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Abstract: Lithium (Li) metal is perceived as the “holy grail” of anodes for secondary batteries due
to its innate merits. Regrettably, the commercial application of Li metal anodes (LMAs) has been
hampered by problems derived from the uncontrollable growth of Li dendrites, which could result
in formation of short-circuits, thereby leading to fatal safety accidents. Here, a three-dimensional
lithiophilic gold (Au)-coated copper (Cu) pentagonal pyramid array (Au@CuPPA) is constructed
on planar Cu foil via electrodeposition followed by a chemical reduction method. Owing to the
features of the lithiophilic layer and 3D porous structure, the proposed Au@CuPPA can not only
facilitate Li-ion migration and charge transfer, but also effectively diminish the nucleation overpo-
tential. Consequently, an even and steady Li plating/stripping process for up to 460 h and with
a charge capacity of 3 mAh cm−2 is accomplished by using the Au@CuPPA current collector. The
Li@Au@CuPPA|LiFePO4 full cell achieves a high Coulombic efficiency (CE) of 99.4% for 150 cycles
at 0.5 C with a capacity retention of 92.4%.

Keywords: Li metal anode; dendrite growth; current collector; lithiophilic layer; Cu array;
pentagonal pyramid

1. Introduction

Commercial Li-ion batteries utilizing layered graphite as the anode cannot satisfy
increasing energy density requirements for expanding industries focused on energy stor-
age [1–5]. Lithium metal is recognized as a highly anticipated anode candidate due to its
inherent properties, such as its ultrahigh specific capacity of 3860 mAh g−1 and extremely
low electrode potential of −3.04 V [6–11]. These intriguing merits define Li metal as an
indispensable component for Li-Sulfur, Li-Air, and Li-Selenium battery systems [12–14].
However, its persistent impediment to extensive applications is the existence of uncontrol-
lable growth of lithium dendrites during continuous reversible reaction processes, which
triggers inhomogeneous Li deposition, decreased stability of solid electrolyte interphase
(SEI) film, puncture of the separator, and eventual cell malfunction [15–18].

To solve these challenges, many approaches, including novel liquid electrolyte addi-
tives [19,20], artificial SEI films [21,22], and new separators [23,24], were used to deter the
growth of lithium dendrites and stabilize the interfacial reaction of the electrodes. However,
these strategies cannot provide the structural host for Li deposition, and the challenge of
the lithium metal’s boundless volume change is still ubiquitous. Alternatively, employing
a porous, structured current collector with a large specific surface area-conductive skeleton
has been deemed as an effective and simple method to regulate the volume expansion of Li
and confine the dendrite growth [25,26]. Numerous modified Cu-based current collectors,
such as the 3D Cu skeleton with hierarchically structured bi-continuous porosity [27,28],
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3D porous copper [29–31], or copper mesh [32,33], were exploited for Li metal anode appli-
cations. Unfortunately, Li metal cannot be incorporated into these current collectors due to
the weak adhesion of lithium to copper [34–36]. Particularly, under a high current density,
the further Li deposition merely takes place on the upper area of the 3D Cu current collector,
causing underutilization of the porous skeleton [30,37,38]. As a result, it is imperative to
design a 3D porous Li host with a lithiophilic interface to solve these challenges.

Herein, we synthesized a high surface area copper substrate with a pyramidal archi-
tecture which was functionalized by an Au layer (Au@CuPPA) for Li metal anodes by
employing the facile electrodeposition and chemical reduction method. In comparison with
a planar Cu foil current collector, nano-pyramids of Au@CuPPA are interleaved and stacked
to constitute 3D porous structures, which increases the surface area and minimizes lithium
dendrite growth. More importantly, the lithiophilic Au layer on the surface of Au@CuPPA
can provide diffusion channels for the Li metal that travel to the bottom of the 3D structure,
thereby providing an adequate utilization of the nanoporous structure. Owing to these
properties, Au@CuPPA-based electrodes exhibit extremely low overpotential, superior
Coulombic efficiency (CE), and durable cycling stability for up to 460 h. In addition, the
Li@Au@CuPPA-based full cell demonstrates high cycling stability and rate properties.

