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Abstract: Liquid cooling strategies such as cold plates have been widely employed as an effective
approach for battery thermal management systems (BTMS) due to their high cooling capacity and
low power consumption. The structural design of the cold plates is the key factor that directly
determines the thermal performance of the liquid cooling system. In this study, seven Z-type parallel
channel cold plate and two novel cross-linked channel cold plate designs are proposed for the
cooling of high-power lithium-ion batteries using two different cooling strategies. The average
battery temperature, battery temperature uniformity and energy consumption of all designs are firstly
analyzed holistically by three-dimensional conjugated simulation under the scheme of continuous
cooling. Two selected designs that demonstrated superior performance (i.e., a Z-type parallel channel
cold plate with 8-branches and an improved cross-linked channel design) are further analyzed
to explore their integrative performance under different cooling schemes. The results show that
within a battery temperature limit of 40 ◦C, employing the delayed cooling strategy can save 23%
energy consumption compared to the continuous cooling strategy. Besides, the cold plate with an
improved cross-linked channel configuration requires 13% less pumping power and provides a better
temperature uniformity than the Z-type parallel channel cold plate with 8-branches. These results are
of great significance to advance the cooling design of BTMS.

Keywords: lithium-ion battery; thermal management; cold plate; continuous and delayed cooling;
cross-linked channel

1. Introduction

The last decade has witnessed a fast-growing popularity of electric vehicles (EVs)
owing to the increasing concern regarding fossil fuel consumption and tailpipe carbon
emissions. Unlike traditional vehicles that run on gasoline, EVs are powered exclusively
by rechargeable battery packs such as lead-acid, nickel-cadmium, nickel-metal-hydride,
zinc-bromine, sodium sulfur, and lithium batteries. Among them, the lithium-ion battery
has been the leading choice for EV manufacturers owing to its high energy density, mini-
mum self-discharging behavior, robust performance, long service lifespan, and relatively
small impact on vehicle weight [1–3]. Despite these merits, lithium-ion batteries must be
operated at suitable temperature condition to avoid catastrophic failure [4]. Studies have
shown that it is desirable to control the temperature of lithium-ion batteries within the
range from 25 to 40 ◦C. Furthermore, the temperature nonuniformity between different
cells should be controlled within less than 5 ◦C [5]. Working in either a low or high tem-
perature environment will lead to poor battery performance, reduced lifespan, or even
explosion [6]. Considering these issues, it is a critical task to develop effective battery
thermal management systems (BTMS) to ensure that the EVs can run safely over a long
period of time under different conditions.

Based on the cooling media, BTMSs can generally be divided into four different types
including air cooling [7–9], liquid cooling [10–13], phase change material cooling [14–17],
and heat pipe cooling [18–21]. Passive air cooling has a very low cooling capacity, which
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makes it unsuitable for cooling lithium-ion batteries at high charging or discharging rates.
The active air-cooling method can provide a significantly higher heat transfer coefficient, but
still suffers from a low cooling capacity resulting from the poor thermophysical property
of air. Phase change material (PCM) allows for temporal storage and release of large
amounts of heat during the process of melting and freezing. Heat pipes have a very
high effective thermal conductivity (>100,000 W·m−1·K−1), which allows them to transfer
thermal energy with a small temperature gradient. However, both PCM and heat pipes
only allow temporary storage or transport of the thermal energy. Therefore, an active
cooling device such as air or liquid cooling must be used in combination with PCM or heat
pipe to further dissipate the thermal energy from the battery. Liquid cooling has become
the most popular for BTMSs in EVs due to its remarkable cooling performance and high
compactness [22,23]. So far, liquid-cooled battery systems have already been used in a
number of commercial EVs including Tesla, VW, Hyundai, and BYD.

Cold plate is a widely used component in liquid-cooled battery systems for removing
the heat generated during the charge–discharge process of battery packs. The cold plates
can be installed either between the cells or on the lateral surfaces of the battery pack [24,25].
Many studies have investigated the pattern of fluid flow in cold plates, such as the straight,
serpentine, and mini-channel structures. Zhu et al. [26] designed sixteen models using an
orthogonal array to quantify and analyze the main and secondary factors of the cooling
effect of a liquid-cooled BTMS. It was reported that channel number has the most important
effect on the average temperature of batteries, while the channel number and inlet velocity
are two major factors controlling the temperature uniformity. Huo et al. [27] also found
that the maximum battery temperature increases with increasing channel number in a
straight-shaped channel cold plate. Qian et al. [28] showed that the cooling efficiency of a
straight channel cold plate can be improved by increasing the channel number. However,
the improvement in the cooling performance becomes insignificant when the channel
number exceeds five. Li et al. [29] investigated the performance of silicon cold plates
based natural air cooling, forced air cooling, and liquid cooling with U-type tubes for
BTMSs experimentally. Deng et al. [30] numerically studied the effect of the layout of
channels, channel number, and inlet temperature on the performance of a serpentine-
channel cooling plate. Kong et al. [31] proposed a divergent-shaped channel cold plate
for BTMSs. They found that the divergent-shaped channels can provide enhanced cooling
performance, which is characterized by a lower pressure drop and a smaller maximum
temperature difference. Huang et al. [32] introduced the streamline concept to design and
optimize the performance of an inner mini channel cooling plate. Mo et al. [33] designed
a novel cooling plate using the topology optimization method and further analyzed the
influences of the flow rate and inlet temperature on the performance of the optimized
cooling plate. Kalkan et al. [34] performed experimental studies to explore the thermal
performance of different water-cooled cold plates including conventional serpentine tube
and novel mini channel designs for thermal management of lithium-ion batteries with a
discharging rate from 1C to 5C. Amalesh and Narasimhan [35] proposed seven distinct
mini-channel cold plates to analyze the effect of channel profile on the performance of the
cold plate. It was found that mini-channels with zigzag and circular slot channels exhibit
an exceptional performance.

