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Abstract: This paper proposes a framework for generating a battery test profile that accounts for
the complex operating conditions of electric vehicles, which is essential for ensuring the durability
and safety of the battery system used in these vehicles. Additionally, such a test profile could
potentially accelerate the development of electric vehicles. To achieve this objective, the study utilizes
a simplified longitudinal dynamics model that incorporates various factors such as the drivetrain
efficiency, battery system energy conversion efficiency, and regenerative braking efficiency. The
battery test profile is based on the China light-duty vehicle test cycle-passenger car (CLTC-P) and is
validated through testing on an electric vehicle with a chassis dynamometer. The results indicate a
high degree of consistency between the generated and measured profiles, confirming the efficacy of
the simplified longitudinal dynamics model.

Keywords: simplified longitudinal dynamics model; electric vehicles; battery test profile;
sensitivity analysis

1. Introduction

Lithium-ion batteries have been widely used with the rapid development of electric
vehicles. With the operation of lithium-ion batteries, their performance has irreversible
degradation, and their internal degradation mechanisms are complex [1,2]. At present, the
battery life is generally evaluated by charging and discharging the lithium ion batteries
with a constant current or multiple constant currents in the laboratory [3]. However,
the operating conditions of electric vehicles change dramatically, making the lithium-ion
batteries experience severe current and temperature changes [4]. This usually leads to
the battery life test results in the laboratory being unable to meet the requirements of
electric vehicles. Therefore, the performance and life evaluation based on complex working
conditions is of great significance for electric vehicles [5,6].

Researchers have undertaken a great deal of work on the analysis and simplification of
the driving cycle of electric vehicles [7]. Liaw et al. [8] simplified the driving cycle based on
fuzzy logic pattern recognition techniques. Devie et al. [9] evaluated real-world collected
data of current and energy distributions in an instrumented electric vehicle based on the
K-means clustering algorithm. Further, researchers analyzed the battery test profile by
collecting battery current, voltage, and other data from electric vehicles. Sun et al. [10]
established the Beijing bus dynamic stress test cycle based on the statistical data of the
voltage and current of the Beijing bus battery system. Panchal et al. [11] developed a
degradation test for a lithium-ion battery using real-world drive cycles obtained from an
electric vehicle. This kind of battery test profile, which is based on the real data collected
from the electric vehicle, has a high accuracy in specific vehicles [12]. However, due to the
different parameters of electric vehicles, such as mass in running order, drivetrain efficiency,
etc., the generated test profile is difficult to apply to other models of vehicles and maintain
high accuracy [13]. Furthermore, it may lead to the problem of a long time and high cost
being required for the construction of test profiles [14].
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At the same time, the existing new European driving cycle (NEDC) is not suitable
for evaluating the energy-saving effect of new technologies such as regenerative braking.
Europe has also found many shortcomings of NEDC in many years of practice and turned
to the worldwide harmonized light vehicles test cycle (WLTC) [15]. However, the idle speed
ratio and average speed of WLTC, the two most important features, are quite different from
the actual working conditions in China [16]. Therefore, China Automotive Technology and
Research Center (CATARC) has taken the lead in organizing the industry to carry out the
China Automobile Driving Cycle project and formed a national standard [17]. The China
Automobile Driving Cycle is divided into two parts. Part 1 is the China light-duty vehicle
test cycle (CLTC), including China light-duty vehicle test cycle-passenger car (CLTC-P) and
China light-duty vehicle test cycle-commercial car(CLTC-C). Part 2 is the China heavy-duty
commercial vehicle test cycle (CHTC), including China heavy-duty commercial vehicle
test cycle-bus (CHTC-B), China heavy-duty commercial vehicle test cycle-coach (CHTC-
C), China heavy-duty commercial vehicle test cycle-truck(CHTC-HT), China heavy-duty
commercial vehicle test cycle-truck (CHTC-LT), China heavy-duty commercial vehicle test
cycle-dump (CHTC-D), and China heavy-duty commercial vehicle test cycle-semitrailer
(CHTC-S). It can be seen that the China Automobile Driving Cycle has made a detailed
classification of vehicle types, which is conducive to the refinement of test profiles and the
accurate evaluation of specific models and power batteries.