2. Materials and Methods
2.1. Synthesis of Au@Cu Pentagonal Pyramid Array/Cu Foil

The copper foils were sequentially immersed in acetone, ethanol, 0.8 M H2SO4, and
deionized water, with ultrasonic bath treatment for 20 min, and then dried in a vacuum
for 30 min at 60 ◦C. The Copper Pyramid Array (CuPA) was prepared in a three-electrode
setup using the platinum-coated titanium mesh as the counter electrode, saturated calomel
electrode as the reference electrode, and the pretreated Cu foil as the working electrode
(surface area of 1 cm2) soaked in the electroplating solution consisting of CuSO4·5H2O
(26 mM), NiSO4·6H2O (2 mM), NaH2PO2·H2O (200 mM), Na3C6H5O7·2H2O (30 mM),
and polyethylene glycol (8 mg L−1). Potentiostatic electrodeposition was implemented
at −1.00 V for 10 min by utilizing the electrochemical instrumentation (CHI760E, CH
Instruments, Inc. Austin, TX, USA). Subsequently, 1.5 mg mL−1 of HAuCl4 solution and a
200 mM NaBH4 solution were prepared via the magnetic stirring method for 15 min. Then,
CuPA was immersed into the HAuCl4 solution with magnetic stirring for 5 min. After that,
the NaBH4 solution was added dropwise to the above solution within 1 min after magnetic
stirring for 30 min. Lastly, the as-prepared samples denoted as Au@CuPPA were washed
with deionized water and dried in a vacuum environment for 30 min at 60 ◦C.

2.2. Material Characterization

The scanning electron microscopy (Thermo Scientific™ Helios™ 5 CX Dual Beam field
emission system with STEM-in-SEM and a full Oxford AZtec EDS, Waltham, MA, USA)
was used to capture the SEM, STEM images, and EDX elemental mapping results of pristine
Cu foil, CuPA, and Au@CuPPA. The X-ray diffractometer (Rigaku Ultima-Plus, Tokyo,
Japan) and the X-ray Photoelectron Spectrometer (Thermo Scientific K-alpha+, Waltham,
MA, USA) were used to identify the composition information of the samples. Scanning
electron microscopy (FESEM, Hitachi, S-4700, Tokyo, Japan) was utilized to characterize
the morphological evolution of lithium metal deposition.

2.3. Electrochemical Measurements

The CR2032-type coin cells were fabricated in an argon glovebox. Coulombic efficiency
measurements and long-term Li plating and stripping evaluation under different current
densities and capacity were conducted by employing a NEWARE battery-testing system at
25 ◦C. Lithium iron phosphaete (LiFePO4) with a mass load of 3 mg cm−2 was adopted as
the cathode material for the evaluation of the full cells. A certain amount of lithium metal
(3 mAh cm−2) was pre-deposited on the Au@CuPPA substrates before assembling the full
cell. The Electrochemical Impedance Spectroscopy (EIS) measurement with a frequency
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range of 100 kHz–10 mHz and an amplitude of 5 mV was performed using a CHI760E
electrochemical instrument.

3. Results

Figure 1a–c displays SEM images of the planar Cu foil at different magnifications. A
relatively smooth and flat surface of Cu foil was observed. Figure 1d,e shows SEM images of
CuPA electrodeposited on pristine Cu foil. The individual CuPA substrate possesses a nano-
pyramid structure. These Cu pyramid arrays are stacked to generate a 3D porous structure,
which leads to a larger specific surface area compared to the planar Cu foil substrate.
Figure 1f–i demonstrates that Au@CuPPA architecture has a pentagonal pyramidal shape
and is surface-modified by gold Au. Meanwhile, the 3D porous structure owned by
Au@CuPPA could sterically retard the growth of Li dendrites. Additionally, the pentagonal
pyramid structure expands the specific surface area of the substrates and diminishes the
local current density of the electrodes during the Li reaction process. Figure 1j–l illustrates
the EDS elemental mapping of Au@CuPPA, indicating the existence and even distribution
of the elements Au and Cu.
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Elemental mapping images of (k) Cu and (l) Au for Au@CuPPA in the (j) selected area.