In addition to the straight and serpentine channel configuration, the Z-type parallel
channel cold plate has also been investigated by a significant number of studies. Com-
pared with the traditional serpentine-channel cold plates, the flow path in the Z-type
parallel channel cold plate is reduced, which decreases the overall pressure drop in the
cooling system. Chen et al. [36] designed a novel cold plate consisting of mini parallel
channels (PMCP) to enhance the uniformity of temperature distribution in large battery
pack systems. As shown in their results, the proposed Z-type parallel channel design can
significantly improve the temperature uniformity and reduce the power consumption of
BTMSs. Gungor et al. [37] proposed an efficient liquid cooling system consisting of Z-type
parallel channels between different cells in a battery pack by using the constructal canopy-
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to-canopy architectures. It was found in their study that the cold plate with five branch
channels has the best cooling performance while the cold plates with more than seven
branch channels require greater pumping power without significant thermal improvement.
Sun et al. [38] designed a tapered inlet and outlet channel configuration to further enhance
the thermal performance of their cold plate containing Z-shaped parallel minichannels.
Guo et al. [39] studied the performance of serpentine channel cooling plates for BTMS.
The results showed that the parallel-spiral serpentine channel cooling plate has the best
performance. Shen et al. [40] used a tilted Z-shaped air-cooling system for BTMS. Com-
pared to the vertical Z-shaped construction, the maximum battery temperature of the tilted
Z-shaped channel was decreased from 38.15 to 34.14 ◦C. Faizan et al. [41] proposed a cold
plate grooved with converging twisted serpentine mini-channels for BTMSs. Guo et al. [42]
studied the performance of BTMS with a mini-channel cold plate. While the cold plate with
Z-shaped channels has been the most popular for thermal management application, other
geometric designs including U-shaped and mixed configuration (i.e., combining Z-shaped
and U-shaped) have also been explored by a significant number of studies [43–46]. In
addition to the geometric consideration, the controlling strategy can also play an important
role in improving the thermal performance of cold plates. For example, Cao et al. [47,48]
proposed activating liquid cooling only after the temperature of the battery exceeds certain
threshold. Such a method, also known as the delayed cooling scheme, was found to reduce
the temperature nonuniformity and power consumption without sacrificing the cooling
performance when applied to hybrid cold plates containing phase change materials (PCM).

While cold plates have been extensively studied in past literature studies to address
the cooling issue of lithium-ion batteries, most existing cold plate designs only feature long
and straight cooling channels. Such a design concept is advantageous in reducing the flow
resistance, but fails to maximize the convective heat transfer performance. Furthermore,
most existing studies employed continuous flow to cool down the battery, which is not
a power efficient solution. On the other hand, the delayed cooling strategy opens a
new pathway to simultaneously enhance the uniformity of battery temperature and to
reduce energy consumption. In this study, a novel cross-linked channel configuration
was proposed for cold plate design. A cross-linked channel cold plate consists of parallel
longitudinal and transverse channels which facilitate better fluid mixing and help disrupt
the thermal and hydraulic boundary layers. Consequently, such a fluid routing structure
has the potential to achieve better temperature uniformity and enhanced heat transfer
performance. To the best of the authors knowledge, the concept of cross-linked channel
design in cold plates has not been explored in BTMS. The main objective of this study is
to investigate the effectiveness of cross-linked channel cold plates coupled with a delayed
cooling scheme for thermal management of battery packs at a high discharge rate. We
first analyzed seven traditional cold plate designs containing Z-shaped minichannels of
different geometries. The thermal performances of these designs were then evaluated
and compared with two novel cold plate designs containing cross-linked minichannels.
The average temperature of the battery surface, the temperature uniformity, and energy
consumption of each cold plate design were studied systematically under the scheme of
continuous cooling. Finally, the two best performing cold plate designs (i.e., a Z-shaped
parallel channel cold plate with eight-branches and an improved cross-linked channel cold
plate) were selected to analyze and compare the thermal performance of a continuous
cooling strategy and a delayed cooling strategy.