This paper presents a framework for generating battery test profiles for electric vehicles
based on a simplified longitudinal dynamics model and an accelerated aging profile
generation method [18]. The longitudinal dynamics model is simplified, and the drivetrain
efficiency, the energy conversion efficiency of the battery system, and the regenerative
braking efficiency are modeled. The battery test profile is derived from CLTC-P and
validated by vehicle experiments on a chassis dynamometer using the proposed framework.
The proposed framework can enhance the accuracy of battery life assessment under realistic
conditions and facilitate the optimization of key vehicle parameters using the generated
battery test profiles, thus accelerating the development of electric vehicles. This paper
employs CLTC-P as an example of a typical profile, but other profiles can be used in
practical applications.

2. Dynamics Model Considering Regenerative Braking
2.1. Simplified Longitudinal Dynamics Model

This paper aims to establish a general battery test profile generation method through
a vehicle dynamics model and convert the China Automobile Driving Cycle into the
corresponding battery test profile. Therefore, the accuracy and universality of the model
should be weighed, that is, the model should be as general as possible on the premise of
ensuring the accuracy so that the model verified to be effective on one vehicle can be easily
transplanted to other vehicles. The vehicle longitudinal dynamics model is adopted and
simplified based on the above considerations.

Forces operating on the electric vehicle can be expressed as follows [19]:

Fdri = ∑ F (1)

where Fdri is the driving force, and ∑ F represents the sum of all driving resistances. For
the electric vehicle studied in this paper, the driving force is transmitted from the electric
motor to the driving wheel through the drivetrain system. Driving resistances include
rolling resistance (Froll) from the ground, aerodynamic drag (Fair) from the air, climbing
resistance (Fclimb) overcoming the height differences of altitude, and acceleration resistance
(Facc) [20]. Forces operating on the electric vehicle are shown in Figure 1.



Batteries 2023, 9, 256 3 of 12

𝛼

mg

Froll

Fdri
Fair

Fclimb

Figure 1. Forces operating on the electric vehicle.

Each force should be provided by the driving motor, which is expressed by the
following equation:

Fdri = Froll + Fair + Fclimb + Facc (2)

The climbing resistance can be ignored in the analysis of vehicle driving resistance
under the China Automobile Driving Cycle, considering that factors such as season, city,
and road conditions have been taken into account and weighted. Therefore, the climbing
resistance has been weighted and averaged in the China Automobile Driving Cycle. Thus,
Equation (2) can be simplified as

Fdri = Froll + Fair + Facc (3)

The rolling resistance, aerodynamic drag, and acceleration resistance are analyzed
as follows.

• Rolling resistance: Equal to the product of rolling resistance coefficient f and wheel
load. The rolling resistance can be directly expressed as follows, since the climbing
resistance has been ignored.

Froll = mg f (4)

where m is the mass in running order, g is the gravitational acceleration, and f is the
rolling resistance coefficient.

• Aerodynamic drag: Proportional to the dynamic pressure of the relative velocity of
the air flow.

Fair =
1
2

ρCDSvehv2 (5)

where ρ is the density of air, CD is the aerodynamic drag coefficient, Sveh is the cross-
sectional area, and v is the velocity of the electric vehicle.

• Acceleration resistance: δ is commonly used as the conversion coefficient of vehicle
rotating mass after taking into account the inertia force for the electric vehicle [20].
Therefore, the acceleration resistance can be expressed as

Facc = mδ
dv
dt

(6)

where δ is the factor for rotational masses, dv
dt is the accelerated speed.

The simplified longitudinal dynamics model can be obtained by combining
Equations (3)–(6):

Fdri = mg f +
1
2

ρCDSvehv2 + mδ
dv
dt

(7)

2.2. Power Load Profile Considering Regenerative Braking

As analyzed in [20,21], driving power can be calculated as

Pveh = Fdriv =

(
mg f +

1
2

ρCDSvehv2 + mδ
dv
dt

)
v (8)
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where Pveh is the driving power. The required driving power should be provided by the
driving motor, which is powered by the battery system in the electric vehicle. The drivetrain
efficiency, the energy conversion efficiency of the battery system, the regenerative braking
efficiency, and the auxiliary power consumption should be considered to convert the driving
power into battery system load [21,22]. The power of the battery system depends on the
direction of the power flow of the driving motor, considering the regenerative braking.

