime included). 

Case 2: MPC used with a very small battery LCOE of EUR 0.01/kWh 

Case 3: MPC applied with a low battery LCOE of EUR 0.04/kWh 

Case 4: MPC applied with a high battery LCOE of EUR 0.10/kWh 

Implementation 

The data processing and simulation steps can be divided into three major phases. 

First, the PV yield and house load demand profiles are generated from available data 

described in [31]. The PV yield is specific to Luxembourg’s weather and is directly ex-

pressed in electric power. The installed surface, PV panels’ efficiency, and plant orienta-

tion are not discussed in this work. The house demand profile is derived from the data of 

the main electricity provider CREOS. The published synthetic load profile is defined for a 
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house with a 1000 kWh yearly demand. These values are then adjusted by a multiplication 

factor to meet the expected 6640 kWh house yearly demand as stated in [32]. 

Secondly, the electricity prices are obtained from the German market from October 

2021 to November 2022. They stem from the most recent historical values of intraday con-

tinuous 15 min average prices [33]. It was an important update to include not only the 

recent high prices reached during the COVID-19 pandemic followed by the Ukraine–Rus-

sia conflict, but also the very high volatility experienced. The prices variations in Germany 

in 2019 and 2022 are shown in Figure 4. Not only did the average price over the year in-

crease from EUR 0.024/kWh in 2019 to EUR 0.23/kWh in 2022, but the standard deviation 

in 2022 also increased by more than six times compared to the standard deviation in 2019. 

Finally, seasonal reference profiles are generated to simplify the computational load. 

They are the average values of the daily profiles for each season. This is conducted for PV 

plant power, house electricity demand, and electricity prices. One simulation is run for 

each season and the yearly values are weighted values based on the number of days of 

each season. 

 

Figure 4. Electricity spot prices in Germany 2019 and 2022. 

5.2. MPC-Based Control: Results 

Figure 5 depicts the control of BSS power for different yearly seasons with a 5 kWh 

battery capacity. The electricity prices, the electrical load and the PV power generation 

vary, but the FITs and the BSS’s LCOE don't, from one season to another . The added value 

of the MPC can be easily observable in the winter and autumn BSS power profiles. The 

price of electricity during sunny times is higher than the price at night. The cost of storing 

PV energy for delayed use is higher than the profit achieved by selling it directly to the 

grid. Part of the excess PV power is sold to the grid rather than stored and used at night 

when the purchase prices from the grid are lower but still higher than the FITs. The bat-

teries are charged to meet the load demand only during the peak demand times in the 

night. Non-profitable energy flow is avoided and therefore some BSS cycles are saved. 

During summer and spring, the price profile of electricity is different. During sunshine 

hours, due to the high contribution of renewables to total power generation, the prices are 

their lowest point and are sometimes even negative. Therefore, the BSS charges the bat-

teries from PV power so that they can power most (in spring) or all (in summer) of the 

demand at night. Thanks to the MPC, energy losses are minimized by beginning to charge 

the batteries as late as possible. 
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Figure 5. Typical power flow and electricity price profile over seasons [31–33]. 

The average daily generated incomes, using the proposed MPC logic, are basically 

proportional to the solar power (Figure 6a). However, the volatility of the energy prices 

and, most importantly, the difference between the prices during sunshine and nighttime 

or covered periods have the largest impact. For this particular energy system as depicted 

in Figure 6b, a battery bank of about 2 kWh seems to present a higher profitably per in-

stalled storage size at about EUR 80/kWh/year. The financial profit decreases with the in-

crease in BSS storage capacity. The expected total yearly incomes are estimated as the sum 

of the seasonal incomes, which are obtained by multiplying the daily seasonal income 

(Figure 6a) with the number of days of each season. 

  

(a) (b) 
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(c) (d) 

Figure 6. (a) Average daily income by season vs BSS storage capacity; (b) Expected yearly incomes 

and specific income vs BSS storage capacity; (c) Cycling rate by season vs BSS storage capacity; (d) 

Yearly cycling rate vs BSS storage capacity. 