2. Physical Model

Figure 1 illustrates the geometric model of the BTMS explored in this study. The main
components of the BTMS include the batteries (which are also the heat source), the cold
plates sandwiched between the neighboring battery cells, and a manifold used for routing
the liquid into and out of each single cold plate. As shown in the figure, multiple inlets
and outlets were installed on the manifold for connecting the cold plate to an external
liquid supply and recirculating system. A commercial prismatic lithium-ion battery with
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a 45 Ah nominal capacity and 3.2 nominal voltage was selected to construct the battery
pack in this study. The positive electrode is made of LiFeO4 and the negative electrode
is graphite. The electrolyte consists of 1 M LiPF6–PC/EC/EMC (1/3/5 in weight ratio).
The lithium-ion battery has a dimension of 150 mm in length, 200 mm in height, and
30 mm in width. Each cold plate is 3 mm thick and assumed to be manufactured from
aluminum. Because of the symmetric geometry of the BTMS, a control volume comprising
a half section of the battery and cold plate (shown by the blue dashed line in Figure 1) was
selected as the computational domain in this study for analyzing the thermal performance.
The cooling medium, selected to be 40% (volume fraction) ethanol solution, is assumed to
flow into the cold plate at 25 ◦C from the top inlet ports and leave via the bottom exit ports.
The specifications and thermo-physical properties of the battery, aluminum plate, and the
coolant are summarized in Table 1.
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Figure 1. The diagram showing the structure and components of the BTMS for the lithium-ion battery.

Table 1. Main performance parameters and thermo-physical properties of the battery, coolant, and
cold plate explored in this study.

Parameters Battery Aluminum Coolant (40%
Ethanol Solution)

Nominal Capacity (Ah) 45
Nominal Voltage (V) 3.2
Charge Cut-off Voltage (V) 3.6
Discharge Cut-off Voltage (V) 2.5
Maximum charging current (A) ≤3
Maximum discharge current (A) ≤4
Internal resistance (mΩ) ≤10
Size (mm) 150 × 200 × 30
Density ρ (kg·m−3) 2090 2719 1055.39
Heat capacity cp (J·K−1·kg−1) 1014.4 871 3502

Thermal conductivity k (W·m−1·K−1)
kx = 1.696
ky = kz = 29.94 202.4 0.412

Dynamic viscosity µ (kg·m−1·s−1) 0.00226

Nine cold plate configurations were proposed and analyzed in this work. Based on the
geometrical characteristics, these cold plates can be divided into two categories: (1) Z-type
parallel channel cold plates (as shown in Figure 2a,b) and (2) cross-linked channel cold
plates (as shown in Figure 2c,d). In the Z-type parallel channel cold plate, the coolant flows
from the top inlet channel to the bottom outlet channel through a series of long and straight
parallel channels without any disruption. Seven different Z-type parallel channel cold
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plates, each containing 3, 4, 5, 6, 7, 8, and 9 parallel channels, were explored in this work.
These designs were referred to as D1 to D7 in the subsequent analysis. In the cross-linked
channel cold plate, the coolant is routed through a series of interconnected longitudinal
and transverse channels while flowing from the top inlet channel towards the bottom outlet
channel. These interconnected channels form a hierarchical flow network which provides
greater contact area for convection heat transfer as well as continuous disruption of the
boundary layer along the flow path.
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The dimensions of the inlet and outlet channels in all cold plate designs were set
as 15 mm × 1 mm. The cross section of the parallel channels in Z-type parallel channel
cold plates were designed to be 10 mm × 1 mm. The width of the fin (d) separating
two neighboring channels’ changes based on the number of parallel channels in different
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designs. In the cross-linked channel cold plates, the transverse flow channels were designed
to be 5 mm wide (labeled as f ) and separated by 3 mm wide fins (labeled as e). The
neighboring two rows of fins are separated by 12 mm (labeled as c1). The spacing between
the leftmost/rightmost row of fins and the lateral boundary of the cold plate is 10 mm
(labeled as c).

