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Abstract: In this paper, a feasibility study of a shuntless coulomb counting method for estimating
the state of charge (SOC) of a battery is presented. Contrary to conventional coulomb counting,
the proposed method does not require an external resistive shunt; it instead only requires voltage
measurements performed on the battery under test while it is operating. The current is measured
indirectly using the battery’s equivalent series resistance (ESR). The method consists of a preliminary
calibration phase where the ESR and the open-circuit voltage of the battery are measured for different
SOCs and stored in look-up tables (LUTs). Then, in the subsequent operational phase, the method
uses these LUTs together with the measured voltage at the battery terminals to estimate the SOC. The
performance of the proposed method is evaluated on a sample lithium polymer (LiPo) battery, using a
realistic current profile derived from the Worldwide Harmonized Light-Duty Vehicles Test Procedure
(WLTP). The results of this experimental evaluation demonstrate a SOC estimation root-mean-square
error of 0.82% and a maximum SOC error of 1.45%. These results prove that the proposed method is
feasible in a practical scenario.

Keywords: battery measurement; state of charge estimation; equivalent series resistance; coulomb
counting; shuntless measurement; lithium batteries

1. Introduction

Measuring the state of charge (SOC) of batteries is a crucial task for battery manage-
ment systems, as it is a key part of the more general problem of battery state estimation,
including state of health, state of energy, and state of power [1]. Several classes of methods
for SOC estimation are available in the literature [2]. These can be classified as: (i) di-
rect methods, such as the open-circuit voltage (OCV) or impedance methods, which are
based on a direct relationship between a battery parameter, e.g., the open-circuit voltage,
and the SOC; (ii) coulomb-counting-based methods; (iii) tracking methods, such as Kalman-
filter-based algorithms. Niri et al. [3,4] proposed a different approach for predicting the
remaining energy of a battery in an electric vehicle using load analysis with Markov models.
Moreover, Gallien et al. [5] described an alternative SOC estimation method based on the
relationship between magnetic susceptibility and SOC for lithium iron phosphate (LiFePo)
batteries. Machine learning methods for SOC estimation have also been proposed, which
are based on a relationship between the measured input quantities, i.e., voltage and current,
and the SOC [6].

Coulomb counting is one of the most widely used methods for practical online SOC
measurements [7]. This method consists of measuring the current that flows in and out
of a battery and then integrating the measurement results over time. Using this method,
the SOC at time instant t is calculated as

SOC(t) = SOC(t0) +
1
C

∫ t

t0

I(τ)dτ ,
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where SOC(t0) is the SOC at time instant t0 with t0 < t, I(τ) is the current through the
battery measured at time τ, and C is the capacity of the battery. When starting from a known
initial SOC, this method allows to compute the updated SOC at later time instants [8]. The
main advantage of the coulomb counting method lies in its great practical value because it
can be used in the operational phase while the current is flowing through the battery,
e.g., while an electric vehicle is traveling. Conversely, direct methods such as that based on
the open-circuit voltage cannot be used in the operational phase because in such a phase, it
is not possible to disconnect the battery from the load to read the open-circuit voltage.

However, Movassagh et al. [8] showed that coulomb counting is affected by several
uncertainty sources, namely the current measurement uncertainty, the approximation
used for current integration, the uncertainty of the battery capacity, and the timing uncer-
tainty of the current sampling. The presence of such uncertainty sources represents the
main disadvantage of the coulomb counting method. To mitigate the impact of some of
these uncertainty sources, Baccouche et al. [9] proposed an improved coulomb counting
algorithm based on a piece-wise model of the OCV-vs.-SOC characteristic curve and a
periodic recalibration of the capacity. The method is experimentally shown to provide
2% accuracy for SOC estimates. Liu et al. [10] described an alternate method for SOC
estimation, which combines current integration and an adaptive extended Kalman filter,
shown to provide accurate results with a reduced computational complexity. Furthermore,
Wang et al. [11] used a deep learning method for SOC estimation, which integrates coulomb
counting with cloud-based convolutional neural networks and results in a root-mean-
square error lower than 1.5% with a maximum error of 5%. Miao et al. [12] demonstrated
experimentally that the combination of machine learning with coulomb counting may
decrease the error with respect to stand-alone coulomb counting in extreme temperature
conditions. Moreover, the impedance track method described in [13] performs enhanced
coulomb counting functionality by employing additional information, such as voltage and
temperature measurements.