On the one hand, considering the technically allowed number of cycles over the life-

time of the battery, a 5 kWh lead–acid battery permitting 2500 cycles with 50% depth of 

discharge would last 25 years and generate about EUR 6250 in this setup. On the other 

hand, the same battery type with a smaller capacity of 2 kWh, which achieves the best 

profits per installed storage capacity, would generate about EUR 2100 in 2500 cycles (13.5 

year, 184 cycle/year). Negative incomes indicate that the grid-tied PV plant alone would 

generate more revenue. For the studied case, there is absolutely no interest in adding a 

BSS, whose capacity is below 1 kWh with FITs and avoided consumption cost as revenues 

sources. 

5.3. Impact of the BSS's LCOE 

Figure 7a,b depicts the expected usage rate and revenue of the BSS based on the lev-

elized cost of the BSS. The less expensive the system, the higher the cycling rate and the 

higher the potential incomes. However, the financially optimal cycling rate is not directly 

proportional to the LCOE. A 5 kWh BSS with a levelized cost of EUR 0.01/kWh has about 

163 cycles per year, whereas a BSS of the same size, acquired at a 7 times higher levelized 

cost of EUR 0.07/kWh runs about 75 full cycles. As explained before, for a given battery 

size, the cycling rate induced by the proposed MPC control is highly dependent on the 

volatility of the electricity prices throughout the day. As soon as the price difference value 

from one period to the next is higher than the cost of cycling (BSS’s LCOE), the MPC trig-

gers a buy operation or a sell operation under the maximum and minimum SOC con-

straints. 
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(a) (b) 

Figure 7. (a) Yearly cycling rate vs BSS installed storage capacity by installed BSS’s LCOE; (b) 

Yearly expected incomes vs BSS storage capacity by installed BSS’s LCOE. 

This is well illustrated in Figure 8. In winter, from 20:00 to midnight, the BSS with 

the cheap EUR 0.01/kWh LCOE charges (buys) at every price dip and discharges (sells) at 

every peak, even if the price variation is about EUR 0.05. This behavior is simply nonex-

istent for the case where the BSS’s LCOE is EUR 0.07/kWh. Assuming the price variations 

are purely a market response to production demand, the BSS power profile of the first case 

can be assimilated to power systems providing auxiliary services, especially reserve pro-

vision, to the power grid. In this latter case, complementary revenues for that service 

could/should be included. 

 

Figure 8. Comparison of BSS power flow in winter with differences in BSS’s LCOE. 

6. Discussion 

The profitability of the BSS as described in this work is strongly influenced by the 

volatility of electricity prices. Therefore, this strategy can only be applied in a limited 

number of markets. Furthermore, the constantly increasing number of commercial BSSs 
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providing grid support services, such as negative reserve, mean that the volatility of prices 

decrease as BSSs can quickly respond to power demand. 

The levelized costs of energy for utility-scale BSSs have considerably decreased and 

will likely continue on the same trend. This means residential BSSs will also become more 

accessible and make residential BSSs more profitable. Advanced control strategies, such 

as MPC, will no longer be as important and will likely generate additional profits from 

price volatility as the LCOE of BSSs, like the LCOE of PV panels, will be lower than the 

cost of electricity from the grid. 

The cost of electricity discussed in this work considers only the production cost with 

no distribution cost, taxes, or other expenses in addition to electricity provision. For home-

owners, by taking these avoided expenses into account as complementary profits, the pro-

jected BSS is likely more profitable than the values presented in the present work. How-

ever, installation, monitoring, and maintenance costs are missing. Further investigations 

are necessary to evaluate other financial indicators, such return on investment and net 

actual value, because these service costs depend on the country or region of installation. 

7. Conclusion 

In this paper, a brief review of the electrical energy context in 2022 is presented. The 

trend looks financially promising as the purchase price of PV panels and battery energy 

storage are becoming cheaper and cheaper. 