The average temperature and temperature uniformity of the battery pack are two key
parameters for assessing its thermal performance. In this study, a temperature maldistri-
bution parameter was introduced to quantify the temperature uniformity of the battery
surface. The temperature maldistribution parameter ST is defined as follows:

ST =

√
1

N − 1∑N
j=1

(
Tj − Tave

)2 (1)

where N stands for the number of temperature detection points, Tj is the temperature
measured at the jth detection point, and Tave is the average temperature. Figure 3 shows
the locations of the 12 temperature detection points on the battery surface. These points are
evenly distributed with a spacing of 50 mm.
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3. Mathematical Model
3.1. Governing Equations

The computational domain encompasses the battery, aluminum plate, and coolant.
The thermal and hydraulic transport behavior in the computational domain are modeled
by the continuity, momentum, and energy equations given by

∂ρl
∂t

+∇
(

ρl
→
v l

)
= 0, (2)

ρl

∂
(→

v l

)
∂t

+
→
v l · ∇

→
v l

 = −∇p + µl∇2→v l , (3)

ρlcp,l
∂T
∂t

+ ρlcp,l∇
(→

v lT
)
= ∇(kl∇T), (4)

where ρl, µl, cp,l, and kl are the density, dynamic viscosity, specific heat capacity, and thermal

conductivity of the cooling medium, respectively; p is the liquid pressure; t is the time;
→
v l

is the velocity vector; and T is the temperature.
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The heat transport in the aluminum plate is governed exclusively by conduction,
which can be modeled by the following energy equation:

ρwcpw

∂T
∂t

= ∇(kw∇T), (5)

where ρw, cp,w, and kw are the density, specific heat capacity, and thermal conductivity of
the aluminum plate, respectively.

3.2. Battery Model

The heat transport process in the battery is modeled by the following energy equation:

ρbcp,b
∂T
∂t

= ∇(kb∇T) + Qgen, (6)

where ρb, cp,b, and kb are the density, specific heat capacity, and thermal conductivity of the
battery. Qgen is the source term, which represents the volume-specific heat generation rate
of the battery during operation.

For simplicity, the material properties and heat generation rate are assumed to be
constant throughout the battery. Battery heat generation contains both reversible and
irreversible components. The irreversible heat contribution is often the dominating heat
source resulting from the Joule heating of the electron and ionic flow resistance. The
reversible heat contribution is less significant and caused by the electrochemical reactions.
Combining these two terms yields the total heat generation rate Qgen as:

Qgen = Qir + Qre = I(E−V)− IT
dE
dT

= I2R− IT
dE
dT

, (7)

where I is the current, E is open circuit voltage, V is cell potential, T is the temperature, R is
the internal resistance, and dE/dT is the entropy coefficient, which changes with the state
of charge (SOC).

Equation (7) indicates that the rate of heat generation inside the battery is dependent
on many different parameters, which can vary significantly from one type of battery to
another. For a specific type of battery with fixed properties, however, the heat generation
rate is often only a strong function of the charging or discharging rate (also known as
the C-rate) [49]. The battery C rating is the measurement of current in which a battery
is charged and discharged. In general, a charging rate of nC represents that the battery
is charged from 0 to 100% within 1/n hour’s time. A plethora of correlations have been
developed to predict the heat generate rate as a function of the charging rate. In this study,
the empirical time-dependent model developed by Li [50] was selected to estimate the heat
generation rate at different charging rates as:

Qgen = A1t6 + A2t5 + A3t4 + A4t3 + A5t2 + A6t + A7, (8)

where A1 to A7 are the polynomial coefficients as listed in Table 2 [50].

Table 2. The empirical coefficients used to model the heat generation rate of the battery during the
discharging cycle [50].

Discharge Rates A1 A2 A3 A4 A5 A6 A7

1C 4.9132 × 10−16 −3.7742 × 10−12 1.0679 × 10−8 −1.3417 × 10−5 0.0076 −2.2208 17,151.7482
2C 1.2578 × 10−13 −4.8310 × 10−10 6.8347 × 10−7 −4.2934 × 10−4 0.1216 −17.7630 66,623.3365
3C 3.2235 × 10−12 −8.2542 × 10−9 7.7851 × 10−6 −3.2303 × 10−3 0.6157 −59.9607 148,414.7651
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3.3. Initial and Boundary Conditions

The entire BTMS was set at a uniform temperature of 25 ◦C prior to the simulation as

t = 0, T(x, y, z) = Tini = 25 ◦C. (9)

The thermal and hydraulic boundary conditions enforced on the inlet section of the
BTMS are given by Equations (10)–(12). When using the continuous cooling strategy, a
fixed velocity condition was imposed on the inlet. When the delayed cooling strategy is
adopted, a temperature-dependent velocity condition is imposed in the inlet.

v = vin, (10)

{
v = vin, if Tave ≥ 40 ◦C
v = 0, if Tave ≤ 30 ◦C

, (11)

T = Tin = 25 ◦C, (12)

where Tave is the average temperature of the battery. Different values of the vin were
selected in this study to explore the effect of flow rate on the thermal performance. The
corresponding Reynolds number varies from 100 to 1000.