The coulomb counting methods described above require current measurement, e.g., by
means of an external shunt resistor. However, in several high-power applications, such as
electric vehicles and energy storage systems, the usage of a shunt resistor implies a loss in
power and efficiency since considerable energy is dissipated when a large current flows
through this resistor [14]. Moreover, safety and reliability issues can occur due to a device
being placed in the path of high current flow. Therefore, SOC measurement solutions that
do not require a shunt resistor would provide numerous benefits, including a reduction
in power consumption, a smaller size, a reduction of cost and complexity associated with
the calibration of the shunt, and mitigation of safety and reliability issues. Thus, the need
for developing and characterizing the accuracy of simple methods for shuntless SOC
measurements arises. In this context, current-sensorless methods for estimating the SOC
were proposed by Chun et al. [15]. These methods are based on filtering the voltage
measured at the battery terminals and on fitting equivalent circuit models, and a maximum
error of 5% was reported.

In this paper, a novel SOC estimation method based on coulomb counting is intro-
duced, where the current is measured using the internal resistance of the battery itself,
rather than an external shunt resistor. Contrary to published coulomb counting methods,
the proposed method requires only the measurement of battery voltage and the usage of
look-up tables that are pre-generated during a calibration phase containing information
about the internal resistance and open-circuit voltage of the battery. Differently from the
current-sensorless approach in [15], the proposed method does not rely on a battery equiv-
alent circuit model or on filtering techniques, thus resulting in a reduced complexity and
wide applicability, since it is not necessary to assume a specific equivalent circuit. In this
paper, the proposed method’s feasibility is verified by applying it to experimental data,
which consist of current and voltage measurements obtained using a commercial source
measure unit (SMU) lab instrument on a lithium polymer battery under test following
a realistic operational profile for electric vehicles. Although the feasibility study of the
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proposed method is carried out using lab instrumentation, the technique can potentially
enable online cell-level condition monitoring for in situ and in operando applications [16],
made possible by integrated cell management units (CMUs), such as the one proposed by
Manfredini et al. [17].

Therefore, the main technical contributions of this paper can be summarized as follows:

– A shuntless SOC estimation method is proposed that exploits the knowledge of the
internal resistance of the battery under test;

– The proposed method is validated by experimental results performed on a lithium
polymer (LiPo) rechargeable battery with a realistic current profile emulating an
electrical vehicle scenario.

Further investigation into the achievable performance and reliability of the proposed
method when applied to other batteries and different current profiles is beyond the scope
of this paper and is the subject of future research directions.

The remainder of this paper is organized as follows. In Section 2, the proposed method
is described. Then, in Section 3, the experimental setup used to validate the method is
presented, followed by experimental results. In Section 4, a discussion of the results is
provided. Finally, conclusions are summarized in Section 5.

2. Proposed Shuntless SOC Measurement Method

The aim of the proposed method is to obtain an estimate of the SOC without using a
shunt resistor to measure current. The only measurement that is required during operation
is that of the battery voltage under load Vload. Furthermore, look-up tables (LUTs), obtained
during a preliminary calibration phase, are employed. These LUTs provide information
about how the equivalent series resistance (ESR), i.e., the internal resistance of the battery,
and the open-circuit voltage (OCV) vary for different values of SOC. These LUTs are built
during the calibration phase by measuring the battery’s OCV, its voltage under load Vload,
and the current for different SOC values with a reference instrument. A detailed description
of the procedure to build the LUTs is given in Section 3.2.1. The ESR, coupled with the
knowledge of the OCV, is used in place of the external shunt to estimate the current and
perform coulomb counting in the operational phase. A block diagram illustrating the
operation of the proposed method is shown in Figure 1.

Operational phase

Measure
𝑉𝑙𝑜𝑎𝑑

Coulomb 
counting

SOC estimate

Estimate Current:

𝐼 =
𝑉𝑙𝑜𝑎𝑑−OCV

ESR

Table
look up

Calibration

phase

LUTESR LUTOCV LUTSOC capacity

OCV and ESR estimates

Output:
SOC estimate

𝐼 estimate

Figure 1. Operation of the proposed method, divided into two phases: calibration phase where the
LUTs are built, and operational phase, where the LUTs are used together with voltage measurements to
estimate the current and SOC.