Pbatt =

{
(Pveh/ηd + Paux)/ηbatt(acceleration)
(Pveh · ηreg + Paux)ηbatt(deceleration)

(9)

where Pbatt is the power of the battery system. Positive power means the battery system is
outputting power, and negative power means the battery system is receiving regenerative
power. ηd is the drivetrain efficiency, ηreg is the regenerative braking efficiency, ηbatt is
the energy conversion efficiency of the battery system, and Paux is the auxiliary power
consumption. For simplicity reasons, the loss of driving power is all attributed to drivetrain
efficiency ηd, and the loss of regenerative power is all attributed to regenerative braking
efficiency ηreg.

It can be seen from Equations (8) and (9) that the simplified longitudinal dynamics
model only contains seven parameters related to the electric vehicle, and all parameters
can be provided by the vehicle manufacturer or measured through experiments. It is worth
noting that Pbatt is the total power of the battery system, which can be converted into
the power of the cell by considering the series parallel connection and cell variations of
the battery system [23–25]. Meanwhile, the four general physical parameters included in
Equation (8) are shown in Table 1. The rolling resistance coefficient f and the factor for
rotational masses δ are treated as general physical parameters to ensure the universality of
the dynamics model. Three parameters, namely, the real-time changing parameters m, ηd,
and ηbatt, are simplified to fixed values. This simplification is justified by the fact that, in the
study of battery test profiles, the quantitative distribution of the load profile is more crucial
than the precise value at each time, particularly in the study of battery aging test profiles.
As such, these simplifications are reasonable [22,26,27]. Therefore, the simplified dynamics
model does not need to describe a specific electric vehicle as accurately as possible but
to provide a generic method for generating the test profiles suitable for a battery aging
test [28,29].

Table 1. General physical parameters.

Symbol Description (Unit) Value

g Gravitational acceleration (m/s2) 9.81
f Rolling resistance coefficient (-) 0.010∼0.020
ρ Air density (kg/m3) 1.2
δ Factor for rotational masses (-) 1.04

3. Experiments
3.1. Experimental Configurations

The test sample used in this study is an electric vehicle for the vehicle test profile
experiment. The experimental instruments include a chassis dynamometer and a data
acquisition system. The chassis dynamometer is used to match and record the vehicle
test profiles, and the data acquisition system is used to measure and record the voltage
and current of the battery system. The electric vehicle is a front-wheel-drive car, so when
it is placed on the chassis dynamometer, its front wheels are placed directly above the
dynamometer and the rear wheels are locked. The test electric vehicle and its fixing method
are shown in Figure 2. Basic parameters of the test vehicle are shown in Table 2.
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Locked

Chassis
dynamometer

Figure 2. The test electric vehicle and chassis dynamometer.

Table 2. Vehicle parameters.

Symbol Description (Unit) Value

m Mass in running order (kg) 2206
CD Aerodynamic drag coefficient (-) 0.346

Sveh Cross-sectional area (m2) 2.6
ηd Drivetrain efficiency (-) 81.2%

ηreg Regenerative braking efficiency (-) 76.9%
ηbatt Energy conversion efficiency (-) 97.6%
Paux Auxiliary power consumption (W) 300

The data acquisition system used in this experiment is DEWE2-M4 (manufactured by
DEWETRON GmbH), which includes four parts: host computer, screen monitor, concen-
trator, and sensors. The schematic diagram of the data acquisition system with a chassis
dynamometer is shown in Figure 3. The electric vehicle is operated according to a specified
test profile, and the sensors are utilized to measure the voltage and current of the battery
system. Key parameters of the DEWE2-M4 data acquisition system are shown in Table 3.

Host computer
Chassis dynamometer

Monitor
Concentrator

Sensors

Electric vehicle

Figure 3. Schematic diagram of the data acquisition system with a chassis dynamometer.

Table 3. Key parameters of the data acquisition system.

Term (Unit) Value

Maximum sampling frequency (Hz) 2 M
Voltage range (V) 0∼2000
Current range (A) 0∼500

Voltage accuracy (%) 0.15
Current accuracy (%) 0.3



Batteries 2023, 9, 256 6 of 12

3.2. Experimental Procedures

The experimental procedures for vehicle test profiles are as follows:

1. Power off the electric vehicle and install the voltage and current sensors on the direct
current (DC) bus of the battery system.

2. Fix the electric vehicle on the chassis dynamometer. The front wheels of the vehicle
are placed directly above the dynamometer and the rear wheels are locked, as shown
in Figure 2.