A zero-pressure boundary condition was set on the outlet port of the BTMS as:

p = 0 pa. (13)

The thermal transport processes in the aluminum and battery were coupled by the
energy balance condition at the interface given as:

−kw
∂Tw

∂n
= −kb

∂Tb
∂n

, (14)

where n is the normal vector of interfaces.
The convective heat transfer across the interface between the cooling medium and the

aluminum cold plate was modeled on the following heat flux continuity condition and
no-slip boundary as: {

−kw
∂Tw
∂n = −kl

∂Tl
∂n ,

→
v = 0

(15)

An adiabatic thermal boundary condition was imposed on the rest of the solid walls
of the cold plate and battery pack as:{

−kw
∂Tw
∂n = 0

−kb
∂Tb
∂n = 0

. (16)

The central cross-sectional planes of the BTMS (including the cold plate, battery, and
cooling medium) were set as symmetric boundary conditions.

3.4. Numerical Method and Validations

The continuity, momentum, and energy equations were solved numerically using
Ansys Fluent 2020 R1 commercial software. The differential equations were discretized
using the third order MUSCL scheme and solved iteratively with the SIMPLE algorithm. A
second order scheme was applied for pressure correction. The iteration was considered to
reach convergence when the normalized residues in the momentum and energy equations
become smaller than 1 × 10−6 and 1 × 10−12, respectively.

A structured hexahedral mesh was used in the numerical simulation. For illustration
purpose, the front view of the grids is shown in Figure 4. Prior to the numerical simulation,
a mesh independent test was conducted on cold plate D1 with six different mesh sizes.
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In this test, the Reynolds number at the inlet channel was set as 500 and the discharging
rate was set to be 3C. The total number of cells was increased from 3,900,000 to 7,500,000
and the non-dimensional distance y+ between the first interior node and solid wall was set
in the range of 2 to 4.8. Figure 5a shows the average battery temperature of design D1 at
time t = 500 and 1080 s as well as the pressure difference between the inlet and outlet at
t = 1080 s calculated in the mesh independent test. The results indicate that the deviations
between the average battery temperatures obtained with different grid numbers was less
than 0.1 ◦C at t = 500 and 1080 s. Meanwhile, the difference in the pressure drop was
less than 0.5 Pa when using different mesh sizes. To balance the computational cost and
accuracy, a cell number of 5,690,000 with y+ = 3.0 was finally selected for the computational
analysis of cold plate D1. Similar steps have been followed to determine the mesh size
for the analyses of other cold plate designs. Furthermore, a time-step independent study
has also been performed to ensure that the time step used in the computational analysis is
small enough to capture the transient thermal response of the BTMS accurately. The time
step ∆t was increased from 0.2 to 2.0 s and the results are shown in Figure 5b. It is evident
that changing the time step has negligible impact on the average battery temperature and
pressure drop. Therefore, a time step of 1 s was selected for the computational analysis of
all cold plate designs in this study.
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To further validate the computational model, we compared the numerical results
obtained for cold plate D1 against the experimental results obtained by Li [50] in the
literature as shown in Figure 6. The experimental work was conducted using LiFePO4
batteries (3.2 V, 45 Ah) at three different discharging rates. The battery temperature was
measured on the surface using five thermocouples and reported as an average value. The
comparison shown in Figure 6 reveals a highly consistent change in the average battery
temperature between the numerical results and the experimental measurements taken by
Li [50]. This agreement confirms the accuracy and reliability of the computational model
developed in this study.
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Figure 6. The comparison of the change in the average battery temperature between the simulation
results and the experimental measurement taken by Li [50].

4. Results and Discussion
4.1. Temperature Distribution in Different Designs

Figures 7 and 8 separately show the temperature contour with superimposed stream-
line for Z-type parallel channel cold plates and cross-linked channel cold plates at a dis-
charge rate of 3C when the discharging cycle was completed (t = 1080 s). The Reynolds
number was kept constant at 500 and the continuous cooling scheme was employed. As
shown in Figure 7a–g, the surface temperatures of the cold plate and battery were found to
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decrease dramatically with increasing numbers of parallel channels until reaching a total
number of 8 (i.e., design D6 shown in Figure 7f). Such a trend was expected since increasing
number of cooling channel represents a greater contact area between the coolant and heated
surface for convective cooling. However, with a fixed flow rate at the inlet, the velocity and
Reynolds number in each parallel channel also becomes smaller with increasing number of
channels, which will result in a lower convective heat transfer coefficient in each individual
channel. Therefore, when the number of parallel cooling channels is sufficiently large, the
reduction in the heat transfer coefficient will start to deprive the merit of greater cooling
area and deteriorate the overall cooling performance. As shown by Figure 7f,g, further
increasing the number of parallel channels from 8 (i.e., design D7) to 9 leads to a poorer
thermal performance represented by a higher surface temperature. Thus, design D6 has the
best heat dissipation performance in the Z-type parallel channel cold plates. In addition,
the maximum temperature was observed at the middle and lower portions of battery due
to the gradual heating of the coolant along the flow path. According to the numerical result,
the highest temperatures obtained for cold plate designs D1 to D7 are 50.6 ◦C, 42.5 ◦C,
40.9 ◦C, 40 ◦C, 39.3 ◦C, 38.8 ◦C, and 40.4 ◦C, respectively.