The STEM image (Figure 2a) demonstrates a uniform and dense distribution of the Au
layer on the surface of the Cu array. Figure 2c displays the XRD profiles of CuPA. The three
typical peaks of CuPA at 43.36, 50.32, and 74.04◦, respectively [39,40]. These three typical
peaks are completely aligned with the (111), (200), and (220) lattice planes of Cu (PDF,
No. 04-0836), which proves that CuPA is perfectly composed of Cu element. The Cu 2p XPS
spectrum of Au@CuPPA (Figure 2b) indicates the presence of Cu2+ (935.02 and 954.01 eV)
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and Cu0/Cu+ (932.38 and 952.08 eV) [41,42]. The oxidized Cu is formed during exposure
of the sample to the ambient atmosphere [43]. The peaks located at the binding energies of
84.01 and 87.68 eV of Au@CuPPA correspond to Au0, as shown in Figure 2d [44,45].
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(d) Au 4f of Au@CuPPA.

The morphological evolution of Li growth on the two types of substrates under various
charge capacities is displayed in Figure 3. At a charge amount stage of 0.5 mAh cm−2,
numerous pebble-shaped lithium nuclei with erratic sizes emerged on the surface of the
planar Cu foil, as shown in Figure 3a,d. The shape of the Li metal gradually evolves to
be more random as the charge capacity increases (Figure 3b,e). Spaghetti-shaped lithium
metal particles are observed at a charge capacity of 3 mAh cm−2 (Figure 3c,f), whereas the
morphology of Li deposition on Au@CuPPA shows a different evolution trend. Li metal
will preferentially deposit on the surface of Au@CuPPA along the pentagonal pyramid
structures due to the induction effect of gold at a charge capacity of 0.5 mAh cm−2, as shown
in Figure 3g,h. After 1.5 mAh cm−2 of lithium is grown on the electrodes (Figure 3h,k),
the nano-pyramidal structure is buried by the spherical Li nuclei [46,47], and pyramidal
arrays on the substrate dissipate completely. The size and quantity of spherical lithium
metal particles increase during the ongoing lithium deposition (Figure 3i,l).

Figure 4a,d is the optical images of the bare Cu foil and Au@CuPPA. After the elec-
trochemical deposition and reduction reaction, the surface color of the Cu foil transforms
from bright yellow to dark brown, affirming the construction of an Au-covered Cu pen-
tagonal pyramid array on the Cu foil. After 30 cycles, the surfaces of the separator and
electrode corresponding to Au@CuPPA are smooth and contaminant-free, essentially as
before use, as shown in Figure 4e,f. By contrast, many black particles emerge on the surface
of the separator and electrode corresponding to the Cu foil (Figure 4b,c), indicating the
generation of abundant dead lithium and lithium dendrites, which is attributable to the
planar structure and inherent lithiophobicity of the Cu foil.
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Figure 5 illustrates the deposition behavior of Li metal on the surface of the planar Cu
foil and Au@CuPPA. Li metal initially grows in an orientation away from the substrate
surface and ultimately produces Li dendrites and dead Li after cycling due to the disordered
electric field caused by the innate lithiophobicity of copper. The Li dendrites generated
after deep cycling can stab the separator and lead to the occurrence of short-circuits, as
shown in Figure 5a. By contrast, the Au@CuPPA current collector provides a substantial
lithiophilic Au layer, which facilitates the Li uniform growth on the substrates. In the early
Li deposition stage, the Li-ion could readily fill up the spaces between nano-pyramids due
to the sufficient porosity and high lithiophilicity of the Au@CuPPA surface. Meanwhile,
a steady SEI film is formed on the Li anode surface. In the subsequent cycling, lithium
dendrites are absent and spherical lithium metal covers the whole nano-pyramidal arrays,
as exhibited in Figure 5b. The volume expansion of Li metal is significantly mitigated due
to the large specific surface area of the proposed substrate, which effectively averts unstable
electric fields and achieves a homogenous deposition of lithium metal.
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Figure 5. The schematic depiction of Li growth behaviors on (a) Cu foil and (b) Au@CuPPA.