3. Power on the electric vehicle and confirm that the vehicle is in a good status.
4. Power on the chassis dynamometer and the data acquisition system and confirm that

they are in a good status.
5. Drive the vehicle according to the specified test profile. In this experiment, the CLTC-P

is used as the test profile, as shown in Figure 4.

Figure 4. China light-duty vehicle test cycle-passenger car (CLTC-P).

4. Results and Discussions
4.1. Repeatability of the Vehicle Test Profile on the Chassis Dynamometer

The repeatability of the two experiments is analyzed in order to verify the simplified
vehicle longitudinal dynamics model. The power data of the battery system is calculated
by multiplying the recorded voltage and current. The power data of the battery system
obtained by running CLTC-P twice successively, as shown in Figure 5. The green curve is
the record of the first experiment, marked as test profile I, and the blue curve is the record
of the second experiment, marked as test profile II. It can be seen from the enlarged view
that the two test results are consistent. The mean absolute error (MAE) and the root mean
square error (RMSE) are used to quantify the repeated error. MAE is a simpler measure
of accuracy that treats all errors equally, while RMSE is a more complex measure that
gives more weight to larger errors and is more sensitive to outliers. The MAE of the two
experiments is 2.28 kW, and the RMSE is 4.49 kW. This result can be used as a reference
value for subsequent evaluation of the model error.

4.2. Verification of the Simplified Vehicle Longitudinal Dynamics Model

The longitudinal dynamics model is verified based on the above two experiments.
The seven physical parameters of the electric vehicle in Table 2 can be provided by the
manufacturer theoretically. However, the manufacturer’s efficiency data were not obtained
in this experiment due to privacy reasons, including the drivetrain efficiency, the energy
conversion efficiency of the battery system, and the regenerative braking efficiency. Thus,
the verification approach proposed in this paper involves utilizing a fraction of the collected
power data to estimate the aforementioned efficiency parameters through the system iden-
tification technique, followed by utilizing the remaining portion to forecast and compare
the corresponding errors with the aim of validating the identified parameters and the
resultant model. The CLTC-P driving cycle consists of three speed ranges, low, medium,
and high, with a total duration of 1800 s. The low-speed range accounts for 37.4% of the
total duration, with a time span of 674 s, while the medium-speed range accounts for
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38.5% of the total duration, with a time span of 693 s, and the high-speed range accounts
for 24.1% of the total duration, with a time span of 433 s. We selected the first half of
each speed range for parameter estimation and the second half for model prediction. The
comparative analysis between the predicted test profile and the measured test profile of
model identification is shown in Figure 6. In Figure 6a, the green line is the first half of each
speed range of the test profile I, and the red line is the prediction result of the model based
on the identification efficiency parameters of the selected test profile I. It can be seen from
the enlarged view that the predicted results of the model are consistent with the measured
test profile I, which indicates that the model identification error is low. In Figure 6b, the red
line is the prediction result of the model, and the blue line is the second half of each speed
range of the test profile I. It can also be seen from the enlarged view that the predicted
results of the model are consistent with the measured test profile I, which shows that the
prediction error of the model is also low.

Figure 5. Power data of the battery system.

The model identification error and model prediction error are shown in Table 4. It
can be seen from Table 4 that the model identification error, model prediction error, and
repeated experiment error are of the same order of magnitude, which further illustrates the
accuracy of the model and also proves the effectiveness of the proposed method.

Table 4. Model identification error and prediction error.

Evaluation Index Identification Error Prediction Error

MAE 2.57 kW 2.93 kW
RMSE 4.57 kW 5.05 kW

4.3. Accelerated Battery Aging Profile Results

According to [18], the accelerated aging profile is generated based on a double closed-
loop architecture that considers the aging path of the lithium-ion battery. The original test
profile based on which the accelerated aging profile is generated needs to be normalized
to the current rate (C-rate) for universality. The C-rate is a measure of the rate at which a
lithium-ion battery discharges or charges relative to its capacity. The C-rate profile can be
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converted from the power profile when the rated energy of the battery system is available.
The rated energy of the battery system of the electric vehicle in this experiment is 61.9 kWh.
The accelerated aging profile of the CLTC-P is generated under the objective function
considering the acceleration factor and the relative error of the battery aging path given
in [18].

low medium high low medium high

(a) (b)

Figure 6. Model identification and verification results. (a) Comparison between identification and
measured results. (b) Comparison between prediction and measured results.