Figure 7. Temperature contours with superimposed streamline at t = 1080 s for Z-type parallel
channel cold plates.
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The dilemma between a greater number of cooling channels and a smaller flow rate
in each individual channel can be overcome by introducing the concept of cross-linked
channel configuration, which includes two hierarchical levels of interconnected channels.
The coolants were first distributed in long and wide parallel longitudinal channels and
subsequently routed into short and narrowly spaced transverse channels. Such a design not
only allows a greater surface area to be exposed to the convective cooling liquid, but also
ensures a sufficiently high heat transfer coefficient in the transverse cooling channels. As
shown by Figure 8, the surface temperatures of the battery and aluminum plate obtained
for cold plate designs D8 and D9 are significantly lower and more uniform than those
obtained for designs D1 to D7. The highest temperature of design D8 was observed in
the lower left corner, while that of design D9 was observed in the middle right region.
The corresponding maximum surface temperatures of designs D8 and D9 are 38.5 ◦C and
38.4 ◦C, respectively. These results demonstrated that the cross-linked channel cold plates
have a superior cooling performance than the Z-type parallel channel cold plates.

4.2. Thermal-Hydraulic Performance in Different Designs

Figure 9a shows the temporal variation of average battery temperature for all designs.
The Reynolds number was still kept at 500 while the discharging rate was set as 3C. As
shown in the figure, the average battery temperatures increase rapidly during the initial
period of time (about 300 s) followed by a slow and gradual rise for all cold plate designs.
Near the end of the discharging cycle (after around 900 s), the average battery temperature
started to experience a rapid rise again (about after 900 s). The fast temperature rise at
the initial stage is attributed to the slow heat absorption rate by the convective coolant
as a result of the small temperature difference between the coolant and battery. At the
final stage of the discharge process, the heat generation rate rises sharply which leads to a
surge in the battery temperature. As shown in Figure 9a, the average battery temperature
calculated for Z type parallel channel cold plates decreases gradually with increasing
branch numbers from design D1 to D6 and started rising with increasing branch number
from design D6 to D7. In addition, the battery temperatures calculated for designs D8 and
D9 are substantially lower than those for the rest of the designs. To better understand such
a trend, the effective thermal resistance of all cold plate designs was calculated when the
discharging cycle completed (t = 1080 s). The corresponding results are shown in Figure 9b.
It is found that the effective thermal resistance decreases monotonically from designs D1 to
D9 except for design D7. A smaller thermal resistance represents a smaller temperature
difference between the battery surface and the coolant and therefore manifests a better heat
transfer performance. It is surprising to notice that the effective thermal resistance of design
D7 is even larger than that of design D4, which suggests that convective heat transfer is
suppressed severely by the low mass flow rate in each individual channel for design D7.
Thus, the average battery temperature becomes significantly higher in design D7. On the
other hand, both designs D8 and D9 demonstrated a superior thermal performance than all
Z-type cold plates.



Batteries 2023, 9, 220 13 of 21Batteries 2023, 9, x FOR PEER REVIEW 14 of 23 
 

0 300 600 900 1200
25

28

31

34

37

40

T a
ve

 /℃

t /s

 D1   D2 
 D3   D4
 D5   D6
 D7   D8 
 D9

Re = 500

 
(a) Average battery temperature 

 

0.15

0.17

0.19

0.21

D9D8D7D6D5D4D3D2D1

R 
/K

·W
-1

t  = 1080 s
Re = 500

 
(b) Thermal resistance 

Figure 9. (a) The change of average temperature of battery surface during the discharging cycle and 
(b) thermal resistance for different cold plate designs at Re = 500. 

Non-uniform temperature distribution has a significant impact on battery perfor-
mance and lifetime. To analyze the nonuniformity of temperature distribution for differ-
ent designs, we calculated the variation of the temperature maldistribution parameter 
over time according to Equation (1) for different cold plate designs as shown in Figure 10. 
The change of the temperature maldistribution parameter was found to follow a similar 
trend with that of the average battery temperature. In particular, the temperature maldis-
tribution parameters first increase rapidly, followed by a gradual and slow rise and finally 
increase quickly again near the end of the discharging process. Among all the designs, D9 
has the smallest temperature maldistribution parameter during most of the discharging 
process. Thus, it can be concluded that design D9 has the best thermal performance than 
the rest of the designs in terms of both the thermal resistance and temperature uniformity.  

Figure 9. (a) The change of average temperature of battery surface during the discharging cycle and
(b) thermal resistance for different cold plate designs at Re = 500.