The nucleation overpotential of lithium is denoted as the gap between the lowest
point of voltage at the initial nucleation stage of lithium and the flat voltage plateau at the
subsequent stage of further Li growth, which is affected by the current density and degree
of lithiophilicity of the substrates [48,49]. The Li nucleation overpotential on the bare Cu
foil is 58.9 mV, as displayed in Figure 6b. In comparison, the Li nucleation overpotential
on Au@CuPPA is approximately 12 mV, which manifests as Au@CuPPA possessing an
extremely small Li nucleation barrier. Two voltage plateaus can be found in the enlarged
view in Figure 6a, indicating two typical lithium-gold conversion reactions, respectively,
which can enhance the Li affinity of the host, thereby greatly guiding the diffusion channel
of Li metal to the bottom of the 3D structure. The phase conversion of Au upon lithiation
during the discharging process is given as follows [50–52]:

Au→ Au3Li→ AuLi3 (1)

Two dealloying reactions occur during the charging process as follows:

AuLi3 → Au3Li→ Au (2)

The electrochemical properties of the Au@CuPPA current collector were assessed via
Coulombic efficiency (CE) testing. In Figure 6c, the bare Cu foil displays a poor initial CE
of 70.9%, and the CE of the Cu foil after 40 cycles slumps steeply to 51.2%. In contrast,
the Au@CuPPA maintains an excellent CE of 95.5% over 114 cycles at 2 mA cm−2. The
first cycle CE of Au@CuPPA is 89%, which is superior to 70.9% for the Cu foil, indicating
an exceptional plating/stripping process, which is attributable to the stable SEI film and
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uniform electric field. In Figure 6d, the CE of Au@CuPPA remains at 96.8% over 137 cycles
at 3 mA cm–2, whereas the CE of the planar Cu foil displays dramatic degradation after
8 cycles. Obviously, the CE of Au@CuPPA is remarkably enhanced compared to the planar
Cu foil. The inferior CE performance of the Cu foil may be attributed to the increased
polarization and the uncontrolled growth of Li dendrites, which lead to the rupture of
the SEI, exposing fresh lithium metal to the electrolyte, thereby bringing about a heavy
consumption of the active Li metal.
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To study the interfacial performance of two types of current collectors, an EIS measure-
ment was implemented. The diameter of the arc (Rct) at the high-frequency regions reflects
the solid-liquid interfacial resistance and the charge transfer resistance [53–55]. The planar
Cu foil exhibits a high Rct value of 161.2 Ω before cycling, whereas the Au@CuPPA current
collector displays a low Rct value of 57.26 Ω before cycling, and then it decreases to 18.75 Ω
after 20 cycles, which is smaller than the Rct value of 38.42 Ω of the Cu foil after 20 cycles,
as shown in Figure 7a,b. The lower Rct value of the Au@CuPPA before cycling and after
20 cycles reveals superior Li diffusion kinetics and a more stable SEI film during the Li
deposition/stripping process. Meanwhile, the sloping straight line in the low-frequency
region could be ascribed to the Warburg resistance, which implies the Li-ion diffusion
process. From Figure 7a,b it can be found that the Cu foil exhibits a relatively large slope
change before and after cycling, while the slope of the proposed current collector barely
alters, thus exhibiting great Li-ion diffusion kinetics, which can be assigned to the larger
exposed electrode surface and stable SEI film.
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Moreover, the cycling stability of two current collectors was investigated by assembling
the symmetrical Li|Li@Cu foil and Li|Li@Au@CuPPA coin cells. The Au@CuPPA-based
electrode exhibits a stable voltage curve without apparent voltage fluctuation at 2 mA cm−2,
as exhibited in Figure 7c. At 3 mA cm−2, the voltage–time curve of the planar Cu foil
shows a sharp ascent at the early stage, indicating an enlarging polarization inside the
coin cell, and then an abrupt voltage fall appears after 48 h, resulting from the internal
short-circuit and electrode failure, whereas the Au@CuPPA-based electrode can run stably
for 460 h without the issues of voltage oscillation and short-circuit, as shown in Figure 7d.
This further proves that the Au@CuPPA current collector can stably operate at a relatively
high current density with a large area capacity of Li and achieve stable charging and
discharging cycling.