The assumptions made for the proposed method are the following: (i) the capacity
of the battery, the ESR-vs.-SOC, and the OCV-vs.-SOC relationships for the battery under
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test are known. These are measured in a preliminary offline calibration phase and encoded
in LUTs; (ii) the SOC value at the initial time instant when the proposed method starts
is known; (iii) measurements of the battery voltage are available during operation, while
current is flowing through the battery.

The pseudo-code in Algorithm 1 describes in detail the operation of the proposed
method. Specifically, this method takes as input the required LUTs that are pre-generated
during a battery characterization phase. Specifically, LUTOCV contains the OCV-vs.-SOC
relationship, LUTESR contains the OCV-vs.-ESR relationship, and LUTSOC serves as an
index table. The method also requires an estimate of the battery capacity and returns as
output an estimate of the SOC at every time step.

Algorithm 1 Estimate SOC.

Input: (obtained in the calibration phase) Look-up-tables LUTOCV,I1 , . . . , LUTOCV,In ,
LUTESR,I1 , . . . , LUTESR,In , LUTSOC, battery capacity C

Output: SOC estimate, denoted as ŜOC
1: begin
2: Start condition: battery fully charged
3: Measure Vload(1) . First voltage measurement
4: Î(1)← Vload(1)−LUTOCV(1)

LUTESR(1)
. Initial estimate of current

5: ŜOC(1)← 100% . Initial estimate of SOC
6: k← 2
7: while True do
8: q̂← Î(k− 1)× (t(k)− t(k− 1)) . Charge increment (coulomb counting)
9: ŜOC(k)← ŜOC(k− 1) + q̂/C . Estimate SOC at time step k

10: return ŜOC(k)
11: Measure Vload(k) . Voltage measurement at time step k
12: j← index of the entry of LUTSOC closest to ŜOC(k)
13: ÔCV ← linear fit of LUTOCV,I1(j), . . . , LUTOCV,In(j) eval. at Î(k− 1)
14: ÊSR← linear fit of LUTESR,I1(j), . . . , LUTESR,In(j) eval. at Î(k− 1)

15: Î(k)← Vload(k)−ÔCV
ÊSR

. Estimate current at time step k
16: k← k + 1
17: end while
18: end

Starting from a known initial SOC, which here is assumed to be 100%, the algorithm
is first initialized by measuring Vload and obtaining an initial estimate of the current as
I = (Vload −OCV)/ESR, where OCV and ESR are given by the respective LUTs. Then,
at each iteration, coulomb counting is performed using the previous estimate of I to obtain
a SOC estimate, followed by an update procedure that uses the new measured value of
Vload and table look-up operations to update the estimate of I.

Since the OCV-vs.-SOC and ESR-vs.-SOC curves vary depending on the current flow-
ing through the battery, in the calibration phase, the LUTs are built for n different values
of the current I1, . . . , In, thus resulting in LUTOCV,I1 , . . . , LUTOCV,In . Then, in the opera-
tional phase, at each time step k, the best-fit line (in a least-squares sense) on the data
in LUTOCV,I1 , . . . , LUTOCV,In is determined, thus obtaining a linear function f (I) relating
current to OCV. This operation allows for using the LUTs for any generic current profile
so that there is no need to use different LUTs for different current profiles. An estimate of
OCV is then obtained by evaluating this function for the current estimated at the previous
time step, i.e., ÔCV = f

(
Î(k− 1)

)
. As described in Algorithm 1, the estimates of the ESR

are obtained using the same linear regression technique as that used for the OCV.
Note that, in principle, the SOC may be estimated by simply inverting the OCV-vs.-

SOC curve. However, this inversion requires that the OCV of the battery under test is
measured after the relaxation period when the current is not flowing through the battery.
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This makes it unusable in online scenarios. Conversely, the proposed method can be
employed online during battery operation.