Non-uniform temperature distribution has a significant impact on battery perfor-
mance and lifetime. To analyze the nonuniformity of temperature distribution for different
designs, we calculated the variation of the temperature maldistribution parameter over
time according to Equation (1) for different cold plate designs as shown in Figure 10. The
change of the temperature maldistribution parameter was found to follow a similar trend
with that of the average battery temperature. In particular, the temperature maldistribution
parameters first increase rapidly, followed by a gradual and slow rise and finally increase
quickly again near the end of the discharging process. Among all the designs, D9 has the
smallest temperature maldistribution parameter during most of the discharging process.
Thus, it can be concluded that design D9 has the best thermal performance than the rest of
the designs in terms of both the thermal resistance and temperature uniformity.

The cooling efficiency, which is evaluated based on the energy consumption and
heat removal rate, is also another important factor in a practical battery temperature
management system. A better cooling performance can always be achieved at a higher flow
rate, but at a cost of significantly greater power consumption. The energy consumption can
be calculated based on the flow rate and pumping pressure by:

Q = ∆p ·V · t, (17)

where ∆p is the difference between the inlet and outlet pressure, V is the volumetric flow
rate of the cooling medium, and t is the operating time of the cold plate. Figure 11 shows
the energy consumption and the average temperature of the battery when the discharging
cycle completed (t = 1080 s) for comparing the integrative performance of different designs.
The inlet Reynolds number was kept constant at Re = 500 and the batteries were operated at
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a discharge rate of 3C. Because the fluid properties are independent of the temperature, the
pressure and velocity distribution remained constant during the entire discharge process.
Therefore, the pressure values obtained at the end of discharging (t = 1080 s) were used
to calculate the pumping power. As shown in Figure 11, the power consumption kept
decreasing monotonically with increasing number of channels in the Z-type parallel channel
cold plates. This is because increasing number of channel numbers results in a lower mass
flow rate in each channel, which reduces the pressure drop through each individual channel.
Considering that the total pressure drop across the parallel channel system is equal to that
across each single channel, the total energy consumption can therefore be reduced by
distributing the cooling medium into a greater number of channels. The minimum power
consumption was obtained in design D7 which contains nine branches of parallel channels.
Furthermore, the cross-linked channel cold plates, due to their longer, narrower, and more
tortuous flow path, require a significantly higher pumping power to achieve the same
flow rate compared with cold plates containing Z-shaped parallel channel. However, by
adjusting the structure of the cross-linked flow path slightly from design D8 to design
D9, the total power consumption can be reduced by more than 20% without significant
impact on the cooling performance. Therefore, based on the comprehensive consideration
of the thermal-hydraulic performance, cold plate designs D6 and D9 were identified as the
optimum channel designs in this study.
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4.3. Performance Comparison under Different Cooling Strategies

The performances of continuous and delayed cooling strategies were compared using
the best performing cold plate designs (i.e., designs D6 and D9). In the delayed cooling
scheme, a constant flow of coolant will be provided into the cold plate to cool the battery
when the average temperature of battery reaches an upper limit of 40 ◦C. Once the average
temperature of the battery drops below 30 ◦C, the coolant flow will be stopped (i.e.,
vin = 0). Figure 12a,b shows the temperature change of the battery for designs D6 and D9 at
different flow rates when the continuous cooling strategy and delayed cooling strategy were
employed. The results indicate that increasing flow rate will cause the battery temperature
to rise more slowly for both cooling strategies. When the continuous cooling strategy was
employed with the flow rate set at Re = 100, the battery temperature in cold plate designs
D6 and D9 was found to exceed the upper limit of 40 ◦C at t = 591 s and 669 s, respectively.
This maximum temperature limit was breached much earlier when adopting the delayed
cooling strategy. However, it is interesting to observe that for both designs D6 and D9, the
average temperature of the battery measured at the end of discharging process remained
almost unchanged for both cooling strategies.

Figure 12c shows the battery temperature in cold plate designs D6 and D9 under both
cooling strategy when the discharging cycle completed (t = 1080 s). At the same flow rate,
the battery temperature in cold plate design D6 is always higher than that in design D9. In
addition, there is very marginal change in the average battery temperature when changing
from the continuous to the delayed cooling strategy. The average temperature of the battery
at the end of the discharging process is 40.1 ◦C at Re = 200 in design D6 and 39.8 ◦C at
Re = 180 in design D9. These results suggest that the battery temperature can always be
controlled within a safe limit by either operating cold plate D6 at Re = 200 or cold plate D9
at Re = 180 under both cooling strategies.