To evaluate the commercial application of the proposed electrode, the full cell was
examined by pairing the Li-predeposited Au@CuPPA composite with the LiFePO4 cathode.
The LiFePO4 electrode was provided by Guangdong Canrd Technology Co., Ltd, Dongguan,
China. From Figure S2a–d, it can be seen that the lithium iron phosphate electrode has
uniformly dispersed particles, and the particle size distribution is approximately between
300 nm and 1 µm. Figure S2e is the EDX spectrum of the LFP electrode, indicating its
phase composition. Figure 8a displays the charging–discharging curves of the Li@Cu
foil|LiFePO4 at the 1st, 20th, 80th, 110th stages at 0.5 C, respectively, from which a large
and volatile voltage polarization can be found with a capacity of 139.5 mAh g−1 during 1st
charging. By contrast, the Li@ Au@CuPPA|LiFePO4 presents a capacity of 159.4 mAh g−1

during the 1st charging process and a visible voltage plateau with a small and stable
voltage polarization, as displayed in Figure 8b. Moreover, the cycling performance of the
Au@CuPPA- and Cu foil-based full cell at 0.5 C for 150 cycles is exhibited in Figure 8c. The
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capacity of the Li@Cu foil|LiFePO4 decreases to 68.2 mAh g−1 after 150 cycles, whereas
the capacity of the Li@Au@CuPPA electrode maintains 124.5 mAh g−1 after 150 cycles,
which is 92.4% of its initial capacity. Beyond that, the rate performance of the Li@Cu foil
or Li@Au@CuPPA was compared in Figure 8d. The specific capacities of the Au@CuPPA-
based full cell are 144.5, 132.4, and 117.5 mAh g−1, compared to 134.4, 109.7, and 63.1 of
the full cell with Cu foil at 0.2, 0.5 and 1 C, respectively. Evidently, the Au@CuPPA-based
electrode demonstrates an excellent reversible specific capacity and outstanding capacity
retention, proving the far-reaching impact of the Au@CuPPA electrode with the lithiophilic
layer and 3D porous structure on the electrochemical performance of the full cell.
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Figure 8. Voltage–specific capacity curves of (a) Li@Cu foil|LiFePO4 and (b) Li@ Au@CuPPA|LiFePO4

cells at 0.5 C with various cycles. (c) Cycling performance of two types of electrode-based full
cells at 0.5 C. (d) Rate performance under various current rates for Li@Cu foil|LiFePO4 and Li@
Au@CuPPA|LiFePO4 full cells.

4. Conclusions

In summary, we present an Au-modified Cu pentagonal pyramid array synthesized
using a facile electrochemical deposition and chemical reduction route. The synthesized
array was used as a current collector to provide the homogeneous deposition of lithium
for dendrite-free Li metal batteries. The Au@CuPPA structure possesses a lithiophilic
Au-functionalized surface, which lowers Li metal nucleation barriers. Meanwhile, the
Au@CuPPA pentagonal nano-pyramid structures provide an efficient porous path for Li-
ion transport and interfacial charge transfer. Due to these characteristics, the Au@CuPPA
substrates demonstrate an extremely low nucleation overpotential during Li deposition,
superior Coulombic efficiency of 96.8% over 137 cycles, and long-term cycling stability
for over 460 h at 3 mA cm−2. Moreover, the Au@CuPPA-based full cell presents superior
cycling stability at 0.5 C and extraordinary rate performance. This study offers an avenue
to realize the potential application of LMAs in prospective high-energy batteries.
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