A known initial SOC is a precondition for the proposed method. In a practical scenario,
this precondition is satisfied when the battery is fully charged, i.e., after the standard
charging procedure described by the manufacturer is completed. In this case, the known
SOC is equal to 100%. Alternatively, when the battery is not used for a time interval longer
than the relaxation period, the proposed method can still be used if the SOC is estimated
using other methods, such as referring to the OCV-vs.-SOC curve or by electrochemical
impedance spectroscopy.

Finally, in practical applications, the calibration procedure should be repeated periodi-
cally to account for the variations in the battery’s behavior due to aging.

3. Experimental SOC Estimation Results

To validate the proposed shuntless SOC estimation method, we performed experi-
ments on a Mikroe SR674361P, 3.7 V LiPo pouch battery. As specified in the datasheet [18],
this battery has a nominal capacity of 2000 mAh and a rated voltage of 3.7 V with a limited
charge voltage of 4.2 V and a discharge cutoff voltage of 2.75 V. The specified internal
resistance is less than 160 mΩ, as measured by the manufacturer at 1 kHz. In the follow-
ing Section 3.1, the experimental setup is described, while the experimental procedure is
detailed in Section 3.2. Then, the obtained results are presented in Section 3.3.

3.1. Experimental Setup

The experimental setup consisted of a bench-top instrument, the Keithley 2450 source
measurement unit (SMU), which provides current signals and simultaneously measures
current and voltage, connected via a 4-wire configuration to the battery under test. The
SMU operation was timed and controlled by a custom-developed script written in the
Test Script Processor (TSP) language. The measurement data acquired by the SMU were
transferred to a PC, where they were processed by custom routines implemented in the
MATLAB numerical computation environment.

During the experiments, the battery was placed in a small climate-controlled chamber
with a temperature of 25 ± 1 °C. Prior to the experiments, the battery was preconditioned
by cycling it five times at 1 A (0.5C). Note that similar preconditioning procedures are
indicated by several standards for battery testing, e.g., the International Electrotechnical
Commission (IEC) 62660-1 standard on “Secondary lithium-ion cells for the propulsion of
electric road vehicles—Part 1: Performance testing” [19].

3.2. Experimental Procedure

Following the structure of the proposed method, described in Section 2, the measure-
ment procedure used in the experiments was divided into two phases: the calibration phase
and the operational phase, which are described in detail in the following.

3.2.1. Calibration Phase

During this preliminary phase, the LUTs were built. The LUTs consisted of the OCV-
vs.-SOC and ESR-vs.-SOC curves, which were obtained by starting from a fully charged
battery and discharging it with a constant current I0. During the discharge, Vload and I0
were constantly measured by the SMU. Every two seconds, the current was also interrupted
by the SMU in order to measure the open-circuit voltage (OCV) of the battery after a 10 ms
transient period. Using the available measured quantities, the battery internal resistance
was estimated as ESR = (Vload −OCV)/I0, as in the widely adopted current-pulse method
for battery internal resistance measurement [20].

The procedure was stopped when the voltage across the battery reached the cut-off
value of 2.75 V specified by the manufacturer. The battery capacity was also measured
during this stage by integrating the current. The discharging procedure was repeated four
times, each time with a different value of the constant discharge current: 1 A, 750 mA,
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500 mA, and 250 mA. These current values correspond to the following C-rates: 0.5C,
0.375C, 0.25C, and 0.125C.

3.2.2. Operational Phase

After the calibration phase, an experiment was performed to validate the proposed
method in the operational phase. In this stage, the SMU generated a time-varying current
that emulated the behavior of an electric vehicle as defined by the Worldwide Harmonized
Light-Duty Vehicles Test Procedure (WLTP) [21]. In particular, this current profile is publicly
available in [22], and it was obtained from the WLTP speed profile by simulating a light
electric vehicle [23]. For practical reasons, in this work, the WLTP current profile in [22]
was normalized so that its maximum absolute value was 1 A, which corresponds to the
largest current that the SMU lab instrument can generate. The resulting WLTP current
profile, which has a duration of 1800 s, is shown in Figure 2. The SMU was programmed to
iteratively generate the WLTP current profile until the battery was fully discharged, which
took approximately 13 h, corresponding to 25.8 iterations of the WLTP profile.

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

C
ur

re
nt

 [A
]

Figure 2. WLTP current profile used to validate the proposed method in the operational phase.