The accelerated battery aging profile is produced from the original C-rate profile based
on a double closed-loop architecture, as illustrated in Figure 7. The results are presented
in Figure 8. The accelerated aging profile can effectively accelerate to more than twice the
original C-rate profile while ensuring the battery aging path remains unchanged based on
the previous experiments [18,30].

Figure 7. C-rate profile of the battery system.

4.4. Sensitivity Analysis

Sensitivity analysis is a quantitative analysis of the impact of model inputs, including
model parameters, on model outputs [31,32]. The sensitivity analysis of model parameters
can identify the key parameters of the model, which is the key to the application of
the model. Generally, sensitivity analysis includes local sensitivity analysis and global
sensitivity analysis, while global sensitivity analysis is more suitable for the study of multi
parameter models. Commonly used global sensitivity analysis methods include those
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based on regression or correlation analysis, global screening, and variance decomposition.
The Sobol method based on variance decomposition is used in this paper to analyze the
sensitivity of the vehicle longitudinal dynamics model to effectively apply the model [33].
The sensitivity of parameters is analyzed by calculating the influence of input parameters
on the total output variance. The objective function of sensitivity analysis is the MAE and
the RMSE of the model.

Figure 8. Accelerated battery aging profile.

The Sobol method uses two independent s × p inputs, where s is the number of
samples, and p is the number of parameters of the model. The larger the number of samples
s, the more accurate the results of sensitivity analysis, and the greater the amount of
calculation. The number of samples is set to 4096 considering the accuracy and calculation.
The sensitivity analysis results are shown in Figure 9. It can be seen from Figure 9a,b that
the MAE based sensitivity index the RMSE-based sensitivity index are basically the same.
The three parameters of m, ηd, and ηbatt are the key parameters with high sensitivity, while
the four parameters of ηreg, Sveh, CD, and Paux are less sensitive parameters. The three
parameters of m, ηd, and ηbatt should be as accurate as possible for the generation of a
battery test profile based on the above sensitivity analysis. Furthermore, if these three
key parameters of the two models of electric vehicles are similar, but the less-sensitive
parameters such as ηreg, Sveh, CD, and Paux are quite different, then the battery test profile
of one model can be directly transferred to another model at the expense of a small amount
of accuracy.

m d batt reg Sveh CD Paux
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0.6

Se
ns

iti
vi

ty
 In

de
x
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(a) (b)

Figure 9. Sensitivity analysis results: (a) MAE-based sensitivity index. (b) RMSE-based
sensitivity index.

5. Conclusions

This paper proposes a battery test profile generation framework based on the sim-
plified longitudinal dynamics model to account for the complex operating conditions of
electric vehicles on batteries. The generated battery test profile based on CLTC-P is verified
through experimentation on an electric vehicle with a chassis dynamometer, and the results
demonstrate a high level of consistency with the measured profile. The Sobol sensitivity
analysis method identifies the parameters of m, ηd, and ηbatt as crucial factors with high sen-
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sitivity. It should be noted that the primary focus of this paper is to establish the generation
framework and perform experimental verification on the selected vehicle under CLTC-P.
Future research based on the proposed generation framework will address two topics:
(1) in-depth analysis and experimentation of CLTC-P and its applicability to multiple
passenger cars and (2) research on other types of the China Automotive Driving Cycle.
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Abbreviations
The following abbreviations are used in this manuscript:

CATARC China Automotive Technology & Research Center
CHTC China heavy-duty commercial vehicle test cycle
CHTC-B China heavy-duty commercial vehicle test cycle-bus
CHTC-C China heavy-duty commercial vehicle test cycle-coach
CHTC-D China heavy-duty commercial vehicle test cycle-dump
CHTC-HT China heavy-duty commercial vehicle test cycle-truck (GVW > 5500 kg)
CHTC-LT China heavy-duty commercial vehicle test cycle-truck (GVW ≤ 5500 kg)
CHTC-S China heavy-duty commercial vehicle test cycle-semitrailer
CLTC China light-duty vehicle test cycle
CLTC-C China light-duty vehicle test cycle-commercial car
CLTC-P China light-duty vehicle test cycle-passenger car
DC Direct current
GVW Gross vehicle weight
MAE Mean absolute error
NEDC New European driving cycle
RMSE Root mean square error
WLTC Worldwide harmonized light vehicles test cycle
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