Figure 13 shows the temperature maldistribution parameter and power consumption
for cold plate design D6 at Re = 200 and design D9 at Re = 180 when adopting the two
different cooling strategies. Similar to the trend observed for average battery temperature,
the temperature maldistribution parameter kept increasing over time under the scheme
of continuous cooling. However, when switching to the delayed cooling strategy, the
temperature maldistribution parameter remained almost zero during the initial period due
to the zero flow rate of the coolant. Subsequently, the battery temperature reached the upper
limit and the coolant started being pumped into the cold plate, which resulted in a large
temperature difference between the entrance and exit areas. This stage is represented by a
sharp rise of the temperature maldistribution parameter shown in Figure 13a. As the coolant
got heated up by the battery, the temperature maldistribution parameter experienced a slow
drop followed by a gradual rebound towards the end of the discharging process. As shown
in the results, the temperature maldistribution parameters of design D6 is always greater
than that of design D9 regardless of the cooling strategy being employed. In addition,
the power consumption of design D9 is also 13% lower than that of design D6. More
importantly, changing from the continuous to the delayed cooling strategy allows the
power consumption to be reduced significantly due to the temporal interruption of the
cooling flow. In particular, the power consumption was decreased by 23% for both designs
D6 and D9 after switching from the continuous to the delayed cooling schemes. All these
findings demonstrate that the delayed cooling strategy is a more energy efficient method to
control the battery temperature within a safe operating limit compared to the continuous
cooling strategy. Furthermore, design D9 was proven to have the best cooling performance
than the rest of the designs in terms of a lower battery temperature, a smaller temperature
non-uniformity, and a lower power consumption.
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Figure 13. Temporal variation of power consumption for cold plate designs D6 and D9 with the
average battery temperature controlled within the allowable range.

The effect of inlet Reynolds number on the power consumption and total duration
of coolant flow was further analyzed for designs D6 and D9 under the delayed cooling
scheme, as shown in Figure 14. It is evident to notice that the power consumption kept
rising with increasing Reynolds number. For cold plate design D9, the total duration of
coolant flow was reduced twice when the Reynolds number was increased from 600 to
700 and from 800 to 900. For design D6, however, the total duration of coolant flow was
only reduced once when increasing the Reynolds number from 600 to 700. The reduced
flow duration provides a direct indication of a better energy efficiency since the battery
temperature can be controlled effectively with a lower amount of coolant flow. As shown in
Figure 14, the power consumption of design D9 becomes lower than that of D6 at Re = 700,
900, and 1000 due to the shorter duration of coolant flow. However, it should also be
noted that a reduced flow duration may also represent an overcooling scenario because
the battery temperature has been kept below 30 ◦C (instead of the upper limit of 40 ◦C)
for a substantial amount of time. Therefore, operating at a higher flow rate for a reduced
amount of time does not necessarily provide a better energy efficiency. In fact, a greater
pumping power is still required at a higher Reynolds number to ensure that the battery
temperature is less than the upper limit of 40 ◦C. If more stringent operating temperature is
required in the practical scenario, then design D9 could potentially provide a much better
performance than design D6 by using a high mass flow rate and a shorter cooling period.
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Figure 14. The variation of power consumption and liquid cooling time for designs D6 and D9 under
delayed cooling scheme at different Reynolds numbers.

5. Conclusions

In this study, seven Z-type parallel channel cold plates and two cross-linked chan-
nel cold plates were proposed for the cooling of high-power lithium-ion batteries under
continuous and delayed cooling schemes. The main conclusions made are as follows:

(1) The best thermal performance was obtained at a channel number of eight in the Z-type
parallel channel cold plates. Cross-linked channel cold plates show a significantly
better cooling performance than Z-type parallel channel cold plates at the price of a
higher power consumption.

(2) The operating temperature of a battery can be maintained within a safe range at
Re = 200 and 180 for designs D6 and D9, respectively, under both continuous and
delayed cooling schemes. At these operating conditions, design D9 requires 13%
less pumping power and provides a better temperature uniformity than design
D6. Therefore, design D9 has the best thermo-hydraulic performance than the rest
of the designs.

(3) Under the premise that the battery temperature is kept within the safe range, the
delayed cooling strategy can greatly reduce the power consumption by shortening
the duration of liquid cooling. In particular, the power consumption of design D9
can be decreased by 23% after switching from the continuous cooling scheme to the
delayed cooling scheme.
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Nomenclature

Latin symbols
b inlet and outlet channel width, mm
c, c1 fin space of longitudinal channel, mm
cp heat capacity, J·K−1·kg−1

d fin thickness of longitudinal channel, mm
e fin thickness of transverse channel, mm
f fin space of transverse channel, W·m−2·K−1

p pressure, Pa
Q power consumption, J
Qgen heat generation rate, W·m−3

R convection thermal resistance, ◦C·W−1

ST temperature maldistribution parameter,
t time, s
T temperature, ◦C
v velocity, m·s−1

Greek symbols
ρ density, kg·m−3

k thermal conductivity, W·m−1·K−1

µ dynamic viscosity, kg·m−1·s−1

Subscripts
ave average
b battery
j serial number
l liquid
w wall
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