In the operational phase, the Vload measurement results, acquired by the SMU with
a sampling period of 1 s, were fed to the proposed method in Algorithm 1, together with
the LUTs from the previous calibration stage. This emulates a practical scenario where
the only available measurements are those of the voltage at the battery terminals. The
current measurements performed by the SMU were not used by the proposed method
but were used to calculate the ground-truth reference in order to evaluate the performance
of the proposed method. Therefore, the reference SOC at each time step was obtained by
integrating the current measured by the SMU. The SOC estimation error e of the proposed
method was calculated as the difference between the estimated SOC and the reference
SOC, i.e.,

e(k) = ŜOC(k)− SOC(k)

where k is the time step and N is the number of samples in the acquired record of the
signals. The root-mean-square error (RMSE) of the SOC estimation is defined as

RMSE =

√√√√ 1
N

N

∑
k=1

(
ŜOC(k)− SOC(k)

)2
.
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3.3. Results

The results of the preliminary calibration phase are shown in Figures 3 and 4, where
the curves are measured for the following values of the current: 250 mA (0.125C), 500 mA
(0.25C), 750 mA (0.375C), and 1000 mA (0.5C). Furthermore, the capacity measured during
calibration with a C-rate of 0.5C is 1.94 Ah. The curves in Figure 3, showing the behavior
of OCV for varying SOC, were used to build LUTOCV . Instead, the curves in Figure 4,
showing the behavior of ESR for varying SOC, were used to build LUTESR.

0 10 20 30 40 50 60 70 80 90 100

SOC [%]

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

O
C

V
 [V

]

1 A
0.75 A
0.5 A
0.25 A

Figure 3. Experimental data: OCV as a function of SOC. The curves were obtained in the calibration
phase for different values of the discharging current.
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0.11

0.115
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0.125

0.13

0.135

0.14

0.145

0.15

E
S

R
 [

]

1 A
0.75 A
0.5 A
0.25 A

Figure 4. Experimental data: ESR as a function of SOC. The curves were obtained in the calibration
phase for different values of the discharging current.

An example of the fitting operation performed at each time step in the operational
phase is shown in Figure 5, where a linear function is fit to the OCV data measured at the
same SOC for currents of 250 mA, 500 mA, 750 mA, and 1000 mA during the calibration
phase and encoded in the LUTs. The good fit observed in this figure confirms that, for the
purposes of the proposed method, the behavior of the OCV can be approximated to be
linear with a varying current in the considered current range.
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LUT
linear fit

Figure 5. An example of the best-fit line computed during the operational phase to obtain an estimate
of OCV from an estimate of the current. The fit was performed on four data samples from the LUTs
acquired at different currents: 250 mA, 500 mA, 750 mA, and 1000 mA.

Furthermore, the results obtained in the operational phase with the realistic WLTP
current profile are shown in Figures 6 and 7. Figure 6 shows the estimated current as well
as the reference current, i.e., that measured by the SMU. From Figure 6b, a good agreement
between the estimated current and the reference current can be observed. The current error
in Figure 6c is defined as the difference between the estimated current and the reference
current according to the definition provided by the International Vocabulary of Metrology
(VIM) [24]. Specifically, the root-mean-square difference between the estimated current
and the reference current is approximately 64 mA, i.e., 6.4% of the maximum considered
current. This error is relatively small, and the spike near the end of the cycle visible in
Figure 6a, where the error reaches approximately 90% for a brief period of a few seconds,
does not noticeably affect the RMSE computed over the entire cycle. Finally, the estimated
SOC is shown in Figure 7, together with the corresponding error. The RMSE of the SOC
estimation is 0.82%, and the maximum SOC estimation error is 1.45%.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s] 104

-2

-1.5

-1

-0.5

0

cu
rr

en
t [

A
]

(a)
estimated
reference

0 200 400 600 800 1000 1200 1400 1600 1800

time [s]

-1

-0.5

0

cu
rr

en
t [

A
]

(b)
estimated
reference

0 200 400 600 800 1000 1200 1400 1600 1800

time [s]

-0.2

-0.1

0

0.1

cu
rr

en
t e

rr
or

 [A
]

(c)

Figure 6. Cont.
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Figure 6. Experimental results in the operational phase. (a): Current estimated by the proposed
shuntless method with a WLTP profile; (b): magnification of the curve in (a), showing a single
repetition of the WLTP profile; (c): current estimation error, computed as the difference between the
estimated and reference value of the current.
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Figure 7. Experimental results in the operational phase: (a) SOC estimated by the proposed shuntless
method; (b) estimation error.