Lab experiments have shown that BSS self-consumption to supply power electronics 

and data monitoring are relatively high compared to the natural self-discharge of batter-

ies. This should be considered while modelling BSSs. 

A new approach of MPC for BSSs has been investigated. The methodology optimizes 

the achievable profits of BSSs with a direct inclusion of the levelized cost of BSSs. It is 

demonstrated that a reasonable yearly cycling rate of the BSS is reached, ensuring good 

usage and the good health of the batteries. The proposed control does not overreact to 

small electricity price variations until it is financially worthwhile. The trio composed of 

FITs, electricity cost, and the LCOE of BSS represents the most determining factors. Ancil-

lary grid service provision can represent a substantial source of revenue for BSSs in addi-

tion to FITs and avoided costs. 

Author Contributions: Conceptualization, P.K.N. and J.-R.H.-M.; methodology, P.K.N.; software, 

P.K.N.; validation, P.K.N. and J.-R.H.-M.; formal analysis, P.K.N.; investigation, P.K.N.; resources, 

J.-R.H.-M.; data curation, P.K.N.; writing—original draft preparation, P.K.N.; writing—review and 

editing, J.-R.H.-M.; visualization, P.K.N. and J.-R.H.-M.; supervision, J.-R.H.-M.; project administra-

tion, J.-R.H.-M.; funding acquisition, J.-R.H.-M. All authors have read and agreed to the published 

version of the manuscript. 

Funding:  This research and the APC were funded by the Luxembourg National Research Fund 

(FNR), within the gENESIS project of the CORE funding program, grant number C18/SR/12676686.  

Acknowledgments: The authors thank all the stakeholders of the gENESIS project: the Principal 

Investigator (PI) & his scientific collaborator from the Luxembourg Institute of Science and Technol-

ogy (LIST), and the technical support team of the University of Luxembourg  

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

𝑩𝑰𝑵𝑏𝑢𝑦 Binary variable for buying power from the grid 

𝑩𝑰𝑵𝐵𝑆𝑆− Binary variable for discharging the BSS’s batteries 

𝑩𝑰𝑵𝐵𝑆𝑆+ Binary variable for charging the BSS’s batteries 

𝑩𝑰𝑵𝑠𝑒𝑙𝑙  Binary variable for selling power to the grid 

𝑬𝐵𝑆𝑆, 𝑚𝑎𝑥 Maximum BSS storage capacity 

𝑭𝑰𝑻 Electricity feed-in tariff 

𝜼𝐵𝑆𝑆− BSS discharging efficiency 

𝜼𝐵𝑆𝑆+ BSS charging efficiency 
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𝑷𝐵𝑆𝑆,𝑙𝑜𝑠𝑠 BSS’s batteries self-discharging rate 

𝑷𝐵𝑆𝑆− BSS discharging power 

𝑷𝐵𝑆𝑆+ BSS charging power 

𝑷𝐵𝑆𝑆−,𝑚𝑎𝑥 BSS maximum discharging power 

𝑷𝐵𝑆𝑆+,𝑚𝑎𝑥 BSS maximum charging power 
𝒑𝑏𝑢𝑦 Electricity price 
𝑷𝑏𝑢𝑦 Power bought from the grid 

𝑷𝑏𝑢𝑦,𝑚𝑎𝑥 Subscribed maximum power from the grid 

𝑷𝑙𝑜𝑎𝑑 Load’s power 

𝑷𝑠𝑒𝑙𝑙 Power fed back to the grid 

𝑷𝑠𝑒𝑙𝑙,𝑚𝑎𝑥 Subscribed maximum power fed into the grid 
𝑷𝑝𝑣 PV plant power 

𝑺𝑶𝑪 BSS state of charge 

𝑺𝑶𝑪𝑚𝑎𝑥 Maximum allowed state of charge 

𝐒𝐎𝐂𝑚𝑖𝑛 Minimum allowed state of charge 
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