4. Discussion

The results presented in Section 3.3 prove the feasibility of the proposed shuntless
SOC estimation method, with an accuracy that is sufficient for the most common battery
monitoring applications (RMSE 0.82%). Such results were obtained by emulating a real-
world scenario in the electrical vehicle field. Therefore, they indicate that the proposed
shuntless method can be employed for in operando and in situ applications.

The SOC estimation literature contains other methods achieving errors of less than
1%, such as the proposed method, but most of these methods require the usage of an
external shunt. Instead, the proposed method requires only the measurement of the voltage
at the battery terminals and the usage of LUTs obtained via calibration. Therefore, it
may overcome the energy consumption, reliability, and safety issues associated with the
usage of an external-shunt-resistor-based current monitoring system. When comparing
the results with the current-sensorless method presented in [15], the achieved SOC error
is smaller. Specifically, a maximum error of 1.45% is observed in this paper, whereas a
maximum error of 5% was reported in [15]. However, the proposed method follows a
different approach as it does not rely on a battery equivalent circuit model and it does not
use filtering techniques. Thus, it potentially has a smaller implementation complexity and
wider applicability since it is not necessary to assume a specific equivalent circuit for the
battery. Instead, it relies on a preliminary calibration of the battery under test. Therefore, it
can be easily applied to different battery types and to various battery-powered systems.
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Some factors that could potentially limit the applicability of the proposed method
are the differences between specific battery samples, the influence of ageing, and the
effect of the operating temperature. To compensate for the first factor, i.e., the variations
in the OCV and ESR profiles between individual battery cells, the calibration procedure
described in this paper should be applied individually to every battery of interest. Moreover,
to mitigate the influence of battery aging, which modifies the OCV and ESR behavior
with SOC, such calibrations should be repeated periodically as part of the maintenance
process throughout the battery life-time, e.g., the battery should be re-calibrated after
completing a certain number of operational cycles. Finally, temperature is another factor
that affects the discharge profile of a battery by changing its internal resistance [25] and
OCV characteristics [26]. A future development of the proposed method should therefore
take into account the effect of temperature. This could potentially be done by acquiring the
LUTs at several different temperatures during the calibration phase and then employing
measurements from additional temperature sensors in the operational phase. Depending
on the application, such sensors could already be present in the battery-powered system
of interest.

5. Conclusions

In this paper, the possibility of using information about a battery’s equivalent series
resistance to estimate its state of charge without directly measuring the current was investi-
gated. In particular, a method for estimating the SOC of batteries without using a shunt for
coulomb counting was presented, and its feasibility was investigated experimentally. The
proposed method resulted in a SOC estimation RMSE of 0.82% in a realistic use case where
a WLTP current profile was applied to a lithium polymer cell. Therefore, its feasibility
was confirmed.

The described technique holds potential with the new cell-level sensors and distributed
battery management systems (BMS), such as the ones proposed by the cell management
unit (CMU) from Sensichips [17] since individual cell re-calibration and measurement are
made possible. Potential industrial and practical applications of the proposed method are
in the electric vehicle and stationary energy storage fields. In these fields, the absence of a
shunt resistor would avoid the energy loss associated with large currents flowing through
the shunt resistor and thus improve efficiency and safety.

Future developments include using electrochemical impedance spectroscopy (EIS)
information for building OCV and ESR LUTs, which may provide benefits in terms of AC
impedance characterization over a wide range of frequencies and allow the management of
fast variations of the current. Additionally, applying the proposed technique to several cells
connected in series, as in battery packs, may improve accuracy when estimating the SOC of
the overall battery pack. Additional future perspectives include further tests using other
current profiles and on different batteries, investigations on the effect of smoothing and
compression of the LUTs, and the implementation of the proposed method in an embedded
processor for real-time in situ applications.
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